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Abstract13

We update recent work on the scientific inference and reproductive biology of steepness in three14

directions. First, we show how variation in natural mortality can be included in the formula15

for steepness, for both a biomass dynamics and age-structure models. We do this using the16

delta-method, so that only the mean and covariance of natural mortality rates appear in the17

characterization of steepness. Second, we show how to generalize the previous methods for cases18

in which the stock recruitment relationship is depensatory or has an Allee effect: as spawning19

population falls below a certain level, per capita reproduction starts to fall, rather than approach20
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a constant. We generally assume that the mechanism of depensation is imperfect fertilization21

(and thus develop a two-sex generalization of our previous work) and determine steepness in22

this case for both a biomass production model and an age-structured model and explore the23

implications of such depensatory reproduction on the response of stocks to harvesting. We24

briefly discuss how an increase in mortality as population size declines (as has been suggested25

for penguins) could also be a mechanism for depensation. Third, we describe an improved26

method for computing the maximum per capita reproduction in the age-structured model, and27

show how the equivalent for the biomass dynamics model is computed.28

Introduction29

Mangel et al (2010) developed methods for the computation of steepness of a Beverton-Holt30

(BH) or Ricker (R) stock recruitment relationship (SRR) from first biological principles. In this31

paper, we extend their work in two directions. First, Mangel et al (2010) show that steepness32

can be expressed in terms of natural mortality rates and maximum per capita productivity (see33

below for a summary). They also show that maximum per capita productivity can be estimated34

using a stochastic simulation in which the rate of natural mortality fluctuates, drawn from a35

known probability distribution. To improve the self-consistency of the methods, we show how36

the probabilistic properties of natural mortality can be included, succintly approximately, in the37

expression for steepness.38

Mangel et al (2010) also assumed that as the size of the spawning population declined the39

maximum per capita reproduction approached a positive constant, for example in the way that40

1−exp(−αS)
S approaches α as S → 0. A population exhibits an Allee effect or a depensatory SRR41

if per capita reproduction declines as the size of the population falls below a certain level (Fowler42

and Baker 1991; Courchamp et al 2008, Gregory et al 2010). In fishery science, these effects are43

commonly called depensation (see Iles 1994, Liermann and Hilborn 2001, Gascoigne and Lipcius44

2004 for review). Since many fish, seabird, and marine mammal populations may in principle45
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exhibit a depensatory SRR, we show how the methods of Mangel et al (2010) can be extended46

for those kinds of SRRs. In doing so, we learn a variety of interesting qualitative properties of47

such systems when stressed by fishing mortality (or incidental mortality for seabirds or marine48

mammals). To do this , we develop an explicit two sex model for the case of a structured49

population. Finally, we describe an improved version of the stochastic simulation used by Mangel50

et al (2010) to compute maximum per capita reproduction.51

Review of The Approach52

In order to make this paper self-contained, we review the approach used in Mangel et al. (2010).53

We first consider a production or biomass dynamic model and then generalize the age-structured54

model to two sexes.55

The Production Model56

In this case, we let B(t) denote the total biomass at time t and assume that the fraction of males57

at birth is r, so that spawning (i.e. female) biomass at any time is (1− r)B(t). If M is the rate58

of natural mortality, then in the absence of fishing the dynamics of biomass are59

dB

dt
=
αp(1− r)B

1 + βB
−M ·B (1)

where αp is subscripted to note production and has units of new biomass per existing spawning60

(female) biomass per time, so that it is a rate, comparable to the rate of natural mortality M .61

The steady state biomass is62

B0 =
1
β

(
αp(1− r)

M
− 1

)
(2)

We thus see that existence of a steady state requires that the Beverton number (sensu Mangel63

2005) αp(1−r)
M > 1 and that density dependence scales the overall size of the steady state. Thus,64

the parametrization in Equation 1 separates the roles of α and β in shape and scale when65

determining B0. The separation becomes even clearer when we consider steepness.66
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According to its definition, steepness is67

h =
0.2αp(1−r)B0

1+0.2βB0

αp(1−r)B0

1+βB0

(3)

from which we obtain68

h = 0.2 · 1 + βB0

1 + 0.2βB0
(4)

However, in light of Equation 269

βB0 =
[
αp(1− r)

M
− 1

]
(5)

so that we find70

h =
αp(1− r)

4M + αp(1− r)
(6)

which can also be rewritten as71

h =
αp(1−r)

M

4 + αp(1−r)
M

(7)

If the Beverton-Holt production term in Eqn 1 is replaced by the Ricker form, αp(1−r)Be−βB72

then Eqn 7 is replaced by (see the Appendix of Mangel et al (2010))73

h = 0.2
(
α

M

)0.8

(8)

The Age-Structured Model74

To generalize the age-structured model of Mangel et al (2010) to two sexes, we let Nm(a, t) and75

Nf (a, t) denote the number of males and females of age a at time t respectively. The spawning76

stock biomass at time t is77

Bs(t) =
amax∑
a=1

Nf (a, t)Wf (a)pf,m(a) (9)

where Wf (a) is the mass of a female at age a and pf,m is the probability that a female of age a is78

mature and amax is the maximum age that an individual can attain (with suitable modification79

of the dynamics of the last age class, we can incorporate a ‘plus’ group into this formulation).80
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If we assume that egg production is proportional to biomass then the recruited class numbers81

are82

Nf (0, t) =
αs(1− r)Bs(t)

1 + βBs(t)
(10)

Nm(0, t) =
αsrBs(t)

1 + βBs(t)
(11)

where αs has units of new individuals/spawning biomass and is subscripted with s to denote83

that this is a structured model. The sum of Eqns 10 and 11 gives the total recruitment. As will84

be seen, it does not matter whether we use spawning biomass or total biomass to characterize85

the density dependence.86

For ages a > 0, in the absence of fishing mortality we have87

Nf (a, t) = Nf (a− 1, t− 1)e−Mf (a−1) (12)

Nm(a, t) = Nm(a− 1, t− 1)e−Mm(a−1) (13)

where Mf (a − 1) and Mm(a − 1) are the natural mortality rates of females and males at age88

a − 1. Typically, mortality rates of males are higher than those of females. Since neither of89

the mortality rates depend upon time, the population will reach a steady state and a stable age90

distribution.91

We denote the steady state female biomass by Bs. This biomass produces a steady state92

female recruitment93

Nf (0) =
αs(1− r)Bs

1 + βBs
(14)

The steady state female biomass is94

Bs =
amax∑
a=1

Nf (a)Wf (a)pf,m(a) =
amax∑
a=1

Nf (0)Sf (a)Wf (a)pf,m(a) (15)

where Sf (a) is survival from age 0 to age a, i.e. Sf (a) =
∏a−1
i=0 e

−Mf (i). We factor Nf (0) from95

the last expression in Eqn 15, define W f =
∑amax
a=1 Sf (a)Wf (a)pf,m(a) and thus write96

Bs = Nf (0)W f (16)
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We now rewrite Eqn 14 as97

Nf (0) =
αs(1− r)Nf (0)W f

1 + βBs
(17)

from which we conclude98

1 + βBs = (1− r)αsW f (18)

Since reproduction is assessed counting both males and females, steepness is given by99

h =
0.2αsBs

1 + 0.2βBs
· 1 + βBs

αsBs
=

0.2(1 + βBs)
1 + 0.2βBs

(19)

We now use Eqn 18 in the last expression in Eqn 19 and simplify to obtain100

h =
(1− r)αsW f

4 + (1− r)αsW f
(20)

For the case of Ricker density dependence, Eqns 12 and 13 are replaced by101

Nf (0, t) = αs(1− r)Bs(t)e−βBs(t) (21)

Nm(0, t) = αsrBs(t)e−βBs(t) (22)

Following the steps above leads to102

h = 0.2
(

(1− r)αsW f

)0.8

(23)

Comparing Eqns 7 and 8 with Eqns 20 and 23 we see that the functional form is the same103

and that with the exception of αs in the latter replacing αp in the former we can make them104

“identical” by setting W f = 1
M . Mangel et al. (2010) explicitly show the conditions under which105

the result for the age-structured model becomes the result for the production model.106

Imperfect Fertilization as a Mechanism for Depensation107

Both the Ricker SRR108

R = αSe−βS

and the Beverton-Holt SRR109

R =
αS

1 + βS
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have the property that as S → 0, R → αS. A depensatory SRR will arise if for small S110

recruitment becomes sublinear. For example, Myers et al (1995) modify the Beverton-Holt SRR111

to112

R =
αSδ

1 + βSδ

and treat δ as a parameter to be estimated, understanding that δ > 1 corresponds to de-113

pensation. Morales-Bojorquez and Nevarez-Martinez (2005) modify the Shepherd (1982) SRR114

(itself a modification of the Beverton-Holt) to explicitly consider a threshold level below which115

recruitment fails116

R = max

[
0,

α(S − Sc)
1 + β(S − Sc)δ

]
where Sc is the critical level at which recruitment drops to 0 (also see Chen et al 2002).117

Similarly, modifying the Ricker SRR to118

R = αSδe−βS

produces the Saila-Lorda SRR (Iles 1994) and gives a depensatory relationship whenever δ > 1.119

These are ad hoc modifications of the SRR, which is fine if one wants to study the problem120

are purely a statistical one. However, if one approaches this as a problem in reproductive121

biology of fish, then the actual mechanism for depensation becomes important. For most of the122

analysis, we assume that the mechanism of depensation is imperfect fertilization as population123

size declines, but also discuss increased mortality as a mechanism for depensation. Imperfect124

fertilization could be caused by at least two factors. First, at low population sizes individuals125

simply may not be able to find each other. Second, even in species that form very tight mating126

aggregations, an individual male cannot fertilize an unlimited number of females due to sperm127

limitation. Thus, in some sense all populations must experience Allee effects and the question128

is at what level of population size the effects become important.129

In order to make further progress, we must select a mechanism for the Allee effect. In130

this paper, we consider imperfect fertilization— that some eggs remain unfertilized – as the131
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mechanism. We let132

pf (B) = Pr[an egg is fertilized given that the biomass of the population is B] (24)

and consider two forms the probability of fertilization. When the biomass of the population is133

B the biomass of males is rB; for the algebraic representation of probability of fertilization we134

write135

pf (B) =
rB

rBc + rB
=

B

Bc +B
(25)

where rBc is the male biomass at which the probability of fertilization drops to 50%.136

The second functional form is motivated by the re-analysis by Rowe et al. (2004) of the137

data of Bekkevold et al. (2002). Rowe et al. (2004) conclude that the exponential asymptotic138

function that best describes the fertilization rate is 0.97 ·(1−e−2.02·Nm) where Nm is the number139

of males. We let p0 denote the probability that a focal egg is not fertilized when a single male140

is present. If Wm denotes the mass of a male, then the number of males in the population when141

biomass is B is rB
Wm

so that142

pf (B) = 1− p
rB

Wm
0 = 1− exp

[
rB

Wm
· log(p0)

]
= 1− e−γ·B (26)

where γ = r|log(p0)|/Wm. Note that Bc → 0 or γ → ∞ correspond to Allee effects becoming143

weaker and weaker.144

To account for Allee effect in the production model, we replace Eqn 1by145

dB

dt
=
αp(1− r) · pf (B) ·B

1 + βB
−M ·B (27)

with a similar modification for a Ricker SRR and for the age-structured model (Eqns 10,11).146

In summary, there are four cases: 1) Beverton-Holt density dependence of recruitment and147

algebraic probability of fertilization; 2) Ricker density-dependence of recruitment and algebraic148

probability of fertilization; 3) Beverton-Holt density dependence of recruitment and exponential149

probability of fertilization; and 4) Ricker density-dependence of recruitment and exponential150

probability of fertilization. Each of these cases may apply for the biomass dynamics model or151

the age-structured model.152
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Including Variation in Natural Mortality in the Equations for153

Steepness154

We now show how variation in natural mortality can be incorporated into the formula for155

steepness. We begin with Eqn 7 written as156

h =
α

4M + α
≡ f(M) (28)

When natural mortality M fluctuates, as is assumed in the stochastic simulation used to estimate157

maximum per capita reproduction, f(M) is itself a random variable. To incorporate the variation158

in M into steepness, we use the delta method (Mangel 2006) to compute the expected value of159

f(M). That is if M and V ar(M) denote the expected value and variance of M and EM [·] the160

expectation over M we have161

EM [f(M)] = EM [f(M) + f ′(M)(M −M) +
1
2
f ′′(M)(M −M)2 (29)

In light of Eqn 28162

f ′(M) = − 4α
(4M + α)2

(30)

f ′′(M) =
32α

(4M + α)3
(31)

We thus conclude163

EM [h] =
α

4M + α
+

16α
(4M + α)3

V ar(M) (32)

which allows us to incorporate the stochastic variation of M into the formula for steepness.164

We now turn to the age-structured case, for which we rewrite Eqn 20 as165

h =
αW f

4 + αW f
(33)

where W f =
∑amax
a=1 Sf (a)Wf (a)pf,m(a), more explicitly written as166

W f =
amax∑
a=1

exp(
a−1∑
a′=1

−M(a′))Wf (a)pf,m(a) (34)
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We recognize that each of the M(a′) in this equation may have its own probability distribution.167

(Mathematically speaking, W f is a functional, since it takes a vector of mortality rates and168

returns a scalar. There is a large literature on functional derivatives, but we can do all that is169

needed here using elementary calculus). For simplicity, we use the notation M1 = M(1),M2 =170

M(2) etc to denote the rate of mortality at age, Ma, V ar(Ma) and Cov(Ma,Ma′) to denote the171

mean, variance, and covariance of the mortality rates and < W f > to denote the value of W f172

obtained when the means of the rates of mortality are used. The analogue of Eqn 31 is now173

EM [h] =< W f > +
1
2

∑
a

∂2h

∂2Ma
V ar(Ma) +

∑
a

∑
a′ 6=a

∂2h

∂Ma∂Ma′
Cov(Ma,Ma′) (35)

The partial derivatives of steepness with respect to the mortality rates are174

∂h

∂Ma
=

∂h

∂W f
· ∂W f

∂Ma
(36)

∂2h

∂Ma∂Ma′
=
[
∂2h

∂W
2
f

· ∂W f

∂Ma
· ∂W f

∂M ′a
+

∂h

∂W f
· ∂2W f

∂Ma∂M ′a

]
(37)

The easiest part in the next step is to show that175

∂h

∂W f
=

4α
(4 + αW f )2

(38)

∂2h

∂W
2
f

=
−8α2

(4 + αW f )3
(39)

We now evaluate the derivatives of W f by first rewriting Eqn 34 as176

W f = e−M1Wf (1)pf,m(1) + e−M1−M2Wf (2)pf,m(2) + e−M1−M2−M3Wf (3)pf,m(3) + · · · (40)

from which we can see the pattern of first derivatives177

∂W f

∂M1
= −W f (41)

∂W f

∂M2
= −W f + e−M1W1pf,m(1) (42)

∂W f

∂M3
= −W f + e−M1W1 + e−M1−M2W2pf,m(2) (43)

... (44)
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Similarly, the pattern of second derivatives is178

∂2W f

∂M2
1

= −∂W f

∂M1
= W f (45)

∂2W f

∂M1∂M2
= W f − e−M1W1pf,m(1) (46)

∂2W f

∂M2
2

= W f (47)

∂2W f

∂M1∂M3
= W f − e−M1W1pf,m(1)− e−M1−M2W2pf,m(2) (48)

... (49)

It is then possible to implement Eqns 32 or 35ff in the code determining steepness. We now turn179

to depensation.180

Steepness for a Production Model with Depensatory SRR181

For each of the cases, we can find steepness by repeating the process outlined in Eqns 1-9. Since182

it is straightforward but somewhat tedious algebra, we simply give the results.183

Beverton-Holt density dependence and algebraic probability of fertilization184

In this case, the steady state biomass satisfies the algebraic equation185

αp · (1− r) ·B
(B +Bc)(1 + β ·B)

= M (50)

which can easily be solved using the quadratic formula. Steepness is given by186

h =
0.2αp(1−r)

M ·B

(Bc + 0.2B)(4 + αp(1−r)B
M(Bc+B))

(51)

As Bc → 0, this equation becomes Eqn 7, as it must. Note the important differences,187

however, between Eqns 7 and 51: the former only inolves α and M whereas the latter includes188

Bc and B.189

Ricker density-dependence and algebraic probability of fertilization190

In this case the steady state biomass B satisfies191

αp(1− r)
M

· B

Bc +B
= eβ·B (52)

11



Although this equation does not have an analytical solution, B can easily be found using New-192

ton’s method (Mangel 2006). Steepness is given by193

h =
0.04(Bc +B)
Bc + 0.2B

(
αp(1− r)

M
· B

Bc +B

)0.8

(53)

As Bc → 0, this equation becomes Eqn 8, as it must. Once again, note the important differences194

between Eqns 8 and 53, since the latter involves both Bc and B.195

Beverton-Holt density dependence and exponential probability of fertilization196

In this case the steady state biomass satisfies197

β ·B =
αp(1− r)

M
(1− e−γ·B)− 1 (54)

which again requires numerical solution to find B . Steepness is given by198

h =
αp(1−r)

M (1− e−0.2γB)

4 + αp(1−r)
M (1− e−0.2γB)

(55)

which clearly approaches steepness in Eqn 7 as γ →∞.199

Ricker density-dependence and exponential probability of fertilization In this case, B satisfies200

αp(1− r)
M

(1− e−γ·B) = eβ·B (56)

and steepness is given by201

h = 0.2
[

1− e−0.2γ·B

1− e−0.2γ·B

](
αp(1− r)

M
· (1− e−γ·B)

)0.8

(57)

Numerical Results When Maximum Productivity is Known202

To illustrate the above results, we assume that maximum productivity is known and fixed, sex203

ratio at birth is 0.5, the mean of natural mortality is 0.2 and that in the absence of an Allee204

effect the steady state biomass is B0=1000. For these parameters h = 0.725 for Ricker den-205

sity dependence and h = 0.556 for Beverton-Holt density dependence. For simplicity, we only206

present results for cases involving algebraic probability of fertilization We then determine Bc or207

γ by specifying pf (B0) and solving Eqn 25 for Bc..208
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209

Ricker density-dependence and algebraic probability of fertilization210

The solution of Eqn 52 rapidly converged with Newton’s method. In Figure 1a, we show B as a211

function of the as a function of pf (B0) as this probability ranges from about 0.6 to 0.999 (note212

that if pf (B0) = 1, then Bc must be 0). In Figure 1b we show steepness, given by Eqn 52.213

We illustrate the Allee effect by plotting the saturating function (left hand side) and exponential214

function (right hand side) of Eqn 52 and considering their insection point (Figure 1c). As long215

as the probability of fertilization is less than 1, there will be an Allee value of population size,216

which is larger for smaller values of probability of fertilization. Populations will decline if their217

size is smaller than this Allee value.218

Since steepness is typically computed at 20% of the unfished biomass, we compute the per219

capita growth rate at 20% of B(pf (B0)) as a function of the probability of fertilization were the220

population at B0 (Figure 1d). Note that it is only for relatively low values of the probability of221

fertilization that per capita growth rate at 0.2B falls below 0. But, as will be explained below,222

the Allee effect is important even if per capita growth rate is positive.223

224

Beverton-Holt density dependence and algebraic probability of fertilization225

226

We found the solution of Eqn 50 by using the quadratic formula (and advantage of Beverton-Holt227

density dependence and algebraic probability of fertilization). In Figures 2a-c we show steepness228

as a function of the probability of fertilization, the graphical determination of the Allee level229

(based on rewriting Eqn 50 as αp(1−r)B
B+Bc

= (1 +β ·B)M), and the per capita growth rate at 20%230

of B, the analogue of Figure 1. Although the numerical values differ, the qualitative results for231

the two forms of density dependence are very similar, so we focus the rest of this section on232

Ricker density dependence and algebraic probability of fertilization.233
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The Unstable Steady State is the Wrong Focus of Attention for Population234

Dynamics with Harvesting235

It is common in the discussion of Allee effects to focus on the unstable steady state, because if236

the population size is below this level, the population will decline even in the absence of human-237

induced take. However, when a population is harvested things can go wildly wrong long before238

the Allee level is reached, as the following analysis suggests.239

We assume that in addition to the natural dynamics, which we assume to be Ricker density240

dependence, the population experiences fishery induced mortality, written either as a fishing241

mortality rate (F ) or as a catch (C)242

dB

dt
= αp(1− r) · pf (B) ·B · e−βB − (F +M) ·B (58)

dB

dt
= αp(1− r) · pf (B) ·B · e−βB −M ·B − C (59)

and use two commonly suggested management strategies F = M for Eqn 58 or C = 0.5M · B243

for Eqn 59. We implemented these equations as difference equations, ensuring that B never fell244

below zero.245

The results are shown in Figure 3a for harvest proportional to biomass and Figure 3b for246

fixed harvest. Perhaps the most important message here is that the Allee effect is hidden but247

has clear consequences. For example, for probability of fertilization of about 0.74, the per capita248

growth rate at 20 % of unfished biomass is positive (Figure 1d) but a fishing mortality rate249

of F = M drives the population to extinction. For a fixed harvest, the result is even more250

dramatic: even a fertilization probability of almost 90% is insufficient to prevent extinction.251

The Probability Density for Steepness252

As described in Mangel et al (2010) in detail, uncertainty in M itself can induce a probability253

distribution on steepness. That is, all of the equations characterizing steepness are conditioned254

on a particular value of M . Then if fm(m) denotes the probability density for M , since the255
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relationship between steepness and rate of mortality is unique, we are easily able to compute256

the probability density for steepness, fh(h). All of this can be done for the production model257

without simulation if αp is treated as a constant.258

For example, we assume that the rate of mortality follows a gamma density with mean259

0.2 and coefficient of variation 1
3 . This frequency distribution is shown in Figure 4a and the260

resulting frequency distributions for steepness in Figure 4b for Ricker density dependence and261

Figure 4c for Beverton-Holt density dependence when the probability of fertilization at B0 is262

0.887. We note two observations about these figures. First, that for Ricker density dependence,263

steepness can be arbitrarily large but in this particular case there is little probability of it being264

larger than about 2.0. Second, although in the absence of Allee effects, steepness for Beverton265

Holt density dependence cannot fall below 0.2, when there are Allee effects steepness can be less266

than 0.2.267

Steepness for the Age-Structured, Two Sex Model with Depen-268

satory SRR269

We now turn to the age-structured model. Age structure introduces the biological complexity270

that the same biomass may be represented by very different age structures, and thus a given271

biomass does not imply a unique recruitment unless the population is in a deterministic Stable272

Age Distribution (most likely never; see Wiedenmann et al (2009)).273

In an age-structured population, we may expect that the probability of successful fertilization274

depends upon either numbers of biomassses of mature individuals. We will focus on biomass275

and let Bf and Bm denote the biomass of mature females and males, suppressing the index on276

time. They are given by277

Bf =
amax∑
a=1

Nf (a, t)Wf (a)pf,m(a) (60)

Bm =
amax∑
a=1

Nm(a, t)Wm(a)pm,m(a) (61)
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where the terms in the latter equation have the obvious interpretations based on the case without278

depensation. We assume that the probability of fertilization depends upon the relative mature279

biomasses. Thus, the analogue of Eqn 25 is280

pf (Bf , Bm) =
Bm/Bf

Bc/Bf +Bm/Bf
=

Bm
Bc +Bm

(62)

where Bc has exactly the same interpretation as in the production model. The analogue of Eqn281

26, for the exponential probability of fertilization is282

pf (Bf , Bm) = 1− p
Bm
Bf

0 = 1− exp
[
− Bm
Bf
|log(p0)|

]
= 1− exp

[
− γBm

Bf

]
(63)

so that γ has exactly the same interpretation as before. Readers who would prefer to think of283

probability of fertilization in terms of mature numbers rather than mature biomass are encour-284

aged to reproduce the calculations that follow using mature numbers.285

A subtlety now arises. Steepness is defined by spawning biomass reduced from its unfished286

level to 20% of that level. For the production model, this can happen in only one way. However,287

for the age-structured model there is an infinite number of ways of reducing mature male and288

female biomasses so that the total is 20% of the unfished level. For example, if we interpret289

20% of the unfished level to mean that mature male biomass is 20% of its unfished level and290

mature female biomass is 20% of its unfished level. Then according to Eqn 62 the probability of291

successful fertilization will decline. However, according to Eqn 63 it will remain the same, which292

might occur for species in very tight spawning aggregations and highly fecund males. Overall,293

however, it seems that the algebraic probability of fertilization may capture the effects that we294

seek to explore more effectively, so we shall use it.295

Beverton-Holt Density Dependence and Algebraic Probability of Fertilization296

We begin with Beverton-Holt density dependence and algebraic probability of fertilization for297

two reasons. First, the calculations are the simplest ones possible – there are no transcendal298

equations and all quantities can be determined using no more than the quadratic formula.299
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Second, in the absence of Allee effects, steepness for this case ranges between 0.2 and 1, so300

results are more easily interpreted than for Ricker density dependence.301

If density dependence is caused by the entire biomass (not just spawning biomasss) the302

production of young of the year females and males in the steady state is303

Nf (0) = (1− r)αsBf ·
1

1 + βB
· Bm

Bc +Bm
(64)

Nm(0) = rαsBf ·
1

1 + βB
· Bm

Bc +Bm
(65)

and in analogy with Eqn 16 we have304

Bf = Nf (0)W f (66)

Bm = Nm(0)Wm (67)

B = Nf (0) < Wf > +Nm(0) < Wm > (68)

where < Wf >=
∑amax
a=1 Sf (a)Wf (a) and < Wm >=

∑amax
a=1 Sm(a)Wm(a) are the average masses305

females and male fish, regardless of the maturation status.306

Note from Eqns 64 and 65 that307

Nm(0)
Nf (0)

=
r

1− r
(69)

so that it is helpful to define ρr = r
1−r and compactly write Nm(0) = ρrNf (0).308

We now use Eqns 65, 67 and 68 to rewrite Eqn 64 as a single equation for Nf (0)309

Nf (0) = (1− r)αsNf (0)W f ·
1

1 + βNf (0)(< Wf > +ρr < Wm >)
· ρrNf (0)Wm

Bc + ρrNf (0)Wm
(70)

whic can be re-arranged to give310

1 + βNf (0)[< Wf > +ρr < Wm >] =
(1− r)αsW fρrNf (0)Wm

Bc + ρrNf (0)Wm
(71)

and cross-multiplying by the denominator on the right hand side, we see that Eqn 71 – as311

complicated as it looks — is simply a quadratic equation for the single unknown Nf (0). Once312

we find that, we know all the other steady state population numbers and biomasses from Eqns313

65-68.314
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Assuming that 20% of unfished biomass is understood as equivalent reductions in female and315

male populations, steepness is computed from316

h =
0.2αsBf

1
0.2βB

0.2Bm

BC+0.2Bm

αsBf
1
βB

0.2Bm

BC+Bm

(72)

which simplifies to317

h = 0.04
[

1 + βB

1 + 0.2βB

[
Bc +Bm

Bc + 0.2Bm

]
(73)

Note that the left hand side of Eqn 71 is exactly 1 + βB, so we solve that equation for βB318

and substitute into Eqn 73 to obtain the final result for steepness with Beverton-Holt density319

dependence and320

h = 0.2
[ (1− r)αsW f

ρrNf (0)Wm

Bc+ρrNf (0)Wm

4 + (1− r)αsW f
ρrNf (0)Wm

Bc+ρrNf (0)Wm

][
Bc + ρrNf (0)Wm

Bc + 0.2ρrNf (0)Wm

]
(74)

Note that if we set Bc = 0 then we recover Eqn 20 as must happen.321

The Deterministic Estimate of Steepness of Bigeye Tuna Thun-322

nus obesus323

For this example, we used the same parameters as in Mangel et al (2010) and assumed that the324

rate of mortality, Mf (a) (Eqn 12), for females could be determined from the allometry for fish325

given by McCoy and Gillooly (2008) assuming a dry mass of 55% of wet mass, and that the rate326

of mortality for males is given by327

Mm(a) =
km
kf
Mf (a) (75)

where km and kf are respectively the von Bertalanffy growth rates for males and females re-328

spectively. We used exactly deterministic version of the procedure, based on the allometry in329

McGurk (1986), in Mangel et al. (2010) for determining αs.330

The two parameters that remain to be specified are β and Bc. In principle, β can be331

computed from the dynamics underlying the Beverton-Holt recruitment function, in which per332
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capita larval mortality is a linear function of larval numbers (Mangel 2006, pg 213) but for333

illustration here we proceed differently. Note from Eqn 71 that in the absence of Allee effects334

we have335

1 + βNf (0)[< Wf > +ρr < Wm >] = (1− r)αsW f (76)

The the term in [ ] on the left-hand side and the right-hand side of Eqn 76 is known once the336

life history parameters are known. Thus (as observed by many authors), the parametrization337

of the Beverton-Holt stock-recruitment relationship that we have used means β scales the size338

of Nf (0) and that if we specify one of them the other is fixed by the life history parameters.339

Consequently, one can imagine that both β and Nf (0) are measured in some appropriate volume340

of ocean. For the computations here, we assume that in the absence of Allee effects, Nf (0) would341

be 500 individuals. We then determine β from Eqn 76. When β is determined in this manner,342

the only unknown in Eqn 53 is the value of Nf (0) in the presence of Allee effects; we find this343

using the quadratic formula.344

Steepness is then computed from Eqn 74. Clearly steepness depends upon Bc, however as345

with the production model it is difficult to interpret results in terms of Bc, so we plot steepness346

as a function of the probability of fertilization, given by347

pf =
ρrNf (0)Wm

Bc + ρrNf (0)Wm
(77)

We find that the probability of fertilization is 1 (i.e. Bc = 0) steepness is close to 1, but not348

equal to 1 (Figure 5). However the relationship is highly nonlinear. If pf =.976, then h = 0.908349

and but if pf = 0.9 of the eggs are fertilized, steepness is about 70%. Note that as with the350

production model it is possible for steepness to fall below 0.2 if Allee effects are considered.351

An Improved Approach for Estimating αs352

The stochastic simulation used in Mangel et al (2010) is not appropriate for case in which the353

mechanism of depensation is reduced probability of fertilization, because we must track the354
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size of both male and female populations. In this section, we introduce an improved stochastic355

simulation, which can be used for either the depensatory case or the non-depensatory case.356

As noted in Mangel et al (2010), αs can be interpreted as the maximum number of new357

individuals added to the population per unit of spawning biomass before density dependence358

acts on the recruited class (and αp can be computed by multiplying αs by the biomass of a359

recruit. In the previous paper we used an artifice of ‘populations’ but here we return to the360

more common approach based on cohort analysis.361

The Cohort Based Computation of αs362

We implement the calculations described below in a stochastic simulation over survival tra-363

jectories, but for simplicity ignore the index on the iterate of the simulation in the following364

description. Imagine a cohort of N0 individuals in which individuals are indexed by i. We begin365

by drawing a random variable Us which we compare with the sex ratio at birth to determine366

whether the ith fish is a female (s(i) = 1) or a male (s(i)=2). In this manner we determine the367

number of female and male fish, Nf (0) and Nm(0), in the cohort.368

Next we compute the number of females and males of age a using the survival functions, so369

that Nf (a) = Nf (0) ·Sf (a) and Nm(a) = Nm(0) ·Sm(a) where Sf (a) and Sm(a) are respectively370

the probabilities that a female or male survives to age a. In this way we uniquely identify the371

age a(i) of the ith fish, in which there are a total of NT (a) = Nf (a) +Nm(a) fish of age a.372

Once the age of the ith fish is known we are able to compute the probability that it is mature,373

pm(i), from the schedule of maturity. This is a binary variable, with pm(i) = 0 corresponding374

to an immature fish and pm(i) = 1 corresponding to a mature fish.375

In order to account for fertilization based depensation, we must specify the size of the mating376

group, G. We let Bm and Bf respectively denote the biomass of males and females in the377

currently simulated mating group and ET denote the number of eggs that survive to recruit to378

the population produced by females in the currently simulated mating group. One can imagine379
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a variety of means of assembling the mating group. For example, mature individuals may join380

mating groups randomly (the pseudocode for this situation is given below) or they may join381

through size association (so that larger fish are paired with larger fish; smaller fish are paired382

with smaller fish).383

If mating groups involve random association of mature fish, the following pseudocode can be384

followed:385

Step 1. Set the size of the current group to 0, and set Bm = Bf = 0.386

Step 2. Draw a test value, itest that is uniformly distributed across the total number of fish.387

If pm(a(itest)) = 0, so that the fish is immature, return to Step 1. If pm(a(itest)) = 1, so that388

the fish is mature, proceed to Step 3.389

Step 3. Increment the current size of the mating group by 1 individual.390

Step 4. If s(itest) = 2, so that the test individual is a male, increment Bm by Wm(a(itest)).391

Step 5. If s(itest) = 1, so that the test individual is a female, increment Bf by Wf (a(itest)),392

compute the number of surviving eggs (using the same, but corrected and improved, algorithm393

as in Mangel et al (2010)) and increment total eggs ET by this amount.394

Step 6. If the current group size is less than G return to Step 2. Otherwise, continue to Step395

7a or Step 7b.396

At this point another decision must be made. If one wished to use Eqn 56, in which a mean397

probability of fertilization is applied, then398

Step 7. Compute αs = ET
Bf

.399

Step 8. Compute pf (Bf , Bm) using either Eqn 44 or 45. In this way one obtains the effective400

maximum production of the test fish.401

Step 9. If current group size is less than G return to Step 2.402
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Increased Mortality as the Depensatory Mechanism403

An alternative depensatory mechanism is that mortality rate increases as population size declines404

(George Watters, personal communication). For example, we might modify the production405

model as406

dB

dt
= αp(1− r)Bg(B)−M0

(
B +B2

B

)
(78)

where g(B) denotes the density dependent component of reproduction, M0 the rate of natural407

mortality when biomass is large, and B2 the value of biomass at which the rate of natural408

mortality is twice M0. For the case of Beverton-Holt density dependence, the steady state409

biomass satisfies410

αp(1− r)
M0

= 1 +
B2

B
+ βB + βB2 (79)

which is once again a quadratic equation for B.411

Empirical Assessment for the Depensatory Mechanism412

The social psychologist Kurt Lewin is reknowned for his comment that ‘there is nothing as413

practical as a good theory’ (Lewin 1951, pg 169). Rothman (2004) revisted Lewin and noted414

‘Although Lewin may have been right that there is “nothing more practical than a good theory”415

(p.169; [24]), his dictum rests on the assumption that good theories are available to address416

practical problems. The development of “good” theories that is, theories that are both accurate417

and applicable has been hindered by a breakdown in the on-going collaboration between basic418

and applied behavioral scientists.’ (pg 6).419

As emphasized in Mangel et al. (2010), steepness is a derived quantity – related to things420

that can be measured, but itself never measured. For the theory of steepness developed here to421

be practicable, it is necessary to find a way to measure the effect of depensation, captured in422

either Eqn 25 or 26.423

Some very simple statistical methods can be applied to estimate Bc in Eqn 25 or γ in Eqn424

26. Inverting Eqn 25 and simplifying shows that (suppressing the dependence of the probability425
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of fertilization on biomass)426

1
pf
− 1 = Bc ·

1
B

(80)

so that Bc can be estimated as the slope of the plot of 1
pf
− 1 vs. 1/B. (This is similar to427

methods for estimating the rate constant in Michaelis-Menten enzyme kinetics). Similarly, Eqn428

26 can be simply manipulated to give429

log(1− pf ) = γ ·B (81)

so that γ can be estimated as the slope of the plot of log(1− pf ) vs B.430

Alternatively, Eqns 25 and 26 can be viewed as the foundation of nonlinear statistical models,431

particularly when converted to a logit-form.432

Finally, it is natural to consider Bayesian methods by introducing appropriate priors for433

either Bc or γ. All of this remains to be done.434
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Appendix: The Production Model as a System of Stochastic Dif-477

ferential Equations478

The gamma density that we use to characterize natural mortality can be viewed as the steady479

state frequency distribution for the following stochastic differential equation (Dennis and Costantino480

1988, Costantino and Desharnais 1991)481

dM = M [λ− µ ·M ]dt+ σMMdW1 (A1)

where λ and µ have their usual interpretations for logistic growth (λ is maximum per capita482

growth rate and carrying capacity is λ
µ), dW1 is an increment of standard Brownian motion483

(Mangel 2006) and σM is the standard deviation of fluctuations in mortality. Eqn A1 can be484

interpreted as follows: given that M(t) = m, then dM = M(t+dt)−M(t) is normally distributed485

with mean486

E[dM ] = m(λ− µm)dt+ o(dt) (A2)

and variance487

V ar[dM ] = σ2
Mm

2dt+ o(dt) (A3)

and variance, where o(dt) represents terms that are higher order than dt.488

This observation suggests that we can interpret Eqn 1 or the equivalent using Ricker den-489

sity dependence and the probability density for gamma in the context of stochastic differential490

equations. If we let g(B) denote the density dependence, then if the source of stochasticity for491
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changes in biomass is a birth and death process, the stochastic version of either equation is492

(Mangel 1994, 2006)493

dB = [αp(1− r)Bg(B)pf (B)−M ·B]dt+
√
αp(1− r)Bg(B)pf (B) +M ·B · dW2 (A4)

where dW2 is another increment in standard Brownian motion. The interpretation for the494

distribution, mean, and variance of dB = B(t + dt) − B(t) condition on B(t) = b is similar to495

the one given above for dM .496

If f(m, b) is the stationary probability density for M and B, then under the assumptions in497

Eqns A1-A4, it will satisfy the equation498

1
2

[
σ2
Mm

2 ∂
2f

∂m2
+ (αp(1− r)bg(b)pf (b) +m · b)∂

2f

∂b2

]
499

− [m(λ− µm)
∂f

∂m
]− [(αp(1− r)bg(b)pf (b)−m · b)∂f

∂b
] = 0 (A5)

Whether or not this proves to be useful remains to be seen.500
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Captions for Figures516

Figure 1. Results for the production model with illustrative parameters. a) The steady state517

biomass in the presence of an Allee effect as a function of the probability of fertilization pf (B0)518

when biomass is B0 = 1000; b) Steepness for the production model with Ricker density depen-519

dence and algebraic probability of fertilization as a function of the probability of fertilization520

pf (B0); c) Graphical determination of the unstable steady state biomass as the solution of the521

associated transcendental equation. d) Per capita growth rate at 20% of steady state biomass522

as a function of of the probability of fertilization pf (B0).523

524

Figure 2. Similar calculations for Beverton Holt density dependence and algebraic probabil-525

ity of fertilization. a) Steepness as a function of the probability of fertilization when biomass526

is 1000, pf (B0); b) Illustration of graphical determination of the unstable steady state. c) Per527

capita growth rate at 20% of steady state biomass as a function of of the probability of fertil-528

ization when biomass is 1000, pf (B0).529

530

Figure 3 When there is an Allee effect, otherwise sustainable harvesting may become unsus-531

tainable. We show, as a function of the probability of fertilization when biomass is 1000, pf (B0)532

the biomass trajectory for fishing mortality F = M (panel a) or fixed catch C = 0.5MB (panel b)533

534

Figure 4 A probability distribution for natural mortality (panel a; here the gamma density535

used by Mangel et al (2010)) induces a probability distribution for steepness for Ricker density536

dependence and algebraic probability of fertilization (panel b) or Beverton-Holt density depen-537

dence and algebraic probability of fertilization (panel c).538

539

Figure 5 The point estimate of steepness for bigeye tuna as a function of the probability that540

an egg is fertilized when the population is in the stable age distribution.541
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Figure 5. The point estimate of steepness for the age structured model.560
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