
Heuristic Evaluation of Programming Language Features
Technical Report UCSC-SOE-11-06

February 11, 2011

Caitlin Sadowski
Computer Science Department

University of California at Santa Cruz
1156 High Street

supertri@cs.ucsc.edu

Sri Kurniawan
Computer Engineering Department

University of California at Santa Cruz
1156 High Street

srikur@soe.ucsc.edu

ABSTRACT
Usability is an important feature for programming languages.
However, user studies which compare programming lan-
guages or systems are both very expensive and typically
inconclusive. In this paper, we posit that discount usabil-
ity methods can be successfully applied to programming
languages concepts such as language features. We give
examples of useful feedback received from applying heuristic
evaluation to a selection of language features targeted at
parallel programming.

Author Keywords
Usability, Programming Languages, Parallel Programming

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: Miscellaneous

INTRODUCTION
Parallel and concurrent programming is extremely difficult [1,
11]. Parallel and concurrent programming is also increasingly
pervasive; concurrency is a key component to all reactive
applications, and the recent prevalence of multicore hardware
has made exploiting parallelism a key aspect of performance
optimizations [1]. A plethora of language features which
aid in parallel and concurrent programming exist. Because
parallel and concurrent programming is so hard, evaluating
and improving the usefulness of these language features could
make a big difference.

As an exercise, one of the authors of this paper modified
Nielsen’s 10 heuristics [13], plus the 13 tradeoffs which
make up the cognitive dimensions framework [7] to create
a selection of heuristics for evaluating language features,
and then used those modified heuristics to evaluate the lan-
guage feature of machine-checkable yield annotations [18],
described below. The issues uncovered by performing this
simple usability engineering method were striking; thinking
about yield annotations in terms of heuristics uncovered
several research questions in making yield annotations a
usable feature. We recruited four additional participants and
one additional language feature to test the hypothesis that
heuristic evaluation could be a useful tool for programming
languages researchers.

Language Features
In this paper, we investigate using discount usability methods,
specifically heuristic evaluation, to identify potential prob-
lems in language features which have been proposed to help
programmers reason about multithreaded code. We focus
on two proposed language features: atomic annotations and
yield annotations [5, 18].

The yield annotations represent the points at which con-
text switching can affect the results of executing code. For
example, take a look at the following code snippet:
public class Example {

int x;
public void foo() {

float tmp1 = x;
/* yield; */
float tmp2 = x;

}
public void bar() {

x = 3;
}

}

The “/* yield; */” annotation represents the fact that another
thread could change the value of x at this program point,
for example, by executing the bar() method. Note that
these annotations do not change the code behaviour, they just
document the points of potential thread interference.

In contrast, atomic annotations represent blocks of code
inside which do not contain thread interference. Here is the
example from above rewritten with atomic annotations:
public class Example {

int x;
public void foo() {

atomic{ float tmp1 = x; }
atomic{ float tmp2 = x; }

}
atomic public void bar() {
x = 3;

}
}

Roughly speaking, yield annotations would correspond to
the points where atomic blocks meet, in code that is entirely
covered by atomic blocks. As before, atomic annotations do
not change the code behaviour.

1



For both types of annotations, participants were informed that
programmers could use these annotations in two ways. First
of all, programmers could annotate methods with yield or
atomic and then analyze their annotated programs to check
if the annotations were correct. Several such checkers exist in
the research literature for atomic annotations (e.g. [5]); one
yield annotation checkers has also been published [19]. As
an alternative use, a program (or another programmer) could
annotate a program with correct annotations, perhaps via a
yield annotation inference tool [19]. Future programmers
could use these annotations to reason about the code.

RELATED WORK
Usability testing has sometimes been used to inform the
design of programming languages. The most notable ex-
ample of this is the HANDS language for children [16].
This language involved HCI principles as an integral part
of the language development process; after the language was
developed, the authors performed a user study to evaluate
the addition of some key language features by comparing
language versions with and without the features.

Discount usability [12, 13] is a set of fast techniques for
evaluating the usability of a system. These techniques include
scenarios, card sorting, and heuristic evaluation. Discount
usability engineering has been used in a variety of contexts,
including agile development [10]. However, discount usabil-
ity methods have also been criticized, particularly for not
having good coverage metrics or a clear way to analyze the
results for false positives or false negatives [6].

In this paper, we are running a variant of heuristic evalua-
tion [14]. Heuristic evaluation has been successfully used in
a variety of contexts, ranging from evaluating mission-critical
software with a large team [3] to evaluating games [17] and
has been shown to be effective at finding severe usability
problems [8]. Nielsen’s heuristics have also been used to
categorize prior research focused on usability and novice
programming systems [15].

We base some of our heuristics on the cognitive dimensions
framework. This framework was originally presented as a
set of conceptual categories which highlight design tradeoffs
in visual programming languages [7]. These dimensions
were later formulated as a questionnaire for users [2]. Other
researchers have used cognitive dimensions to evaluate pro-
gramming languages [4], or formatively in developing a
language feature [9].

METHODOLOGY
We took Nielsen’s 10 heuristics [13], plus the 13 tradeoffs
which make up the cognitive dimensions framework [7],
rewritten as heuristics. We updated, merged, or deleted
heuristics which did not make sense in the context of a
language feature. The final list of heuristics is displayed
in Table 1.

Using these 11 heuristics we ran a heuristic evaluation with
five participants, including one of the authors of this paper.
The participants were computer science graduate students

Abstraction
Gradient

Does this feature adequately cover the
gradient between minimum and maxi-
mum levels of abstraction in a program?
(e.g. the gradient from low-level code
details to interface-level details)

Consistency Does this feature have consistent mean-
ing?

Error-
Proneness

Does the notation for the language feature
induce “care-less mistakes”? Is there a
match between notation in the system and
how similar language is used in the real
world?

Hidden
Dependencies

Are all dependencies clear with this fea-
ture? Could local changes have confusing
global effects?

Premature
Commitment

By using this language feature, do pro-
grammers have to make decisions before
they have the information they need?

Progressive
Evaluation

Can a partially-complete application of
this feature provide feedback on “How
am I doing”?

Viscosity How much effort is required to perform a
single change involving this feature?

Flexibility &
Efficiency

Is this feature effective across the gradient
between novice and expert programmers?

Aesthetic
Design

Feature notation should be simple and
concise.

Error Recovery If there is an error in language feature
usage, are precise, constructive error mes-
sages in plain language presented?

Documentation Even though it is better if the language
feature can be used without documen-
tation, it may be necessary to provide
help and documentation. Documentation
should be concise, concrete, and relevant.

Table 1. Eleven Language Feature Heursitics

and were all experts in parallel and concurrent programming.
We first had participants evaluate yield annotations with the
heuristics, and then evaluate atomic annotations. All par-
ticipants were familiar with research on yield and atomic
annotations before the study.

Taking inspiration from a study about developing a heuristic
evaluation for video games [17], we asked the four non-author
participants to describe strengths and limitations of using
the supplied heuristics to evaluate language features. We
also asked participants to identify any heuristics they found
particularly useful or particularly confusing. Lastly, we asked
participants whether they found problems using the heuristics
they would otherwise have missed, and whether the heuristics
gave them new perspectives on the language feature.

RESULTS
Participants identified 5 problems shared between atomic
annotations and yield annotations; of these problems, we
are not aware of prior discussion of 2 of them in the research
literature. Participants identified 7 problems unique to yield

2



annotations, 5 of which are (to our knowledge) new problems.
Participants also identified 5 problems unique to atomic
annotations, 2 of which are (to our knowledge) new problems.

Participants rated the same problems at various places on the
scale between cosmetic and catastrophic; we have omitted the
severity rating assigned from the following discussion since
ratings were very mixed and we feel that the identification
of all the new problems is the major research contribution of
this work. Every heuristic resulted in at least one participant
identifying a problem. Because of this, we believe that
the list of heuristics could be expanded, but should not be
compressed.

Problems shared between atomic and yield annotations
1. Participants were concerned about other definitions of the

words “atomic” and “yield” leading to confusion.

“Yield is an overloaded word; not self-documenting.”

We feel that the choice of terminology can have a big
impact in understanding concepts; we recommend that pos-
sible sources of notational confusion should be discussed
more in the literature.

2. Participants were concerned about the usefulness of tool
feedback for missing yield or atomic annotations. We
feel that this could be discussed more in the literature.

3. Participants realized that missing yield annotations or
inaccurate atomic sections may lead to strange results and
may not represent real bugs.

“It is unclear how bugs related to inadequate
yield annotations will actually manifest.”

“Knowing something is non-atomic may result
in making changes to an entirely separate part
of the program.”

This problem represents an area of active research.

The remaining two problems are not, to our knowledge,
discussed in the research literature.

1. Participants were concerned about how atomic or yield
annotations relate to evolving code. Although yield
annotations may be useful in program evolution [18], this
aspect needs to be explored further. We are not aware of
research which looks at how atomic blocks of code evolve
over time.

2. All participants were concerned about the lack of docu-
mentation for these features, beyond research papers.

Problems with yield annotations
Two problems identified with yield annotations represent
general issues in annotation checking tools and so are not
unique to this particular language feature.

1. Participants were concerned about the impact of false
positives or negatives in the checker on the usefulness
of yield annotations.

2. Participants were worried about users ignoring yield
annotations.

The remaining five problems are not, to our knowledge,
discussed in the research literature.

1. Participants worried about a false sense of security caused
by correct yield annotations.

2. Participants identified a problem in the difference between
local and global reasoning with yields.

“Yields are specific to a line number; but how
do you reason about methods that may contain
yields inside without looking at the code?”

3. Participants were worried that too many yields could clutter
code, be confusing, or be annoying to write.

4. One participant pointed out that:

“Partially correct set of yield annotations is not
worth very much.”

5. One participant thought the word yield might be too min-
imal, and that perhaps additional information could be
included in the notation.

Problems with atomic annotations
Three identified problems with atomic annotations are also
discussed in the literature on yield annotations [18].

1. Atomic sections create bimodal reasoning.

“Atomic forces programmers to think about code
as if [it is either] in atomic or out of atomic.”

2. Participants pointed out that atomic annotations based on
syntactic blocks are limited.

3. Participants were concerned about the global impact of
atomic or non-atomic sections.

“How does making one method atomic or non-
atomic change the entire program behaviour?”

The remaining two problems are not, to our knowledge,
discussed in the research literature.

1. Participants wondered how atomic annotations could be
applied at the class level.

“Does an atomic interface mean a safe inter-
face?”

2. Participants noted that atomic annotations were only use-
ful if correctly applied.

“[Atomic annotations are] easy to add, hard to
add well.”

3



Feedback
Multiple participants found that the heuristics which focused
on error-proneness or progressive evaluation were particu-
larly useful; we think these are important heuristics for pro-
gramming language researchers to consider when developing
language features or tools. Two participants found thinking
about the abstraction gradient to be particularly confusing,
but a third participant found this to be particularly useful; we
believe that this heuristic was stated confusingly, and will be
more useful once it is re-worded.

There was only one participant who did not strongly agree
that using heuristics both helped them find new problems
and gave them a new perspective. This remaining participant
strongly agreed that the heuristic evaluation was a helpful
exercise, but thought the process clarified his thinking rather
than providing an entirely new perspective. All participants
thought this would be a useful methodology for their own
research.

FUTURE WORK
This initial evaluation, though small, uncovered several re-
search issues in a short amount of time. However, the small
number of participants and the ambiguity of interpretation
of some of the heuristics represent threats to validity of this
study. We would like to compare a larger set of language fea-
tures using heuristic evaluation. We would like to investigate
other possible heuristics, and develop a theory supporting the
use of these future heuristics in evaluating language features.
We also feel that the 0-4 rating scheme for heuristics does
not quite fit the language-feature context; one participant also
commented on this in their feedback survey.

We would like to further explore whether other discount
usability methods can be used for programming languages
features or concepts. Lastly, we would like to better under-
stand adoption barriers within the programming languages
research community which prevent similar methods from
being used.

REFERENCES
1. K. Asanovic, R. Bodik, J. Demmel, T. Keaveny,

K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson,
K. Sen, J. Wawrzynek, et al. A view of the parallel
computing landscape. Communications of the ACM
(CACM), 52(10):56–67, 2009.

2. A. Blackwell and T. Green. A Cognitive Dimensions
questionnaire optimised for users. In Annual Meeting of
the Psychology of Programming Interest Group (PPIG),
volume 12, pages 137–152. Citeseer, 2000.

3. T. Buxton, A. Tarrell, and A. Fruhling. Heuristic
Evaluation of Mission-Critical Software Using a Large
Team. International Conference on Human-Computer
Interaction, pages 673–682, 2009.

4. S. Clarke. Evaluating a new programming language. In
Workshop of the Psychology of Programming Interest
Group (PPIG), pages 275–289, 2001.

5. C. Flanagan and S. Qadeer. A type and effect system for
atomicity. In Conference on Programming Language
Design and Implementation (PLDI), pages 338–349,
2003.

6. W. Gray. Who Ya Gonna Call? You’re on Your Own.
IEEE Software, 14(4):26, 1997.

7. T. Green and M. Petre. Usability Analysis of Visual
Programming Environments: A ’Cognitive
Dimensions’ Framework. Journal of Visual Languages
and Computing, 7(2):131–174, 1996.

8. R. Jeffries, J. Miller, C. Wharton, and K. Uyeda. User
interface evaluation in the real world: a comparison of
four techniques. In Conference on Human factors In
computing systems (CHI), pages 119–124. ACM, 1991.

9. S. Jones, A. Blackwell, and M. Burnett. A user-centred
approach to functions in Excel. In International
Conference on Functional Programming (ICFP), pages
176–186. ACM, 2003.

10. D. Kane. Finding a place for discount usability
engineering in agile development: throwing down the
gauntlet. In Agile Development Conference (ADC).
IEEE, 2003.

11. S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
mistakes: a comprehensive study on real world
concurrency bug characteristics. SIGPLAN Notices,
43(3):329–339, 2008.

12. J. Nielsen. Applying discount usability engineering.
IEEE Software, 12(1):98–100, 1995.

13. J. Nielsen and R. L. Mack, editors. Usability inspection
methods. John Wiley & Sons, Inc., 1994.

14. J. Nielsen and R. Molich. Heuristic evaluation of user
interfaces. In Conference on Human factors In
computing systems (CHI), pages 249–256. ACM, 1990.

15. J. Pane and B. Myers. Usability issues in the design of
novice programming systems. CMU Human-Computer
Interaction Institute Technical Report
CMU-HCII-96-101, 1996.

16. J. Pane, B. Myers, and L. Miller. Using HCI techniques
to design a more usable programming system. In
Symposium on Human Centric Computing Languages
and Environments. IEEE, 2002.

17. D. Pinelle, N. Wong, and T. Stach. Heuristic evaluation
for games: usability principles for video game design. In
Conference on Human factors In computing systems
(CHI), pages 1453–1462. ACM, 2008.

18. J. Yi and C. Flanagan. Effects for cooperable and
serializable threads. In Workshop on Types in Language
Design and Implementation (TLDI), 2010.

19. J. Yi, C. Sadowski, and C. Flanagan. Cooperative
reasoning for preemptive execution. In Symposium on
Principles and Practice of Parallel Programming
(PPoPP), 2011.

4


	Introduction
	Language Features

	Related Work
	Methodology
	Results
	Problems shared between atomic and yield annotations
	Problems with yield annotations
	Problems with atomic annotations
	Feedback

	Future Work
	REFERENCES 

