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Abstract

Gaussian process (GP) models provide non-parametric methods to fit continu-

ous curves observed with noise. In this paper, we develop a GP based inverse

method that allows for the estimation of the derivative of a curve, avoiding di-

rect estimation from the data. In principle, a GP model may be fit to the data

directly, then the derivatives obtained by means of differentiation of the correla-

tion function. However, it is known that this approach can be inadequate due to

loss of information when differentiating. We present a new method of obtaining

the derivative process by viewing this procedure as an inverse problem that does

not lose information. We use the properties of a GP to obtain a computationally

efficient fit. We illustrate our method with simulated data as well as apply it to

an important cosmological application. We include a discussion on model com-

parison techniques for assessing the quality of the fit of this alternative method.

(LA-UR 10− 08095)
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1 INTRODUCTION

While most statistical curve fitting methods focus on the observed data directly, some

aim to fit a more complex function of the data. Here we develop methodology when

the object of primary interest is the derivative of a process, or a complex function of a

derivative. The motivation for this work is a problem in cosmology where the interest

is in understanding the behavior of a function of the second derivative of the data

process. In a larger context, this problem can be viewed as an inverse problem, where

the data we observe are a non-linear transformation of the quantity of interest. Inverse

problems are a challenging category of problems, because the likelihoods typically

cannot be written down in closed form, and often suffer from issues of identifiability

(Higdon et al. 2003; Kaipio and Somersalo 2004). As with most inverse problems, it

is better to model the unknown quantity of interest directly, rather than to fit the

data and transform the fit to obtain an estimate of the unknown quantity. Thus here

we propose modeling the derivative process with a Gaussian process (GP), rather than

fitting a curve to the data and attempting to differentiate it. Taking a derivative results

in a loss of information, it propagates noise, and it can lead to estimation degeneracies

for the curve and its probability bands. Sharing another similarity with the general

class of inverse problems, we find that a Bayesian approach allows regularization, which

reduces issues with identifiability.

GP models provide a class of flexible non-parametric fits that can be used to ana-

lyze a wide range of data sets (Banerjee et al. 2004; Rasmussen and Williams 2006).

A GP is a stochastic process w(z) indexed by z, such that for any finite collection of
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locations z1, ..., zn, the vector (w(z1), ..., w(zn)) follows a multivariate Gaussian distri-

bution. A GP is fully defined by its mean and covariance functions. In this paper, we

restrict our attention to a constant (but possibly unknown) mean function, although

the methodology is readily extensible to other mean functions. Similarly, for the co-

variance function, we focus on the widely used power-exponential family, parametrized

as cov(w(z), w(z′)) = Σ(z, z′) = κ2ρ|z−z′|α , where κ > 0 is a scaling (variance) param-

eter, ρ ∈ [0, 1) is a correlation parameter, and α ∈ (0, 2] is a smoothness parameter.

Again, other covariance functions could be used instead. Thus the models herein are

stationary, but there is no inherent need for stationarity with our proposed methods.

This paper focuses on processes in one dimension, but the methodology is generalizable

to higher dimensions as well.

The main difficulties of the proposed approach involve the integration of the deriva-

tive process, so as to be able to evaluate the likelihood of the observed data. Section 2

discusses these issues and our solutions. Section 3 demonstrates our methods on a

simple simulated example, and Section 4 applies our methods to an important problem

in cosmology. We conclude with a brief discussion.

2 INTEGRATED GAUSSIAN PROCESS MODEL

Consider the problem of estimating the derivative of a curve from noisy observations.

Let the observations correspond to the pairs (zi, xi), i = 1, . . . , n where zi is a uni-

variate predictor and xi a univariate response. The fundamental assumption is that

xi corresponds to noisy evaluations of an unknown function f(·) at point zi. We are

interested in estimating f ′(z) without making parametric assumptions. A possible ap-

proach is to model f(·) with a Gaussian process and then take the first derivative of

the resulting fit. Thus, letting εi be observational error, xi = f(zi) + εi = θ+ y(zi) + εi
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where θ is the mean, y(z) is a GP with mean function zero and covariance function

κ2K(·, ·;ψ), depending on the parameter vector ψ. Additionally, we assume that all

εi are independently distributed according to a N(0, τ 2). It is known (Yaglom 1962)

that y(z) is mean square differentiable if K is two times differentiable at the origin.

Furthermore, the process w(z) ∼ GP (0, κ2 dK(z,z′;ψ)
dzdz′

) is the first derivative process of

y(z). Thus, given a parametric form for K, we use the data (zi, xi) to estimate the

parameters in K and then use K ′′ = dK(z,z′;ψ)
dzdz′

to make inferences about f ′. Overall,

this approach results in a non-parametric fit for the data and for the derivative curve.

However, this method may not be adequate. It is known that if we fit the data

process directly and then differentiate, we lose information about the derivative pro-

cess. When observational error is present, the prediction of the derivative process is

degraded (Stein 1999). Additionally, the fact that the covariance function K needs

to be two times differentiable results in a practical limitation. Very smooth correla-

tions produce numerically singular covariance matrices. This problem is particularly

acute for the Gaussian correlation, which is obtained when α = 2 in the exponential

correlation family. This is the only example of a correlation with any derivatives in

the power exponential family. Singularities are also observed for the Matèrn family

with smoothness parameter above three. The traditional remedy to the problem of

numerical singularity is to add a nugget or jitter to the covariance, but this, of course,

produces a discontinuous correlation function. So, it is conceptually wrong to use it

for derivative process estimation.

As an alternative to the direct method, we present an inverse approach. We assume

that the derivative process w(z) is a GP. The integrated process y(z) =
∫ z

0
w(u)du is

the one for which we have noisy observations. The covariance function of y(z) can be

obtained by double integration of the covariance function of w(z). Thus, suppose that
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w(z) ∼ GP (0, κ2K(z, z′;ψ)), then

y(z) ∼ GP

(

0, κ2
∫ z

0

∫ z′

0

k(u, u′;ψ)dudu′

)

. (1)

Using Equation (1), the likelihood for θ,ψ, κ2, and σ2 based on the sample x =

(x1, . . . , xn) and the distribution of y = (y(z1), . . . , y(zn)), is

p(x|θ, σ2,y)p(y|ψ, κ2) = Nn(x|1nθ + y, σ
2In)Nn(y|0n, κ

2Ky)

where Nk(a|b,C) denotes a k-dimensional normal density, evaluated at a, with mean

b and covariance matrix C. 1n and 0n denote, respectively, n-dimensional vectors of

1s and 0s, and In is the n×n identity matrix. Ky is the covariance matrix that results

from the correlation function in Equation (1). In other words, we use the derivative

process’s correlation function to obtain the covariance matrix that corresponds to the

observed data.

The likelihood obtained from Equation (1) implies that, for every pair of locations

(zi, zj) we need to calculate a double integral. Thus, evaluating the likelihood for n large

has a computational cost that is prohibitive if K(·, ·;ψ) cannot be integrated explicitly.

An alternative is to consider a set of points z∗1 , . . . , z
∗
L and obtain the joint distribution

of y conditional on wL = (w(z∗1), . . . , w(z
∗
L)). The likelihood is then obtained as the

product

p(x|θ,y, σ2)p(y|wL,ψ, κ
2)p(wL|ψ, κ2) =

Nn(x|1nθ + y, σ
2In)Nn(y|m,V )Nn(wL|0n, κ

2Kw)

where m = E(y|w) = KywK
−1
w w, V = var(y|w) = Ky −KywK

−1
w K

T
yw. Kw is a
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matrix with elements k(z∗i , z
∗
j ;ψ), andKyw is a matrix with elements

∫ zj
0
k(z∗i , u;ψ)du.

As Ky is needed for the conditional density of y given wL, the alternative likelihood

does not present any computational advantage. Nevertheless, the approximation

y(z) ≈ yL(z) =
L
∑

l=1

w(z′l)(zl − zl−1), 0 = z0 < z1 < . . . < zL = z, zl−1 ≤ z′l ≤ zl

(Yaglom 1962), implies that the integrated process y(z) can be approximated by a

linear combination of L values of w(z). Clearly if w(z) is given, then yL(z) is known

exactly for any finite L, thus var(yL(z)|w) = 0. So, for a large enough L, we can assume

that V ≈ 0. This justifies the use of the likelihood

Nn(x|1nθ +m, σ2In)NL(wL|0n, κ
2Kw), (2)

which does not require the computation of double integrals.

The use of the approximation in Equation (2) can speed up calculations substan-

tially. It allows for an inverse problem approach that does not degrade the GP fit

of the derivative process when measurement error is present. Moreover, numerical

simulations show that for L as small as 10 we obtain values of var(yL(z)|w) that are

negligible. We show the power of this method in the following two examples. The first

example consists of simulated data where the true curve is known and we are inter-

ested in estimating its first derivative using noisy observations. The second example

corresponds to the estimation of the dark energy equation of state from supernovae

data. This problem is substantially more complex, as we are interested in a derivative

process embedded in a non-linear transformation. To assess our method, we consider a

comparison between the fit from our model and some of the parametric models favored

in the cosmology literature.
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3 SIMULATED EXAMPLE

We generate n = 100 equally spaced data points from the curve f(z) = ln(1+z), adding

noise ε ∼ N(0, 0.52), for z ∈ [0, 5]. Thus, the derivative curve is f ′(z) = 1/(1 + z).

Following the discussion in the previous section, we start by fitting a GP directly to the

data and then differentiate to obtain an estimate of the derivative curve (Neal 1997).

As stated in the introduction, we focus on the power exponential family, so, in order

to have differentiability, we consider a Gaussian correlation function.

Our second fit corresponds to the inverse problem approach based on Equation (1).

In this case we use α = 1, so that the double integral for the correlation function for

y(z) can be calculated in closed form. Our third fit is obtained using the approximation

in Equation (2). We use this approach with both the exponential correlation function

(α = 1) and the Gaussian correlation function (α = 1.99). Unfortunately, setting α = 2

produces numerical instabilities in the inverse method that prevent us from operating

with the induced covariance matrices, so we set α = 1.99. For the Gaussian correlation

we compute the integrated correlation needed for the matrix Kyw numerically, using

Gauss-Chebyshev quadrature, as shown in Appendix A.

In all methods, we have the same priors and generally avoid non-informative priors

because of potential issues with improper posteriors. The parameter ρ is defined on

the interval (0, 1) and we want smooth GP realizations that have higher correlation

values, so we employ a mildly informative prior on ρ that favors values close to one:

π(ρ) ∼ Be(6, 1). σ2 is the variance of the observational error. If information on

the data is available, we could specify an informative prior, although in this case we

can feasibly have a conjugate non-informative prior and that is what we use here:

π(σ2) ∼ σ−2. κ2 controls the variance of the GP; we want an informative prior with

values away from zero, as this produces a numerical singularity. We use a conjugate
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prior: π(κ2) ∼ IG(4, 1). The last parameter to consider is θ; we assume it to be

constant which is equivalent to the conventional method of subtracting off the data

mean of the derivative process or a linear trend on the data scale. For this particular

problem we have set θ = 0.41. We use an MCMC algorithm based on a combination of

Gibbs and Metropolis steps. To ensure good convergence and mixing for the posterior

chains we run the chains for 100,000 iterations.

The results for all four fits are presented in Figure 1. Panel 1(a) shows the curve

fitted by using a GP directly and 1(b) shows the resulting estimation of the curve

derivative. Even though the pointwise probability intervals cover the true values of

the derivative for most of the range, it is clear that the estimation is very wiggly.

Furthermore, the quality of the fit is poor for values of z in the extremes of the interval.

The results obtained for the estimation of the derivative curve using the inverse problem

approach are superior to the direct method in all cases. A comparison of the panels in

the left column reveals that the method based on the approximate likelihood produces

intervals for the data fitting curve that are slightly narrower than the exact method.

This is not surprising, as the approximation is based on ignoring some of the variability

in the integration of the latent process w(z). On the other hand, the panels on the

right column indicate that the derivative curve is estimated quite accurately. This

is particularly the case for the fit in panel 1(h), corresponding to the approximated

likelihood method with Gaussian correlation function.

4 COSMOLOGICAL APPLICATION

Our motivating example for this work is a problem in cosmology. The dark energy

equation of state is at the forefront of the pursuit of knowledge on the cause of the

accelerated expansion of the Universe (Riess 1998; Perlmutter et al. 1999). Supernovae

8



0 1 2 3 4 5

−
1

0
1

2

z

y(
z)

(a) Direct data fit

0 1 2 3 4 5

−
0.

5
0.

5

z

w
(z

)

(b) Induced estimation of f ′

0 1 2 3 4 5

−
1

0
1

2

z

y(
z)

(c) Inverse data fit, α = 1

0 1 2 3 4 5
−

0.
5

0.
5

z

w
(z

)

(d) Inverse f ′ estimation, α = 1

0 1 2 3 4 5

−
1

0
1

2

z

y(
z)

(e) Approx. inv. data fit, α = 1

0 1 2 3 4 5

−
0.

5
0.

5

z

w
(z

)

(f) Approx. inv. f ′ estimation, α = 1

0 1 2 3 4 5

−
1

0
1

2

z

y(
z)

(g) Approx. inv. data fit, α = 1.99

0 1 2 3 4 5

−
0.

5
0.

5

z

w
(z

)

(h) Approx. inv. f ′ estimation, α =
1.99

Figure 1: Four estimation approaches for f ′(z). Left column: simulated data (circles); true
curve (dashed line); fitted curve (solid line). Right column: true derivative curve (solid line);
estimated derivative (dashed line). 65% and 95% probability interval bands (dark gray and
light gray respectively).

9



0.0 0.5 1.0 1.5

34
36

38
40

42
44

Redshift (z)

D
is

ta
nc

e 
M

od
ul

us

0.0 0.5 1.0 1.5

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Redshift

E
rr

or
 M

ea
su

re
m

en
ts

Figure 2: Right panel: distance (µ) versus redshift (z). Left panel: standard errors (τ2)
versus z.

play a key role in studying the equation of state. They are considered standardizable

candles, as the peak luminosity during explosion is standard across all supernovae;

a feature that allows for good measures of distance. We will denote these as µ. To

produce an estimate of µ, measurements of the absolute magnitude as a function of

time are taken during the supernova explosion. These measurements are then fitted

to produce a light curve for each supernova. From the light curve, µ and the standard

measurement error (τ 2) can be extracted. We use the original version of the Spectral

Adaptive Lightcurve Template (SALT) fitter (Guy et al. 2005) to obtain µ and τ 2

values. For our analysis, we focus on one of the Constitution supernovae data sets from

Hicken (2009); Kowalski (2008), which contains n = 397 supernovae measurements.

These data are widely available in the literature. A preliminary analysis of them was

done in Holsclaw et al. (2010a).

Figure 2 shows the data used in our example; these consist of n = 397 (µ, z) pairs.

The supernova data are used to infer the the hypothesized dark energy equation of

state w(z). This is linked to the supernova distance through a non-linear function

T (w(z)) involving several unknown cosmological parameters. Genovese et al. (2009)
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propose the observation equation

µ(z) = T (w(z)) + ε(z), ε(z) ∼ N(0, τ 2(z)) .

Here T (w(z)) is given as

T (w(z)) = 25 + ∆ + 5 log10
c(1 + z)

H0

∫ z

0

h(s)ds (3)

h(s) =
[

Ωm(1 + s)3 + (1− Ωm) (1 + s)3e3
∫ s

0
w(u)
1+u

du
]− 1

2
(4)

indicating that two integrations need to be performed on w(z) before it can be related

to the observations. In other words, we are interested in using noisy observations to

estimate a function of the second derivative of a curve. This problem has been ap-

proached in a direct way, by fitting the observed data and then taking derivatives to

obtain w(z), but this led to degeneracies (Sahni and Starobinsky 2006; Saini et al.

2000). Our experience with simulated data is that the direct inference approach pro-

duces values for w(z) at the origin that tend to negative infinity, which is not physically

plausible.

The difficulties mentioned above are the reason for the popularity in the litera-

ture of inverse problem approaches. The method favored by most authors is to set a

parametric functional form for w(z) and perform model comparison to choose the best

form. Only one and two parameter forms can be estimated, higher order polynomi-

als cause oscillating behavior and introduce bias in the fit, which degrades for high z

values (Linder 2007). Our approach is based on assuming a GP model for w(z). A

GP approach provides a non-parametric fit to the data that surpasses the fit of most

two dimensional models and does not require a functional form of w(z) to be chosen

a priori. Other non-parametric methods exist but assume w(z) to be a piecewise con-
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stant function, which is not compatible with the physics of the problem (Huterer and

Cooray 2005; Hojjati and Pogosian 2010).

4.1 Modeling

We assume that w(z) is a stationary Gaussian process, with a correlation function

in the power exponential family. The integrated process y(s) =
∫ s

0
w(u)/(1 + u)du

is non-stationary and so Cauchy-Gauss quadrature is a natural choice to obtain the

integrals required for the computation of Kyw. This is illustrated in Appendix 5. We

use the approximation in Equation (2) with L = 50. This is a conservative number,

as numerical simulations indicate that with about L = 10 we can obtain accurate

numerical integrations. As for the integral in Equation (3), we approximate it using

a trapezoidal rule, evaluating y(s) at 150 points for the range (0, zn). We use a non-

regular grid that places more points at lower values of z to ensure high precision in

the numerical integrations for small redshift values. We experimented with grids of

different sizes and configurations and found that the current choice provides a good

compromise between accuracy and computability.

Equation (3) depends on several cosmological parameters. For these we either take

fixed values or assume informative prior distributions. The speed of light (c) is taken

to be 3 ∗ 105km/s and Hubble’s constant is set at H0 = 65. The offset parameter, M ,

takes into account any uncertainty associated with Hubble’s constant; we assume a flat

prior U(M | − 10, 10) for it. For the matter density parameter of the Universe, Ωm,

we assume the prior N(Ωm|0.27, 0.042) (Komatsu 2010). This choice prior is based on

other sources of data, including cosmic microwave background radiation and baryon

acoustic oscillation data.

In this particular example, we do not have the ability to fit an unknown parameter

12



in the mean function of the GP (Holsclaw et al. 2010b). As in the first example, the

mean parameter θ is fixed. It is initially fixed to −1 which is the cosmologist best guess

because we cannot subtract a data mean or linear trend due to the complex non-linear

relationship in the data. But we do check the value of θ using the posterior mean of

the draws of the GP realizations of w(z). We ran the MCMC for 50,000 iterations

and all posterior chains had acceptable mixing and acceptance rates. The priors for

the covariance parameters σ2, κ2, and ρ are the same as in the first example. Some

of the correlated parameters were proposed in joint steps. More details of the MCMC

algorithm used for this cosmology example are given in Holsclaw et al. (2010b).

For comparison purposes, we fit six different models, including some of the most

popular ones in the cosmology literature. Under Model0 we assume that w(z) = −1.

This corresponds to the null hypothesis of the addition of a cosmological constant to

the Einstein field equations. Model1 is a one-parameter model with w(z) = const,

where the constant is estimated rather than constrained to −1. Model2 is a two-

parameter linear model of the form w(z) = a+bz (Cooray and Huterer 1999; Maor et al.

2001; Weller and Albrecht 2001). Model3 is the two-parameter model favored in the

cosmological literature with w(z) = a+b( 1
1+z

−1) (Linder 2003; Chevallier and Polarski

2001). It is important to notice that more flexible higher order models generally fail to

fit the data, due to lack of identifiability. We fit two GP models: one with exponential

correlation (Model4e with α = 1) and one with Gaussian like correlation (Model4g with

α = 1.99). We also fit a model with damped Hermite polynomials that approximates a

GP with Gaussian correlation function as proposed in Steinberg and Burstztyn (2004)

(Model5 – see Appendix B for details). Representing w(z) on a set of basis functions

has been proposed by other authors. This is an appealing alternative, as it can simplify

the integrals involved in the computation of h(z). Unfortunately, it has been found that

expansions that include more than two terms have an explosive behavior (Genovese
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Figure 3: The top row shows the fit of Models1,2,3 which are the most common parametric
models. The second row shows GP based Models4e,4g,5. The dark gray line is the mean fit,
the medium grey area is the 68% PI bands and the light gray is the 95% PI bands.

et al. 2009). The expansion proposed in Steinberg and Burstztyn (2004) is appealing,

as it includes a damping term that is linked to the correlation length of the GP. The

results for all six models are presented in Figure 3. For each model the mean fitted

curve is shown with a dark gray continuous line. A dashed line for w(z) = −1 is drawn

for reference.

We see in Figure 3 that Model0 (the constant function) has the tightest probability

intervals (PIs), followed by the GP fits. The GP not only allows for a more flexible fit

than any of the parametric forms but it also has tighter PIs than the two-parameter

models. The model based on a damped Hermite polynomial expansion was truncated at

two terms, as, contrary to our expectations but similar to other expansion approaches,

it shows an explosive behavior when more terms are added despite the damping terms.

The truncation results in a model that is similar to a two-parameter model. The
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results in Figure 3 show that the GP provides a good solution for fitting the dark

energy equation of state, as it is flexible without the penalty of increased uncertainty.

4.2 Model Comparison

As there are multiple possible models under consideration, we want to formally quantify

how the GP method here compares to other methods. Other studies have relied on the

BIC (Bayesian Information Criterion) (Schwarz 1978) to distinguish between models

(Genovese et al. 2009). In several trials with simulated data where the true w(z)

was known, we found BIC to incorrectly choose the model with the least number of

parameters, particularly when the true w(z) had some curvature. Additionally, the

typical selection criteria like BIC do not allow for a direct comparison with our non-

parametric model, as the GP presented here does not have a well-defined number of

parameters to use in the penalty terms for these criteria. Bayes factors were considered

and not used for model comparison because of known issues with non-informative or

flat priors we are using in our models (March et al. 2010). If the priors are changed,

the results of the model comparison also change. This makes the model comparison

somewhat incoherent, and therefore this approach was not pursued further. Overall, we

found the DIC (Deviance Information Criterion)(Gelman et al. 2004) to be useful here

as our decision criterion for model selection. The DIC is defined as DIC = 2D(ψ) −

D(ψ), where ψ is the set of unknown parameters in the model, D(ψ) = −2 log(p(y|ψ))

and D(ψ) is the average of each iterations D(ψ) value in the MCMC and D(ψ) is D(ψ)

evaluated at the average value of ψ from the iterations. We display the DIC value of

each model in Table 1, together with the values of the BIC and AIC (Szydlowski and

Wlodzimierz 2006).

The DIC provides another useful feature in that we can estimate the number of
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effective parameters: pD = D(ψ) −D(ψ). The pD values tend to be smaller than the

actual number of parameters in the model. This shrinkage happens when some of the

parameters are correlated and do not add another full parameter worth of information

or when there is an informative prior on the parameter. We know that the parameters

in our cosmology example are correlated and have informative priors, so we expect

shrinkage in pD.

Table 1: Model Comparison for Example 2
Model Form of w(z) BIC AIC p DIC pD

Model0 w(z)=-1 9.997* -5.939* 4 -8.452* 2.7
Model1 w(z)=const 15.984 -3.936 5 -7.732 3.0
Model2 w(z)=a+bz 18.685 -5.407 6 -7.400 2.9
Model3 w(z) = a + b( 1

1+z
− 1) 18.685 -5.218 6 -7.049 3.4

Model4e w(z)∼ GP(α = 1) NA NA NA -7.604 3.2
Model4g w(z)∼ GP(α = 1.99) NA NA NA -7.510 3.2
Model5 w(z)= Hermite Poly 32.356 0.484 8 -7.325 3.2

We marked the favored method for each model choice criterion with a star. The null

hypothesis model with w(z) = −1 is the one chosen by all the criteria considered. We

note that this finding is consistent with the findings in the literature. Interestingly, the

DIC shows the w(z) = const next and then the GP model with exponential correlation

function. Moreover, the two-parameter models rank at the bottom of the group. It

seems that for future exploration of the adequacy of the hypothesis w(z) ≡ −1, as the

data quantity and quality improve, a GP based model should be the method of choice.

5 CONCLUSIONS

We desired to find a method of non-parametric reconstruction of a derivative process;

we have shown that this can be done by viewing the process as an inverse problem. We

assume the derivative process is a GP and therefore the resulting integrated process
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is also a GP with an unnamed correlation function and models the data well. This

method presents advantages over previous methods as it does not lose information

by taking derivatives of a fit of the data. It outperforms most parametric models in

our example while providing a flexible fit to the underlying derivative process. The

GP method constrains the uncertainty about the derivative process of interest. We

have also shown that this method is computationally efficient in the way it approaches

integration. Furthermore, there is no penalty for having a non-stationary or non-

integrable correlation function.

In our motivating example, we find that the currently available data are consistent

with a cosmological constant, and thus the flexibility of a GP may be overkill. However,

it is still unknown if this result is correct or if it is due to limitations in the available

data. Current efforts are underway to collect more, and more accurate data, and our

methodology is better-placed than its parametric competitors to help refine the answers

when more data arrive.

ACKNOWLEDGEMENTS

We thank the Institute for Scalable Scientific Data Management for supporting this

work. Part of this research was supported by the DOE under contract W-7405-ENG-

36. HL acknowledges support from NSF grant DMS-0906720. UA, SH, KH, and DH

acknowledge support from the LDRD program at Los Alamos National Laboratory.

17



APPENDIX A: CHEBYSHEV-GAUSS QUADRA-

TURE

Evaluations of the approximate likelihood in Equation (2) require computations of the

matrix Kyw, which involve a one dimensional integral over a finite interval. When the

integrals cannot be obtained in closed form, we use Chebyshev-Gauss quadrature to

approximate the integration with finite summations. This consists of the approximation
∫ 1

−1
f(z)√
1−z2

dz ∼∑I
i=1 γif(zi), zi = cos

(

(2i−1)π
2I

)

, and γi =
π
I
. In our cosmology example

we fixed I = 100. A much smaller value of I would be sufficient, but to avoid the

propagation of biases, we decided on a relatively large value of I. For the cosmology

application, we have the following approximate correlation function:

K(z, z′) =

∫ z′

0

ρ|x−z|α

(1 + x)
dx =

z′

2

∫ 1

−1

ρ|
z′x
2

+ z′

2
−z|α

(1 + z′x
2
+ z′

2
)

√
1− x2

1√
1− x2

dx

≈ z′

2

L
∑

i=1

γi

√

1− z2i
(1 + z′zi

2
+ z′

2
)
ρ|

z′zi
2

+ z′

2
−z|α .

APPENDIX B: DAMPED HERMITE POLYNOMIAL

APPROXIMATION OF A GP

Steinberg and Burstztyn (2004) propose a representation of a GP with Gaussian corre-

lation function based on an infinite linear combination of basis functions obtained from

Hermite polynomials. For our cosmology example we consider the processW (u) = w(u)
1+u

and assume that it is a Gaussian process with Gaussian correlation function. We as-

sume that θ is the mean of w(u) and, following Steinberg and Burstztyn (2004), we
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write

W (u) = γ(u) +
∞
∑

s=0

βsJs(u) , (5)

where γ(u) = −θ/(1 + u) is the mean of W (u), Js(u) = H∗
s e

− νu2

2(1+ν) are damped poly-

nomials, and H∗
s (u) = Hs(u/

√

(2))/(2ss!)1/2 is a physicist Hermite polynomial. The

Hermite polynomials, H∗
s , are orthogonal with respect to a standard Normal, as they

satisfy E[H∗
s (W )H∗

t (W )] =
∫∞
−∞ e−u2/2H∗

s (u)H
∗
t (u)du = δs,t, where δs,t is the Kronecker

delta. Clearly, the damped polynomials Js(u) do not satisfy this property. Thus, the

expansion in Equation (5) is not an expansion on orthogonal basis functions.

Taking the prior π(βs) ∼ N(0, σ2νs), the expansion in Equation (5) corresponds to a

GP with Gaussian correlation with range ν/[2(1−ν2)] and variance τ 2(1−ν2)−1/2 where

0 ≤ ν ≤ 1. For practical use, we need to re-scale the functions, so that the damping

takes effect within the range of the data. In our case this amounts to multiplying u by

a factor of 3. The cosmology example requires y(s) =
∫ s

0
W (u)du. Using Equation (5)

we obtain an expansion of y(s) whose coefficients depend on the cumulative standard

normal distribution. For more than two terms in the expansion we get poor mixing

in the MCMC, wide probability bands, and a poor fitting, especially for high redshift

values. This behavior is similar to the one reported in the literature for other basis

expansions.
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