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Abstract

In this work we present a framework that blends time series and geostatistical meth-
ods to analyze the association between northeast Atlantic bluefin tuna abundance, Au-
gust sea surface temperature, zonal wind speed and the North Atlantic Oscillation,
during the 19th and 20th centuries. We describe how to extract a dominant nonlinear
trend in each data type, check parameter convergence and assess goodness-of-fit. Tem-
poral autocorrelation and spatial residual coherence are accounted for, even in data
sets with abundant missing values. We also provide a means to do regression analysis
that propagates estimation uncertainty. Such an approach brings novel methods to
the field of ecological analysis. Results show that bluefin tuna abundance fluctuated
widely in the last 200 years, with a possible link to the predictor variables selected. A
causal chain is discussed, followed by a reflection on the current status of the stock.

1 Introduction

In several regions of the Mediterranean and adjacent Atlantic, fisheries for northern bluefin
tuna, Thunnus thynnus (L.), have for long been prosperous activities, some since pre-
historical times (Doumenge, 1998). Their social and economic importance is testified by the
direct management of some by monarchs and nobles, the development of coastal settlements
around them, and the depiction of tuna in coins (Galvão, 1953). Due to the high market
value of bluefin meat, this population is at present heavily overfished, with international
recovery measures facing difficulties (Fromentin and Powers, 2005).

Traditional fishing devices for bluefin may be classified into five different types: harpoons,
hooks, trammel nets, seines and traps (Mather et al., 1995). Until the recent (<60yr)
development of purse seining, live bait and longlining, traps were the gear responsible for
most catches (Doumenge, 1998). In short, a trap is a set of barriers and chambers, made
of net, which extend from the shallow sea floor to the surface. As they approach the coast,
migrating tuna schools are led by the barriers into the chambers, where they are gaffed.
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Thanks to careful bookkeeping, records of numerous traps’ annual yields are available in
the scientific literature, some extending over centuries. The depiction of these time series
reveals ample temporal variability, with two characteristic patterns. The first corresponds
to year-to-year variability, up to sub-decadal cycles. These are site-specific and have been
attributed to local oceanographic conditions; for example, when coastal waters are turbid,
tuna schools tend to migrate farther offshore, thereby reducing traps’ yields (Lemos and
Gomes, 2004). In other words, this high frequency variability reflects changes in bluefin’s
spatial distribution, not abundance. The second, more prominent pattern of variability com-
prises long-term fluctuations, which seem synchronous across the coasts of Portugal, Spain,
Morocco, Italy, Sicily, Sardinia and Tunisia (Ravier and Fromentin, 2001, and references
therein). As the exchange of correspondence between the Duque of Medina Sidonia and
Fray Mart́ın Sarmiento demonstrates (1757; in de Buen, 1925), trap owners and scholars
have wondered about the nature of these fluctuations for a long time. One possible expla-
nation is that: i) they correspond to actual changes in bluefin tuna abundance; and ii) these
changes occur in response to some natural forcing.

Let us substantiate the first claim, by briefly reviewing its merits and some demerits of
alternative hypotheses. According to Ravier and Fromentin (2001), long-term fluctuations
in trap catches are unlikely to result from social and economic factors, given the multitude
of countries where they are observed; nor do they correspond to “boom and bust” fishery
cycles, since prior to World War II (WWII), fishing effort was relatively low and stable.
Shifts in bluefin distribution are also improbable, since the above mentioned network of
traps encircles most of bluefin’s distribution range in the Mediterranean and adjacent NE
Atlantic, during the spawning season. These traps are passive gears, whose location and
operation remained nearly constant for centuries. A few technological developments slightly
improved their efficiency over the years, but at the same time, increasing coastal traffic and
pollution progressively reduced it (Sarà, 1980). Therefore, they may be regarded as samplers
that capture the same proportion of the migrating bluefin tuna population each year (Ravier
and Fromentin, 2001), once we filter out the confounding sub-decadal sources of variability.

With respect to the second claim, various researchers have found connections between
bluefin abundance and environmental factors (Borja and Santiago, 2002; Ravier and Fro-
mentin, 2004; Bridges et al., 2009; Ganzedo et al., 2009), but results are not conclusive.
Searching a different path, Fromentin (2002) used simulated data to show that long-term
pseudo-cycles in bluefin abundance can be caused by a noisy, but cycle-free environment.
This occurs because, in the case of a long lived species such as bluefin tuna, the spawning
stock includes several cohorts, thus smoothing high frequency recruitment variability into a
lower frequency signal. However, the same author notes that this does not rule out the claim
that tuna abundance may be driven by climatic cycles, and concludes that the latter remain
elusive.

The goal of the present paper is to contribute to this search. If a natural cause for
long-term cycles exists, it should act on a large spatial scale, such as bluefin’s spawning and
feeding grounds. The Mediterranean Sea emerges as the most interesting region, since adults
converge to it to breed, and young tuna use it throughout the year. With respect to time,
we focus on August. During this month, the annual reproduction period is culminating,
and the life stages (eggs, larvae and early juveniles) most vulnerable to climatic fluctuations
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are abundant (Borja and Santiago, 2002). Simultaneously, post-spawners are seeking food
to replenish themselves (Sarà, 1963). Therefore, mechanisms associated with enrichment,
concentration and retention can be sought as causes for the cycles in bluefin tuna abundance.

Although weaker than its winter counterpart, the summer North Atlantic Oscillation
(NAO) has been shown to exert a significant influence on European climate, including cloudi-
ness, rainfall and surface temperature (Folland et al., 2009). Hence, a NAO index would be an
interesting candidate predictor. Likewise, indexes that summarize sea surface temperature
(SST) and zonal air flow over the Mediterranean, may provide complementary information
and be interpretable from an ecological standpoint (see e.g. Sarà, 1963; Rodewald, 1967;
Binet and Leroy, 1987, on how wind and SST may be linked to tuna distribution).

In this work, we use a hierarchical Bayesian model to perform several tasks. The first
is to construct synthetic time series of tuna abundance and environmental indexes, which
account for spatial and temporal structures, as well as measurement error; the weighting
scheme used to construct these indexes is part of the estimation procedure. The second
task is to obtain transient trends in the indexes, using a polynomial trend model (West and
Harrison, 1997). The third task is to assess if the bluefin abundance trend is linked to one
or several environmental trends, given the levels of uncertainty determined by the data and
the model construction. Thus, in a single, hierarchical framework, we are combining several
methods used in previous research. The disparity between data sets (gridded vs. non-gridded
data, sparse vs. complete records, high vs. low signal-to-noise ratio, short vs. long term
memory) shows the flexibility of the approach, which can be generalized for other ecological
analyses.

2 Data and Model

Two August NAO proxies, which we denote as Y NAO
t (k), can be retrieved from the Climatic

Research Unit’s data library (http://www.cru.uea.ac.uk). They consist of normalized pres-
sure differences between Reykjavik and either Gibraltar (k = 1) or Ponta Delgada (k = 2);
t = 1821, . . . , 2000 indicates the year. Gridded August means of geostrophic zonal wind
speed over the Mediterranean and adjacent Atlantic (Y u-wind

t (k), where k = 1, . . . 44 denotes
the grid point) derive from HadSLP2 (http://www.hadobs.org/), a 5◦ monthly mean sea level
pressure data set spanning from 1850 to 2000. Mediterranean 2◦ gridded August sea surface
temperature anomalies (Y SST

t (k), k = 1, . . . 84) range between 1854 and 2000. The data set
(Smith et al., 2008) is available at the International Research Institute for Climate and So-
ciety and the Lamont-Doherty Earth Observatory (http://iridl.ldeo.columbia.edu). Fi-
nally, we use 54 time series of Atlantic and Mediterranean trap catches, in number of bluefin
tuna caught per year (Ct(k); Table 1). We log-transform these data, yielding Y BFT

t (k).
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In the following expressions, the superscript i denotes any of the four data types: NAO,
u-wind, SST and BFT. The model is:

Y i
t (k) = θi(k) + ωi(k)µi

t + ǫit(k) (1)

ǫit(k) ∼ N
(

0, τ i
)

, Cov(ǫit(k), ǫ
i
t(k

′)) = τ i(1 + dik,k′/φ
i) exp(−dik,k′/φ

i) (2)

µi
t = µi

t−1 + αi
t, (3)

αi
t = ρiαi

t−1 + ξit (4)

ξit ∼
ind.

N(0, σi), (5)

where µi
t ∈ R is the underlying atmospheric, oceanic or log-abundance index, N denotes the

Normal distribution, τ i, σi ∈ R
+
0 are variance parameters, φi ∈ R

+
0 is the covariance decay

parameter, ωi(k) ∈ R is the weight assigned to the k-th time series of data type i, αi
t ∈ R is

an annual nonlinear trend and ρi ∈ (−1, 1) is an autocorrelation parameter. In equation (2),
the Matérn covariance function, with smoothness parameter equal to 1.5, is used to account
for residual spatial covariance (Banerjee et al., 2004). The distance between points k and k′

of data set i, dik,k′, is approximated by the haversine formula (Sinnott, 1984). For NAO, we

set dik,k′ = 100km. We fix ωi(1) = 1, for all i, and use the following priors: τ i, σi ∼
iid

Exp(10−5),

φi ∼
iid

U(0, 106), θi(k) ∼
iid

N(0, 10), βi′ ∼
iid

N(0, 105), ρi ∼
iid

U(−1, 1), and ωi(k) ∼
iid

N(1, 0.1) if k > 1.
Exp(r) and U(l, u) stand for the Exponential and Uniform distributions, with rate r and
support (l, u).

The model for the environmental variables can be interpreted as follows: consider that the
various records of SST, u-wind, and standardized air pressure differences share a common,
non-stationary pattern of temporal variability, respectively µSST

t , µu-wind
t and µNAO

t . Each
pattern is governed by a trend, αi

t, which evolves as an autoregressive process of order one
(AR-1). The quantity ωi(k) is a weight associated with that pattern, θ(k) is the long-term
mean, and the Matérn covariance function accounts for the remaining spatial structure.

The biological model requires additional formulas to be understood. Let Nt denote the
abundance of NE Atlantic bluefin tuna in year t. We describe the temporal evolution of
abundance with the equation Nt = Nt−1e

αt or, equivalently, Nt = N0e
µt , where µt accumu-

lates the annual rates of population change: µt =
∑t

j=0 αj. Note that eµt provides the rate

between abundances at times t and 0, and α0 = 0. For t > 0, we assume that αBFT
t follows an

AR-1. Bluefin tuna abundance is not observed directly; only catches data are available, from
a number of traps. We assume a flexible relationship between the two: Nt = ft(k)(Ct(k))

p(k),
where the power and the time-varying proportionality coefficient are respectively given by
p(k) = 1/ωBFT(k) and ft(k) = N0 exp[−(θBFT(k) + ǫBFT

t (k))/ωBFT(k)]. Note that N0 is in-
serted here for convenience and cannot be estimated (nor can any other Nt). It is sensible
to expect that the transient fluctuations of ft are coherent across space, and for that reason
we model Cov(ǫBFT

t (k), ǫBFT
t (k′)) with the Matérn covariance function. By combining the

expressions above and taking logarithms, we obtain the biological model.
Equations 1-5 correspond to a Dynamic Linear Model (West and Harrison, 1997), if white

Gaussian noise with negligible variance is added to the right-hand side of equation 3. To
explore the posterior distribution of the parameters, we employ Markov chain Monte Carlo
methods (MCMC; Gelman et al., 2004; Gamerman and Lopes, 2006): we use Gibbs steps
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Table 1: Trap catches metadata - names, approximate coordinates, first and last years with data, number of years with data, and data sources:
(1) Rodŕıguez-Roda (1983); (2) Garcia et al. (2002); (3) Piccinetti and Omiccioli (1999); (4) Heldt (1932); (5) Anonymous (1974).
Name, country Location Data(N) Ref. Name, country Location Data(N) Ref.
Barbate, ES 36.17◦ N,6.04◦ W 1910-1982(65) 1 Zliten, LY 32.47◦ N,14.57◦ E 1925-1934(10) 4
Lances de Tarifa, ES 35.99◦ N,5.61◦ W 1914-1982(50) 1 Marsa Sabrata, LY 32.81◦ N,12.49◦ E 1921-1931(10) 4
Punta de la Isla, ES 36.39◦ N,6.24◦ W 1917-1971(50) 1 Sidi Abd El Gelil, LY 32.84◦ N,13.02◦ E 1920-1930(10) 4
Nueva Umbria, ES 37.05◦ N,6.70◦ W 1916-1965(42) 1 Ras Lahmar, LY 32.88◦ N,13.14◦ E 1920-1929(10) 4
Zahara, ES 36.13◦ N,5.87◦ W 1910-1982(27) 1 Medo das Cascas, PT 37.10◦ N,7.60◦ W 1852-1969(118) 5
Las Torres, ES 37.05◦ N,6.72◦ W 1902-1933(22) 1 Senhora do Livramento, PT 37.04◦ N,7.73◦ W 1896-1969(74) 5
Arroyo Hondo, ES 36.64◦ N,6.43◦ W 1914-1933(18) 1 Barril, PT 37.06◦ N,7.67◦ W 1896-1966(71) 5
Reina Regente, ES 37.15◦ N,7.37◦ W 1914-1933(18) 1 Abóbora, PT 37.15◦ N,7.53◦ W 1896-1965(70) 5
Torre Atalaia, ES 36.26◦ N,6.13◦ W 1914-1931(17) 1 Cabo de Santa Maria 36.96◦ N,7.96◦ W 1898-1967(57) 5
La Higuera, ES 36.87◦ N,6.46◦ W 1914-1928(14) 1 Ramalhete, PT 37.01◦ N,8.02◦ W 1896-1937(42) 5
Nuestra Sra. Cinta, ES 37.15◦ N,6.95◦ W 1914-1928(13) 1 Lagos, PT 37.08◦ N,8.66◦ W 1809-1845(36) 5
Las Cabezas, ES 37.15◦ N,7.35◦ W 1914-1928(10) 1 Sul da Ponta do Baleal, PT 36.99◦ N,8.93◦ W 1902-1926(25) 5

Portoscuso, IT 39.60◦ N,8.40◦ E 1825-2000(168) 2 Olhos de Água, PT 37.06◦ N,8.22◦ W 1896-1919(24) 5
Isola Piana, IT 39.20◦ N,8.22◦ E 1825-2000(164) 2 Senhora da Rocha, PT 37.09◦ N,8.37◦ W 1897-1920(24) 5
Favignana, IT 37.97◦ N,12.30◦ E 1810-1979(69) 3 Forte Novo 37.06◦ N,8.15◦ W 1896-1918(23) 5
Carloforte, IT 39.14◦ N,8.31◦ E 1868-1995(67) 3 Torre da Barra, PT 37.09◦ N,8.51◦ W 1897-1917(21) 5
Saline, IT 40.96◦ N,8.27◦ E 1868-1930(63) 3 Sul do Cabo Carvoeiro, PT 37.07◦ N,8.44◦ W 1896-1917(21) 5
Tono, IT 38.31◦ N,15.22◦ E 1896-1931(50) 3 Medo Branco, PT 37.06◦ N,8.24◦ W 1896-1915(20) 5
Bonagia, IT 38.13◦ N,12.65◦ E 1809-2000(44) 3 Bias, PT 37.02◦ N,7.76◦ W 1896-1921(20) 5
Pizzo, IT 38.96◦ N,16.10◦ E 1876-1928(44) 3 Sul da Ponta do Zavial, PT 37.00◦ N,8.92◦ W 1897-1911(15) 5
Oliveri, IT 38.25◦ N,15.33◦ E 1904-1964(43) 3 Torre Altinha, PT 37.08◦ N,8.67◦ W 1896-1909(14) 5
San Cosumano, IT 38.00◦ N,12.47◦ E 1950-1964(15) 3 Sidi Daoud, TN 37.02◦ N,10.89◦ E 1863-1930(67) 3
San Giorgio, IT 38.29◦ N,15.22◦ E 1950-1963(14) 3 Conigliera, TN 35.76◦ N,11.02◦ E 1897-1929(32) 3
Magazzinazzi, IT 38.06◦ N,12.93◦ E 1950-1961(12) 3 Ras El Ahmar, TN 37.05◦ N,10.91◦ E 1905-1930(25) 3
San Giuliano, IT 38.02◦ N,12.52◦ E 1896-1911(11) 3 Monastir, TN 35.78◦ N,10.83◦ E 1894-1926(24) 3
Scopello, IT 38.08◦ N,12.84◦ E 1955-1964(10) 3 Borj Khadija, TN 35.23◦ N,11.15◦ E 1904-1929(21) 3

El Aouaria, TN 37.05◦ N,11.01◦ E 1907-1930(17) 3
Kuriat, TN 35.78◦ N,10.90◦ E 1904-1927(15) 3
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to sample θit(k), β
i′ and ωi(k), the Backward Sampling algorithm to sample µi

t and αi
t, and

we use Metropolis-Hastings (M-H) steps, with the Forward Filtering algorithm, to sample
τ i, φi, σi, ρi.

With the posterior samples from this model, we regress the log-abundance index to a
linear combination of the environmental indexes:

µBFT
t = βBFT + βNAOµNAO

t + βu-windµu-wind
t + βSSTµSST

t + υt, (6)

υt ∼
iid

N(0, τ), p(τ) ∝ 1/τ, βi ∼
iid

N(0, 1020τ), (7)

We also analyze the distribution of Ri = Corr(αBFT
t , αi

t), i.e., the correlation that operates
on the differenced indexes.

Hence, our strategy to characterize the posterior distribution of all parameters is as
follows. Let λi denote the collection of the parameters in equations 1-5, and let Λ =
{λNAO,λu-wind,λSST,λBFT}. Analogously, yi represents all the data from data type i, and Y

is the full data set. Finally, let Ω collect the parameters in expressions 6-7. Assuming that
the estimation of λi depends solely on the corresponding data, yi, we obtain the factorization:

p(Λ|Y ) = p(λNAO|yNAO)× p(λu-wind|yu-wind)× p(λSST|ySST)× p(λBFT|yBFT). (8)

Owing to this assumption, we fit an independent model for each data type. Then, we use
that p(Ω,Λ|Y ) = p(Ω|Λ,Y ) × p(Λ|Y ), which stems from standard probability theory, to
sample the regression parameters (Ω) using the posterior samples from the other parameters
(Λ).

3 Results

Results are based on 1,000 MCMC iterations, spaced 20 iterations apart, after a burn-in
of 30,000 iterations, which includes a period of learning for M-H jumping kernels. Analy-
sis of these samples indicates the chain converged for all parameters. Furthermore, visual
inspection of qq-plots from the one-step ahead distributions, as well as time series plots of
fitted versus observed values (e.g., Figure 1, left panels), leads us to assume the model fit is
satisfactory. We refer the interested reader to the auxiliary material, for more details.

Temporal smoothness and uncertainty in the underlying indexes vary substantially among
data types (Figure 1, central panels). The August NAO index presents the lowest signal-to-
noise ratio, followed by the log-abundance index. In both, long term fluctuations predomi-
nate. In contrast, u-wind and SST indexes have narrow 95% credibility intervals, and their
mean contains transient variability. In agreement with this, the nonlinear annual trends
for u-wind and SST often digress from zero, while the opposite is true for the NAO and
log-abundance trends (Figure 1, right panels).

Although spatial coherence was not provided in the prior distribution of the weights
associated with the u-wind index, a clear pattern emerges in the posterior means (Figure 2,
upper panel): from 45◦N, 10◦W, where the largest value is found, weights gradually decay,
more rapidly with latitude than with longitude. The posterior mean of SST weights is
also spatially smooth (Figure 2, central panel). Weights are larger in the Adriatic Sea and
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Lemos, Sansó and Cabral 3 RESULTS

N
A

O

−3

0

3

fit vs. observations index trend

u−
w

in
d

−5

0

5

S
S

T

−2

0

2

B
F

T

−5

0

5

18
00

18
40

18
80

19
20

19
60

20
00

18
00

18
40

18
80

19
20

19
60

20
00

18
00

18
40

18
80

19
20

19
60

20
00

Figure 1: Model fit, indexes and trends. Left hand panels: observations (squares) and fitted values
(black and gray lines denote posterior means and 95% credibility intervals, respectively) for the
Gibraltar-Reykjavik NAO proxy, u-wind at 45◦N, 5◦W, SST at 46◦N, 30◦E, and log trap catches at
Favignana. Central panels: posterior distribution of the environmental and log-abundance indexes
(µi

t). Right-hand panels: posterior distribution of the annual trends (αi
t).
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Figure 2: Spatial distribution of the posterior mean of the weights ωi(k) (see eq. 1). The circle
size is proportional to the mean. Black dots denote grid points and traps.

remain close to 1 in much of the Mediterranean, with the exception of the Gulf of Lion
and the Aegean Sea. Subtler patterns in traps weights can also be found (Figure 2, lower
panel): from SW Portugal to the Gibraltar Strait, trap weights tend to decrease; in the
Mediterranean, small weights concentrate in the triangle that connects Sardinia, Sicily and
Libya. As a result, long-term fluctuations in catches are less evident in the mouth and central
parts of the Mediterranean than elsewhere (cf. the Favignana fit vs. the index, in Figure 1).

Once the mean and the dominating index have been accounted for in the observations,
the amount of residual spatial structure differs among data types: from the posterior means
of φi (Table 2), we deduce that the decorrelation scale (i.e., the mean distance at which
the correlation between εit(k) and εit(k

′) drops below 0.1) is: 1440km for u-wind residuals,
2840km for SST residuals, and 4.6km for log-catches. Given the grid resolutions considered,
assumptions of spatial independence for u-wind and SST residuals would thus be untenable.
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Figure 3: Evolution of bluefin tuna relative abundance and the decay of environmental coupling.
Left panel: posterior mean and 95% credibility intervals for exp(µBFT

t ), which equates to Nt/N1806.
Central panel: posterior distribution of the regression coefficients in model 6-7, for the full time
span (black lines) and the post-WWII period (gray lines). Right panel: distribution of RSST for
overlapping periods of 60 years, starting at 1856-1915 (labeled 1) and ending at 1946-1995 (labeled
10), with 10 year shifts. Correlations that use post-WWII data are depicted in light gray.

Residuals from the two NAO proxies also present common structure; the posterior mean
correlation is 0.7.

Index signal-to-noise ratios may be computed from σi/τ i (Table 2). As mentioned before,
the NAO index has the lowest value, meaning that the model, as we specified it, is not able
to extract much structure from the data. Accordingly, the autocorrelation coefficient for the
NAO index is the one with largest posterior uncertainty (Table 2).

With the results from this model, we may construct a probabilistic hindcast for the
evolution of bluefin tuna abundance, relative to the abundance in the first year considered,
1806 (Figure 3). Uncertainty changes over time, being higher during peak abundance – a
reflex of modeling log-catches with additive normal errors. Still, there are two noticeable
features in this reconstruction: i) pre-WWII abundance levels were never stable, for long
time periods; ii) abundance in the late 20th century is similar in value to that in the early
1800s, but dissimilar in variability – it remains low for almost 30 years.

Bearing this in mind, we run the regression model with the complete indexes first, and
then we use only post-WWII data. The difference is striking (Figure 3, central panel):
with the full time span, the posterior distributions of βNAO and βu-wind are mainly positive,
while that of βSST is mainly negative. In contrast, post-WWII distributions are centered at
zero, indicating no correlation between environmental variability and abundance. Although
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Table 2: Posterior means and 95% credibility intervals for some model parameters. The posterior probability that each β
coefficient is negative appears in square brackets.

NAO u-wind SST BFT
φi 9.1× 104(7.1× 104, 1.1× 105) 3.7× 105(3.6× 105, 3.9× 105) 7.3× 105(7.0× 105, 7.6× 105) 1.2× 103(2.8× 102, 2.5× 103)
σi 0.0077(0.0005, 0.0272) 1.31(0.82, 1.93) 0.065(0.047, 0.090) 0.039(0.019, 0.066)
τ i 3.2(2.7, 3.9) 1.5(1.4, 1.6) 0.40(0.37, 0.45) 0.79(0.57, 1.08)
ρi −0.33(−0.98, 0.70) −0.86(−0.94,−0.78) −0.83(−0.92,−0.75) −0.30(−0.68, 0.28)
βi 1.20(−0.98, 3.26)[0.036] 0.179(0.015, 0.363)[0.015] −0.83(−1.634,−0.05)[0.987] 1.20(−0.34, 3.00)[0.078]
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the bluefin index trend remains close to zero and contains much imprecision (Figure 1), it
appears to be negatively correlated with SST until WWII (Figure 3, right panel). From then
onwards, the correlation weakens and changes sign.

4 Discussion

Time series of trap catches are highly fragmentary, which renders the construction of a
composite abundance index difficult. Here we show one way to construct such an index.
Given the posterior distribution of the weights and the weak residual correlation, we conclude
that the index captures the bulk of variability in the 54 time series, and argue that it is an
adequate long-term surrogate for Northeast Atlantic bluefin tuna abundance. If we assume
that fisheries did not have a significant impact before the mid 20th century, it logically
follows that the carrying capacity for this population is highly variable, since abundance
may have fluctuated by two orders of magnitude (Figure 3). Therefore, a pristine-state,
stable reference level may not exist for this stock.

From the weights (Figure 2), we observe that in times of tuna scarcity, traps located in
the central Mediterranean and near the Strait of Gibraltar are less impacted than those in
the periphery. This means not all regions visited by tuna schools during the reproductive
period reflect abundance fluctuations with the same intensity. It may explain, for example,
why Portuguese traps ceased activity mostly in the decades of 1910 and 1960, while some
Spanish traps were able to keep operating until the end of the century.

The immediate issue is the origin of abundance fluctuations. Our regression analysis
suggests that the BFT index might, to some extent, be predicted by the NAO, u-wind and
SST indexes. We also describe a coherent, weak negative correlation between the differ-
enced indexes of BFT and SST (Figure 3). The high proportion of unexplained variance is
expectable, given the nature of the variables being related (Figure 1). Bluefin abundance
estimates change slowly over time and present large uncertainty, as they are constructed
from noisy fisheries data. SST and u-wind indexes, on the other hand, have substantial
interannual variability, due to the shorter memory of oceanic and atmospheric processes.
The August NAO index appears difficult to differentiate from white noise. Hence, the re-
gression analysis we have presented serves only to detect a possible association, and should
be followed by models with added complexity.

As mentioned above, the connections between indexes and trends disappear after the
mid 20th century. This may be because pre-WWII correlations were spurious, but we sus-
pect fishing pressure causes the apparent decoupling. Unlike any other period, post-WWII
abundance remains stable and low, roughly reaching 35% of 1806 values in 1985. Thus, in
the same manner that fishing impacts are confounded by climate variability, the converse is
also true. We conclude that an integrated model of fisheries and environmental drivers is
the most promising tool to understand the nature of bluefin’s abundance variability.
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