
Virtual Values for Language Extension

Thomas H. Austin, Tim Disney, and Cormac Flanagan

University of California Santa Cruz

Abstract. This paper focuses on extensibility, the ability of a program-
mer using a particular language to extend the expressiveness of that
language. This paper explores how to provide an interesting notion of
extensibility by virtualizing the interface between code and data. A vir-
tual value is a special value that supports behavioral intercession. When
a primitive operation is applied to a virtual value, it invokes a trap on
that virtual value. A virtual value contains multiple traps, each of which
is a user-defined function that describes how that operation should be-
have on that value.
This paper formalizes the semantics of virtual values, and shows how
they enable the definition of a variety of language extensions, including
additional numeric types; delayed evaluation; taint tracking; contracts;
revokable membranes; units of measure; and symbolic execution. We re-
port on our experience implementing virtual values for Javascript within
an extension for the Firefox browser.

1 Introduction

Programming language design is driven by multiple, often conflicting desiderata,
such as: expressiveness, simplicity, elegance, performance, correctness, and ex-
tensibility, to name just a few. This paper focuses primarily on extensibility : the
ability of a programmer using a particular language to extend the functionality
and expressiveness of that language. Extensibility is desirable on its own merits;
it also helps control language complexity by allowing many aspects of function-
ality to be delegated to libraries, and it enables grassroots innovation, where
individual programmers can extend the language rather than being restricted to
particular features chosen by the language designer.

Our starting point for language extension is the observation that language
semantics typically involve interaction between code and data, where code per-
forms various operations (allocation, assignment, addition, etc.) on data values.
The behavior of each operation is typically hardwired by the language semantics.
If a function wants to perform addition on its argument, then it must be passed
a numeric value that can be understood by the built-in addition operation. Con-
sequently, a user-defined complex type will not interoperate with code that uses
the built-in addition operation.

Computer science has a strong and successful history of virtualizing various
well-defined interfaces. For example, virtualizing the interface between a pro-
cessor and its memory subsystem enabled innovations such as virtual memory,

2

distributed shared memory, and memory mapped files. Virtualizing the entire
processor enables multiple virtual machines to run on a single hardware proces-
sor, or to migrate between processors.

This paper explores the benefits of “virtualizing” the entire interface between
code and data values. Specifically, we present a language that supports virtual
values. When a primitive operation expects a regular value but finds a virtual
value in its place, that operation invokes a trap on the virtual value. Each virtual
value is simply a collection of traps, each of which is a user-defined function that
describes how a particular operation should behave on that virtual value.

Although virtualization is often considered esoteric, with complex interac-
tions between various meta-levels, we show that the semantics of data virtual-
ization can be elegantly captured using the standard tools of operational seman-
tics. We formalize the semantics of virtual values in the context of a particular
dynamically typed language; however, our ideas should be generally extensi-
ble to other languages, particularly to languages that already perform dynamic
type checks. The operational semantics of our language is straightforward, with
additional evaluation rules for invoking traps for operations on virtual values.

We believe that virtual values provide a rather useful and powerful degree of
language extensibility. Of course, validating a language design feature is always
difficult. Quantifiable aspects of language design, such as performance, are more
easily validated, but are often less important than aspects such as expressiveness,
consistency, elegance, and extensibility. In this paper, we aim to validate the
expressiveness and extensibility benefits of virtual values by illustrating the kinds
of language extensions that they enable. These extensions include:

1. Additional numeric types, such as rationals, bignums, complex numbers, or
decimal floating points1, with traditional operator syntax.

2. Units of measure (meters, seconds, etc).
3. Lazy or delayed evaluation, with implicit forcing when a delayed value is

passed to a strict operation.
4. Taint tracking.
5. Symbolic execution, which increases test coverage by executing code on sym-

bolic input values [20, 13].
6. Dynamically checked contracts [8], including contracts on functions and data

structures that are enforced lazily.
7. Revocable membranes, which allow two components to interact until the

membrane is revoked, after which further interaction is forbidden [22].

Each language extension is powerful yet small (the complete code is included in
this paper), thus validating that virtual values offer an elegant and expressive
mechanism for language extension.

These extensions are nicely composable. For example, we extend the language
with contracts, and use that contract extension to document other extensions.
1 Decimal floating point numbers (IEEE 754-2008) avoids the unintuitive rounding

errors of binary floating point. Our work is partly motivated by discussions within
the ECMA TC39 Javascript standardization committee regarding the desire for a
decimal floating point library that could support convenient operator syntax.

3

Our taint extension automatically tracks taint information through all code,
including through the complex numbers extension or the delayed evaluation
extension. Similarly, the symbolic execution extension automatically performs
symbolic analysis of complex numbers or delayed thunks.

To emphasize the modularity benefits of virtual values, we briefly consider
the consequences of an alternative architecture in which these extensions are
implemented as part of the language itself. This approach radically complicates
the language, since each extension may cross-cut the other features and eval-
uation rules of the language. For example, the information flow and complex
number extension would interact in a non-trivial fashion, since we need to track
how information flows through operations on complex numbers. In contrast, vir-
tual values enable a clear separation of concerns between the various extension
modules, and provides a coherent and extensible architecture. Composed virtual
values are essentially an instance of the Decorator Pattern [12]. This pattern
can be applied to any interface, but in our experience it is particularly powerful
when applied to the widely-used interface between code and data.

1.1 Related Work

This work is inspired by Miller and Van Cutsem’s proposal for Javascript Catch-
All Proxies [23, 4], which provide traps for operations on functions and objects.
These object proxies virtualize the interface between code and objects (including
function objects). Analogous functionality has been provided in other languages,
including via Racket’s chaperones [10].

Virtual values generalizes these prior ideas to virtualize the interface between
code and all data values. This generalization provides significant benefits, and
it enables additional interesting applications, most notably (1)–(5) from the list
above.

SmallTalk [14] demonstrated the benefits of pure object-oriented program-
ming, in which all data values are objects, and all operations (including addition
and conditional tests) are method calls. Smalltalk supports the definition of
proxy objects that implement the doesNotUnderstand: method and that del-
egate to an underlying object, a technique called behavioral intercession. This
pure object architecture provides significant flexibility, and in some sense al-
ready virtualizes the interface between code and data, since all operations are
performed via dynamically-dispatched method calls. Indeed, many of the exten-
sions that we propose could also be implemented in Smalltalk, or in other pure
object languages such as AmbientTalk [25], E [24], or Python. A central con-
tribution of this paper is to demonstrate that this degree of extensibility is not
restricted to pure object languages; virtual values enable similar extensibility in
languages that include non-object values, and in languages that are not object
oriented.

From another perspective, virtual values can be considered a type of object,
since they carry their own behavior. Even though there is no this binding. In
this sense, virtual values provide a means to enrich a non-object language (or a
language with non-object values) with the extensibility benefits of pure object

4

languages, since all operations can be dynamically dispatched via virtual value
traps.

Language extensibility has been the target of a rich body of prior research.
For example, CLOS provides a very flexible metaobject protocol (MOP) [19],
which gives the ability to inspect and modify the behavior of the object runtime
system, often in a very general manner. In comparison to CLOS, virtual values
provides a focused mechanism for changing the language semantics at a per-
value granularity, which is well-suited for the kinds of language extensions that
we address.

Aspect-oriented programming (AOP) [18] focuses on cross-cutting concerns
that span multiple components of a system. As one example, aspects have been
used to enforce fine-grained security policies in browsers [21]. Virtual values
share similar motivations to AOP, and both enable the developer to insert code
at different point-cuts, but using virtual values these point-cuts are chosen dy-
namically (based on where virtual values are used) rather than statically (as in
weaving-based approaches to AOP).

In a language with a rich static type system, the “trap dispatch” operations
on virtual values could be resolved statically, e.g. via Haskell’s [27] type classes.
This static type based approach provides stronger correctness guarantees and
improved performance over virtual values, but at a cost of more conceptual com-
plexity and some decrease in flexibility. Overall, virtual values seem best suited
to providing extensibility in languages whose static type systems are less rich
than Haskell, or in dynamically typed languages. Also, whereas type classes such
as Haskell’s Num class virtualize some language operations (those that manipulate
Num values), virtual values generalize this idea to all language operations.

Contributions: The main contributions of this paper are:

– it virtualizes the entire interface between code and data values, thus provid-
ing a general mechanism for value-specific behavioral intercession;

– it clarifies that languages with non-object values (or non object-oriented
languages) can still enjoy the extensibility benefits of pure object languages;

– it presents a formal yet accessible operational semantics for virtual values;
– it demonstrates the extensibility benefits of virtual values by implementing

seven powerful language extensions: (1) complex numbers; (2) units of mea-
sure; (3) delayed evaluation; (4) taint analysis; (5) symbolic execution; (6)
contracts; and (7) revokable membranes;

– and it reports on our experience implementing this design in the Firefox
browser.

2 A Language With Virtual Values

We formalize the semantics of virtual values in the context of an idealized lan-
guage that extends the dynamically typed λ-calculus with virtual values, as well
as with mutable, extensible records, as in Javascript. For brevity, we use proxy
as a synonym for virtual value, and so refer to the language as λproxy.

5

Figure 1: λproxy Syntax

e ::= x | c | λx. e | e e | if e e e | uop e | e bop e | { e : e } Expressions
e[e] | e[e] := e | proxy e | isProxy e

c ::= n | s | false | true | unit Constants
uop ::= − | ! | isNum | isBoolisFunction | isRecord | tostring | . . . Unary operators
bop ::= + | = | ! = | . . . Binary operators

Syntactic Sugar

e.x
def
= e["x"]

e.x := e′ def
= e["x"] := e′

x : e
def
= "x" : e

let x = e1; e2
def
= (λx. e2) e1

f()
def
= f unit

e1; e2
def
= (λx. e2) e1 x 6∈ FV (e2)

e1 || e2
def
= let x = e1; if x x e2

e1 && e2
def
= let x = e1; if x e2 x

assert e
def
= if e unit (unit unit)

λ. e
def
= λd. e d 6∈ FV (e)

letrec x = e1; e2
def
= let y = {}; y.x := θe1; θe2 where θ = [x := y.x]

private x = e; y = e′ def
= let p = {}; let q = {}; p.x := θe; q.y := θe′; q

where θ = [x := p.x, y := q.y]

2.1 Syntax

The syntax of λproxy is summarized in figure 1. In addition to the usual abstrac-
tions (λx. e), applications (e e), and variables (x) of the λ-calculus, the language
also has constants (c), conditionals (if e e e), and unary and binary operators
(uop e and e bop e, respectively). Constants include numbers (n) and strings (s),
as well as unit and boolean constants.

A record is mutable finite map from values to values. The language includes
constructs to create ({ e : e }), lookup (e[e]), and update (e[e] := e) this map. The
domain of a record is often strings, and so following Javascript we include syn-
tactic sugar to facilitate this common case, whereby e.x abbreviates e["x"], etc.
A record access returns false by default (similar to undefined in Javascript) if
an accessed field is not defined in a record.

A proxy value p is created by the expression proxy e, where e should evaluate
to a handler record that defines the following nine trap functions:

call :: argument→ result
getr :: index→ contents
geti :: record→ contents
setr :: index→ newcontents→ Unit
seti :: record→ newcontents→ Unit

unary :: uop→ result
left :: bop→ rightarg→ result

right :: bop→ leftarg→ result
test :: Unit→ Any

The call trap defines how the proxy p should behave when it is used as a
function and applied to a particular argument, as in (p arg). The getr and setr
traps define the proxy’s behavior when used as a record, as in p[w] and p[w] := v,
respectively. The geti and seti traps are called when the proxy p is used as a
record index, as in a[p] and a[p] := v. The unary trap is invoked when a unary
operator is applied to the proxy (e.g., !p). The specific unary operator is passed
as a string argument (e.g., "!"), which facilitates handling all unary operations
in a consistent and compact manner. (Strings play the role of enum types.)

6

For binary operators, the proxy could occur on the left or the right side of
the operator, and each case invokes a corresponding trap (left or right), with
the binary operator string and the other operand being passed as arguments. If
both operands are proxies we give precedence to the left argument, and so the
right trap is invoked only when the left operand is not a proxy. Finally, if a
proxy is used in a conditional test, then the proxy’s test trap is invoked, which
should return a value to be used in that test.

Figure 1 includes the usual abbreviations for let and letrec, for the short-
circuiting operators || and &&, and for defining and invoking thunks. A failing
assert is modeled by getting stuck. To facilitate defining each language exten-
sion, we introduce a lightweight syntax for modules (private x = e; y = e′) with
private variables x, public variables y, and where all definitions can be mutually
recursive. In the desugared form of this construct, the records p and q hold the
private and public bindings respectively, and only the public bindings in q are
exposed to the rest of the program. The substitution θ replaces references to the
module-defined variables x and y with accesses to corresponding fields of p and
q respectively.

2.2 Formal Semantics

Figure 2 formalizes the informal semantics outlined above. A heap H is a finite
map from addresses (a) to records. A record index i is a constant or an address.
A raw value r is a constant, an address, or a λ-expression. A value v is either
a raw value or else proxy v, where v is the handler record (or possibly a proxy
that behaves like a handler record). An evaluation state H, e contains a heap
and the expression being evaluated.

The rules for the evaluation relation H, e→ H ′, e′ define how to evaluate the
various constructs in the language. The first collection of evaluation rules are
mostly straightforward. The conditional test considers any raw value other than
false as being true. As usual, the partial function δ defines the semantics of unary
and binary operators (uop and bop, respectively) on raw values. For example, the
equality operator is defined as follows, and excludes comparing λ-expressions.

δ("=", r1, r2) def=
{
true if r1 = r2, neither are λ-exprs
false otherwise

The second collection of rules defines how traps are invoked for proxy val-
ues. For example, according to the [CallProxy] rule, in a function application
(f v), if the function f is actually a proxy (proxy h), then the trap h.call (or
equivalently, h["call"]) is invoked on the argument v. Note that h can either
be a handler record, or a proxy representing a handler record; the [CallProxy]
rule handles both cases uniformly.

On a record access v[w] where v = (proxy h), the trap h.getr is applied
to the record index w, via the [GetrProxy] rule. Updating a field of a proxy
invokes its setr trap, and assignments always return the assigned value. Using
a proxy as a record index invokes its geti and seti traps via [GetiProxy] and
[SetiProxy].

7

Figure 2: λproxy Semantics

Runtime Syntax:

i ::= c | a Record indices
r ::= c | a | λx. e Raw values

v, w, h ::= r | proxy v Values
e ::= . . . | a Expressions with addresses
H ::= Address →p (Index →p Value) Heaps
E ::= • e | v • | if • e e | uop • | • bop e | v bop • | Evaluation context frames

proxy • | isProxy • | • [e] | v[•] | • [e] := e |
v[•] := e | v[w] := • | { v : v, • : e, e : e } | { v : v, v : •, e : e }

Evaluation Rules:

H, (λx. e) v → H, e[x := v] [call]
H, { s : v } → H[a := { s : v }], a a 6∈ dom(H) [Alloc]

H, a[i] → H, v i ∈ dom(H(a)), v = H(a)(i) [Get]
H, a[i] → H, false i 6∈ dom(H(a)) [GetFalse]

H, a[i] := v → H ′, v H ′ = H[a := H(a)[i := v]] [Set]
H, uop r → H, δ(uop, r) [UnaryOp]

H, r1 bop r2 → H, δ(bop, r1, r2) [BinaryOp]
H, if r e1 e2 → H, e1 r 6= false [IfTrue]

H, if false e1 e2 → H, e2 [IfFalse]
H, isProxy (proxy h) → H, true [IsProxy]

H, isProxy r → H, false [IsNotProxy]

H, (proxy h) v → H,h.call v [CallProxy]
H, (proxy h)[w] → H,h.getr w [GetrProxy]
H, r[proxy h] → H,h.geti r [GetiProxy]

H, (proxy h)[w] := v → H, (h.setr w v); v [SetrProxy]
H, r[proxy h] := v → H, (h.seti r v); v [SetiProxy]
H, uop (proxy h) → H,h.unary "uop" [UnaryProxy]

H, (proxy h) bop v → H,h.left "bop" v [LeftProxy]
H, r bop (proxy h) → H,h.right "bop" r [RightProxy]

H, if (proxy h) e1 e2 → H, if (h.test()) e1 e2 [TestProxy]
H,E[e] → H ′, E[e′] if H, e→ H ′, e′ [Context]

For a unary operation on a proxy, the unary trap is invoked, with the specific
unary operator being passed as a string argument. For a binary operation, the
semantics first attempts to dispatch to the left proxy argument, if that is a proxy,
by calling its left trap via the rule [LeftProxy]. If the left argument is a raw
value but the right argument is a proxy, then that proxy’s right trap is invoked,
passing the binary operation string and the left (raw) argument.

2.3 Virtual Values and Security

Proxies allow the implementation of additional kinds of values, and so they in-
crease the possible observable behaviors of values. For example, in the presence

8

of proxies, x * x can return a negative number (e.g., when x is complex). More-
over, (a.x = a.x) could evaluate to false, both because a is a proxy whose
get trap returns different values, or because a.x is a proxy that defines unusual,
non-reflective behavior for its “=” operation.

A larger space of value behaviors does make it harder to write defensive or
security-critical code. In particular, security checks that are correct under the as-
sumption that strings are immutable may fail when passed a proxy representing
mutable strings. There is some tension on how to limit the possible observable
behaviors of proxies. A value consumer might want strict limits on the behavior
of values (including proxy values), while a proxy creator might want maximum
flexibility to introduce novel kinds of proxy behaviors. Consequently, an impor-
tant design choice is what restrictions should be placed on proxy behaviors.
For example, Javascript proxies [4] cannot override the identity operator, which
therefore remains an equivalence operation.

In λproxy, we choose to permit proxies to exhibit very general behaviors, both
for simplicity and to facilitate exploration of proxy-based language extensions.
To address security concerns, we do not provide an isProxy trap, and so the
isProxy construct allows value consumers to reliably identify proxies and so to
defend against unwanted proxy behaviors.

2.4 Design Principles for Reflective APIs

Bracha and Ungar propose three design principles for reflective APIs [2], namely
encapsulation, stratification, and ontological correspondence.

Proxies satisfy the principle of encapsulation, since the proxy API does not
expose details regarding the underlying implementation of the language.

Proxies also satisfy the principle of stratification, since there is a clear dis-
tinction between base level values (both raw values and proxies), and meta-level
values, such as the handler for a proxy value. In particular, there is no way for
a user of a proxy value to access the underlying handler. Evaluating (proxy
a)["unary"] does not return the unary trap function of the handler a; instead
it invokes a’s get trap on the argument "unary".

Finally, proxies satisfy the principle of ontological correspondence, since each
trap handler corresponds directly to a particular operation being performed by
code on a (virtual) data value.

3 Identity Proxy

To illustrate the expressiveness and extensibility benefits of the proxies provided
by λproxy, we next present a series of progressively more interesting language
extensions. Each extension is small yet adds significant expressive power to the
language. In each language extension, we often omit punctuation such as commas
or semicolons, and use indentation to clarify nesting structure, as in Haskell. For
brevity, we mostly ignore error handling, and so some traps simply get stuck if
their proxy is used inappropriately. For documentation purposes, each definition
includes a contract, whose semantics we formalize (via proxies) in section 5 below.

9

1 identityProxy : : Any→ Proxy = λx. proxy {
2 call : λy. x y
3 getr : λn. x[n]
4 geti : λr . r [x]
5 setr : λn,y. x[n] := y
6 seti : λr ,y. r [x] := y
7 unary: λo. unaryOps[o] x
8 l e f t : λo, r . binaryOps[o] x r
9 right : λo, l . binaryOps[o] l x

10 test : λ . x
11 }
12 unaryOps : : UnaryOp⇒Any→Any = {
13 "-" : λx. −x
14 "!" : λx. !x // negation
15 isBool : λx. isBool x
16 // etc for al l unary ops
17 }
18 binaryOps : : BinaryOp⇒Any→Any→Any = {
19 "+" : λx,y. x+y
20 "=" : λx,y. x=y
21 // etc for al l binary ops
22 }

Fig. 3. Identity Proxy Extension

1 delay : : Thunk→ Proxy = λ f .
2 letrec z = (λ . let r=f () ; z := λ . r ; r)
3 proxy {
4 call : λy. z() y
5 getr : λn. z () [n]
6 geti : λr . r [z ()]
7 setr : λn,y. z () [n] := y
8 seti : λr ,y. r [z ()] := y
9 unary: λo. unaryOps[o] z()

10 l e f t : λo, r . binaryOps[o] z() r
11 right : λo, l . binaryOps[o] l z()
12 test : λ . z()
13 }

Fig. 4. Lazy Evaluation Extension

As a starting point for our series of language extensions, figure 3 sketches a
simple proxy that has no effect on program evaluation. In particular, evaluating
(identityProxy x) returns a proxy in which each trap handler simply performs
the appropriate operation on the underlying argument x. For unary operations,
the unary trap dispatches to an auxiliary record unaryOps, which maps each
unary operator string to a function that performs the corresponding operation.
The left and right traps similarly dispatch to the binaryOps lookup table.

The identityProxy may appear to be circular, since it defines each unary
operation in terms of that operation itself. To illustrate how this circularity
bottoms out, consider the evaluation of −(identityProxy (identityProxy 4)).
This expression creates a proxy p1, in which x is bound to a second proxy p2,
in which x is in turn bound to the integer 4. The “−” operator above therefore
invokes the trap p1.unary("−"), which calls unaryOps["−"](p2), which calls a
second trap p2.unary("−"), which in turn calls unaryOps["−"](4), which finally
returns −4. Thus, the apparent circularity bottoms out at the end of the proxy
chain, allowing proxies to compose conveniently.

In order for identityProxy to be entirely transparent, we need to hide the
difference between a proxy and its underlying value. In particular, identityProxy
overrides the equality operation, and so "a"=(identityProxy "a") evaluates to
true. Similarly, the geti trap ensures that {"a":3}[identityProxy "a"] eval-
uates to 3. The appendix includes a proof that this proxy is indeed semantically
transparent. Achieving this degree of transparency required several careful de-
sign choices in our language semantics–for example, the equality operator cannot
distinguish λ-expressions.

10

4 Lazy Evaluation Extension

We next extend the identity proxy to provide more interesting functionality,
namely lazy or delayed evaluation, as shown in figure 4. The function delay
takes as an argument a thunk f and returns a proxy that behaves like the result
of f, except that that result is computed lazily, when some strict operation
invokes a trap on that proxy. Specifically, the function delay creates a mutable
variable2 z containing a thunk that, when called, computes f() and stores the
resulting value, wrapped in a thunk, back into z. Thus, z() returns the result of
f while avoiding repeated computation. Each trap then calls z() to access the
result of f.

In this manner, the resulting proxy causes delayed values to be implicitly
forced when needed; no explicit force operations are required in the source pro-
gram and no built-in support for lazy evaluation is required in the language
implementation.

5 Contract Extension

A contract [8] is a function that mediates between two software components: the
function’s argument and the context that observes the function’s result. As long
as these two components interact appropriately, the contract behaves like the
identity function; if either component engages in inappropriate interaction (for
example, passing a string argument when an integer is expected), the interme-
diating contract detects the error and halts execution.

Figure 5 shows how to implement contracts using proxies, and provides four
contract constructors. By convention, we use capitalized identifiers to denote
contracts, and use the subscript c to denote contract constructors.

A flat contract has the form (Flatc pred). When applied to an argument
x, this contract requires that x satisfy the predicate pred. A function contract
(Functionc Domain Range) requires that its argument should be a function
that is applied only to values satisfying the contract Domain and that returns
only values satisfying Range.

We support both homogeneous and heterogeneous record contracts. A homo-
geneous record contract or map has the form (Mapc Domain Range); a record r
satisfies this contract if each index n in the domain of r satisfies the Domain con-
tract, and the corresponding value r[n] satisfies Range. A heterogeneous record
contract has the form (Recordc contracts), where contracts is a record map-
ping record indices to contracts. A record r satisfies this contract if for each
index n of r, the value r[n] satisfies the contract contracts[n]. Both kinds of
record contracts are enforced in a lazy manner, on each access and update of the
resulting proxy.

2 According to the desugaring of figure 1, the letrec-bound variable z is actually a
record field and so is mutable.

11

1 // Four contract constructors
2 Flatc = λpred. λx. assert (pred x); x
3

4 Functionc = λDomain,Range.
5 λx. assert (isFunction x)
6 proxy {
7 call : λy. Range (x (Domain y))
8 · · · // as in identityProxy
9 }

10

11 Recordc = λcontracts .
12 λx. assert (isRecord x)
13 proxy {
14 getr : λn. contracts [n] (x[n])
15 setr : λn,y. x[n] := (contracts [n] y)
16 · · · // as in identityProxy
17 }
18

19 Mapc = λDomain,Range.
20 λx. assert (isRecord x)
21 proxy {
22 getr : λn. Range (x[Domain n])
23 setr : λn,y. x[Domain n] := Range y
24 · · · // as in identityProxy
25 }
26

27 // some useful contracts
28 Bool = Flatc (λx. isBool x)
29 Num = Flatc (λx. isNum x)
30 NumOrBool = Flatc (λx. isNum x | | isBool x)
31 Any = Flatc (λx. true)
32 Unit = Flatc (λx. x = unit)
33 Thunk = Unit→Any
34 UnaryOp = Flatc (λx. {"-" : true , · · · }[x])
35 BinaryOp = Flatc (λx. {"+" : true , · · · }[x])
36 Proxy = Flatc (λx. isProxy x)

Fig. 5. Contracts Extension

1 private unproxy
2 : : Proxy⇒ {{ value : Untainted }}
3 = {};
4

5 private proxify
6 : : Untainted→ Tainted
7 = λx.
8 let p = proxy {
9 call : λy. taint(x y)

10 getr : λn. taint(x[n])
11 geti : λr . taint(r [x])
12 setr : λn,y. x[n] := taint(y)
13 seti : λr ,y. r [x] := taint(y)
14 unary: λo. taint(unaryOps[o] x)
15 l e f t : λo, r . taint(binaryOps[o] x r)
16 right : λo, l . taint(binaryOps[o] l x)
17 test : λ . x
18 }
19 unproxy[p] := {value :x}
20 p
21

22 taint : : Any→ Tainted
23 = λx. i f (isTainted x) x (proxify x)
24

25 isTainted : : Any→ Bool
26 = λx. i f (unproxy[x]) true false
27

28 untaint : : Any→ Untainted
29 = λx. i f (unproxy[x]) (unproxy[x] . value) x
30

31 Tainted = Flatc (λx. (isTainted x)
32 Untainted = Flatc (λx. !(isTainted x))

Fig. 6. Tainting Extension

We use the syntax Domain → Range and Domain ⇒ Range to abbreviate
function and map contracts, respectively, and {{ s : Contract }} for heteroge-
neous record contracts. We adapt the module definition syntax from figure 1 to
support contracts on module bindings, and use this contract syntax to document
our language extensions.

Domain -> Range
def= Functionc Domain Range

Domain => Range
def= Mapc Domain Range

{{ s : Contract }} def= Recordc { s : Contract }
private x :: C = e; y :: C ′ = e′

def= let p = {}; let q = {};
p.x := θ(C e); q.y := θ(C ′ e′); q

(where θ = [x := p.x, y := q.y])

12

6 Tainting Extension

Several languages, such as Perl, provide tainting as a built-in feature of the
language implementation, which introduces additional complexity into the com-
piler/interpreter and runtime data representations.

Proxies allow this complexity to be isolated into a small extension module,
as shown in figure 6. The function proxify takes an argument x and returns a
proxy that behaves much like x, in that all traps first perform the corresponding
operation on x but then taint the result.

To untaint values (after they have been sanitized) we maintain an unproxy
record that maps each proxy value back to the original raw value. Thus, unproxy[p]
is either false, if p is not a tainting proxy, or else is a record {value:x}, if p is
a tainting proxy whose underlying value is x. A value is tainted if it is in the do-
main of this map and is untainted otherwise. The function taint uses proxify
to taint any value that is not already tainted.

The unproxy table may raise some concerns about potential memory leaks, if
unproxy[p] remains live even after p has been collected. Although the semantics
of λproxy does not formalize garbage collection behavior, λproxy records could
be implemented as ephemeron tables [16], where the entry for unproxy[p] is
collected as soon as p is garbage, thus alleviating these concerns.

7 Additional Numeric Types

An often-requested feature of a programming language is the ability to introduce
additional numeric types beyond what are provided in the underlying language
implementation, and to manipulate these additional types using traditional and
intuitive operator syntax. In many languages, this kind of extension is difficult.
For example, Java does provide Bignums, but only as a library with awkward
method invocation syntax, and it does not provide rational numbers, complex
numbers, or decimal floating point numbers.

Figure 7 illustrates how to extend λproxy with an additional numeric type,
namely complex numbers. The private variable unproxy maintains a map from
each complex number proxy to a (real, imaginary) pair. The function makeComplex
takes as input the two components of a complex number, and creates a proxy
p that dispatches unary and binary operations appropriately. For binary oper-
ations, the left trap first converts the right argument y (which should be a
ordinary number or a complex number) into a (real, imaginary) pair, and then
dispatches to the appropriate function in the complexBinOps table. Note that
unproxy[y] returns false if y is not a complex number proxy, and so the short
circuit operator “||” conveniently provides the desired functionality. The right
trap is simpler, since its left argument is never complex.

Our example implementation exports the variable i, from which client code
can conveniently construct arbitrary complex numbers, for example “1.0 +
(1.0 * i)”. Note that proxies are not a “silver bullet” for compositionality.
In particular, proxies use a double dispatch convention for overloading binary

13

1 private unproxy
2 : : Proxy⇒ {{ real : Num, img: Num }}
3 = {}
4

5 private complexUnaryOps
6 : : UnaryOp⇒Num→Num→Any
7 = {
8 "-" : λr , i . makeComplex (−r) (−i)
9 tostring : λr , i .

10 (tostring r)+"+"+(tostring i)+"i"
11 · · ·
12 }
13

14 private complexBinOps
15 : :BinaryOp⇒Num→Num→Num→Num→Any
16 = {
17 "+" : λr1 , i1 , r2 , i2 .
18 makeComplex (r1+r2) (i1+i2)
19 "=" : λr1 , i1 , r2 , i2 . (r1=r2) && (i1=i2)
20 · · ·
21 }
22

23 makeComplex : : Num→Num→Complex = λr , i .
24 let pair = {real : r , img: i}
25 p = proxy {
26 unary: λo. complexUnaryOps[o] r i
27 l e f t : λo,y.
28 let z = unproxy[y] | | {real :y,img:0}
29 complexBinOps[o] r i z . real z .img
30 right : λo,y. complexBinOps[o] y 0 r i
31 geti : λr . r [pair]
32 seti : λr ,y. r [pair] := y
33 // al l Complex are non−false
34 test : λ . true
35 }
36 unproxy[p] := pair
37 p
38

39 isComplex : : Any→ Bool = λx.
40 i f (unproxy[x]) true false
41

42 i : : Complex = makeComplex 0 1
43

44 Complex = Flatc isComplex

Fig. 7. Complex Number Extension

1 private unproxy
2 : : Bool⇒Any⇒Any
3 = { true : {}, false : {} }
4

5 private revoked : : Bool = false
6

7 private isConstant : : Any→ Bool
8 = λx. (isNum x) | | (isBool x) | | (isString x)
9

10 private switch
11 : : Bool→Any→ ConstantOrProxy
12 = λsrc , s .
13 i f (revoked) (assert false) unit
14 i f ((isConstant s) && !(isProxy s))
15 s
16 (unproxy[src] [s] | |
17 let send = switch src
18 let rcv = switch (! src)
19 let p = proxy {
20 call : λy. send (s (rcv y))
21 getr : λn. send (s [rcv n])
22 geti : λr . send ((rcv r) [s])
23 setr : λn,y. s [rcv n] := rcv y
24 seti : λr ,y. (rcv r) [s] := rcv y
25 unary: λo. send (unaryOps[o] s)
26 l e f t : λo, r . send (binaryOps[o] s (rcv r))
27 right : λo, l . send (binaryOps[o] (rcv l) s)
28 test : λ . i f (s) true false
29 }
30 unproxy[src] [s] := p
31 unproxy [! src] [p] := s
32 p)
33

34

35 membrane : : Any→Any = switch true
36

37 revoke = λ . (revoked := true)
38

39 ConstantOrProxy =
40 Flatc (λx. isConstant x | | isProxy x)

Fig. 8. Revokable Membrane Extn.

operators. Consequently, two independent proxy-based extensions, say Complex
and Rational, may not be composable, since neither implementation knows how
to add a complex and a rational number. Generic functions, as in CLOS [19] and
elsewhere, provide more flexibility but with some additional complexity.

8 Revokable Membranes

Figure 8 describes how to implement revokable, identity-preserving membranes,
which provide unavoidable transitive interposition between two software com-
ponents [22]. The two components can communicate via the membrane in a
transparent manner, but cannot share true references, only proxies to refer-
ences. Consequently, once the membrane is revoked, no further communication

14

is possible between the two components (unless of course there is a side channel
for communication, for example via a global mutable variable).

Figure 8 illustrates how to implement revocable membranes via proxies.
We refer to the components on each side of the membrane as the true and
false components, respectively. When an object passes from the true compo-
nent to the false component, it is wrapped in a proxy. When that proxy gets
passed back to the true component, we wish to remove that proxy wrapper
in order to preserve object identity. For this purpose, we maintains two maps:
unproxy[true], which maps from references known to the true component to
corresponding references in the false component; and unproxy[false], which
is the inverse map.

The function switch passes a value s from the src component to the other
component (!src). Constants are passed without being wrapped, as they cannot
contain object references. Since proxies can masquerade as constants, we also
need to check that s is not a proxy. Note that isProxy is a special form and not
a unary operator, and so it cannot be trapped; it always reveals the true nature
of a proxy, which is critical for reasoning about the security guarantees provided
by code such as membranes.

In the case where s is not a constant, if unproxy[src] already contains an
entry for s, then that is returned. Otherwise, we introduce the functions send and
rcv for sending and receiving values from the component src, and create a new
proxy p that transitively performs the appropriate wrapping in its various traps.
Finally, the maps unproxy[true] and unproxy[false] are updated to record the
relation between s and p, and then p is returned.

Note that we implement all traps, and not just the get, set, and call traps,
to support situations where, for example, s might be a complex number proxy.
That complex number proxy would get wrapped in an additional membrane
proxy, and so both language extensions compose nicely.

9 Dynamic Units Of Measure

Several type systems (see for example, [17]) have been proposed to track units
of measure, such as meters or seconds, and to avoid the confusion of units that
caused the Mars Climate Orbiter mishap.

Proxies provide a convenient means to track units dynamically, and we pro-
vide an example in figure 10. The contract UNum describes a number, possibly
wrapped in a chain of proxies, each of which includes a unit of measure (a string,
such as "second") and an integer index. This proxy chain is kept in lexicographic
ordering of units by the function makeUNum. Unary and binary operators on UNums
propagate down the proxy chain to the underlying numbers, provided the units
are appropriately compatible. In particular, "+" requires that its arguments have
identical units by calling the function (dropUnit u i r), which ensures that the
right argument r has the unit u with index i, and returns the unwrapped version
of r. The units module then exports a single binding, makeUnit, which can be
used by client code to create desired units of measure, as in:

15

1 SymExp = Flatc is SE
2 is SE : : Any→ Bool
3 SE var : : Unit→SymExp
4 SE constant : : NumOrBool→SymExp
5 SE unary : : UnaryOp →SymExp→SymExp
6 SE binary : : BinaryOp→
7 SymExp→SymExp→SymExp
8 SE constrain : : SymExp→ Bool→ Unit
9 SE sat : : SymExp→ Bool

10

11 private unproxy
12 : : Proxy⇒ {{ symexp: SymExp }}
13 = {}
14

15 private toSymExp
16 : : Any→SymExp
17 = λx.
18 i f unproxy[x]
19 unproxy[x] .symexp
20 (assert (isNum x | | isBool x) ;
21 SE constant x)
22

23 private toSymProxy
24 : : SymExp→ SymProxy
25 = λse .
26 let p = proxy {
27 unary : λo. toSymProxy(SE unary o se)
28 l e f t : λo, r .
29 toSymProxy
30 (SE binary o se (toSymExp r))
31 right : λo, l .
32 toSymProxy
33 (SE binary o (toSymExp l) se)
34 test : λ .
35 let trueOk =
36 SE sat (SE binary "!=" se false)
37 let falseOk =
38 SE sat (SE binary "=" se false)
39 let choice =
40 i f (trueOk && falseOk)
41 heuristicallyPickBranch()
42 trueOk
43 SE constrain
44 (SE binary (i f choice "!=" "=")
45 se false)
46 choice
47 }
48 unproxy[p] := { symexp: se }
49 p
50

51 private heuristicallyPickBranch
52 : : Unit→ Bool
53 = · · ·
54

55 symbolicValue
56 : : Unit→ SymProxy
57 = λ . toSymProxy(SE var())
58

59 SymProxy = Flatc

60 (λx. i f (unproxy[x]) true false)

Fig. 9. Symbolic Execution Extension

1 private unproxy : : Proxy⇒
2 {{ unit : String , index : Int , value : UNum }}
3 = {}
4

5 private makeUNum
6 : : String→ Int→UNum→UNum
7 = λu, i ,n.
8 let p = unproxy[n] ;
9 i f (p && u = p.unit) // avoid duplicates

10 makeUNum u (i + p. index) p. value
11 else i f (p && u < p. unit) // keep ordered
12 makeUNum (p.u p. index
13 (makeUNum u i p. value)
14 else // add this unit to proxy chain
15 let p = proxy {
16 // no call , getr , geti , setr , seti
17 unary: λo. unitUnaryOps[o] u i n
18 l e f t : λo, r . unitLeftOps [o] u i n r
19 right : λo, l . unitRightOps[o] u i n l
20 test : λ . n // ignore units in test
21 }
22 unproxy[p] := { unit : u, index : i , value : n }
23 p
24

25 private unitUnaryOps
26 : : UnaryOp⇒ String→ Int→UNum→Any
27 = {
28 "-" : λu, i ,n. makeUNum u i (−n)
29 tostring : λu, i ,n. (tostring n)+" "+u+"^"+i
30 · · ·
31 }
32

33 private unitLeftOps : : BinaryOp⇒
34 String→ Int→UNum→Any→Any
35 = {
36 "*" : λu, i ,n, r . makeUNum u i (n ∗ r)
37 "/" : λu, i ,n, r . makeUNum u i (n / r)
38 "+" : λu, i ,n, r . makeUNum u i (n + (dropUnit u i r))
39 · · ·
40 }
41

42 // le f t arg never a proxy
43 private unitRightOps : : BinaryOp⇒
44 String→ Int→UNum→Any→Any
45 = {
46 "*" : λu, i ,n, l . makeUNum u i (l ∗ n)
47 · · ·
48 }
49

50 private hasUnit
51 : : String→ Int→UNum→ Bool
52 = λu, i ,n.
53 let p = unproxy[n]
54 p != false && u = p. unit && i = p. index
55

56 private dropUnit
57 : : String→ Int→UNum→UNum = λu, i ,n.
58 assert (hasUnit u i n)
59 unproxy[n] . value
60

61 makeUnit : : String→UNum =
62 λu. makeUNum u 1 1
63

64 UNum = Flatc (λx. unproxy[x] | | isNum x)

Fig. 10. Units of Measure Extension

16

1 let meter = makeUnit "meter"
2 let second = makeUnit "second"
3 let g = 9.81 ∗ meter / second / second
4 g + 1 // dynamic unit mismatch error

10 Symbolic Execution

Achieving good test coverage using traditional testing is notoriously difficult,
since it requires first pre-commiting to specific test inputs, and hoping that
those inputs then drive execution through appropriate control-flow paths.

Symbolic execution provides a method for achieving greater test coverage
by exploring the behavior of the target program on an initially undetermined
symbolic input [20, 13], and incrementally refining or constraining that input
as each successive control-flow branch in the target program is encountered.
Typically, symbolic execution is performed via a specialized interpreter, or by
appropriately instrumenting the program source or bytecode.

Figure 9 illustrates a lightweight proxy-based approach that extends a stan-
dard execution engine (interpreter/compiler/JIT) to perform symbolic execu-
tion, simply by designing appropriate symbolic proxies.

The first nine lines of this figure describe an API symbolic reasoning, which
could be implemented on top of a standard SMT solver such as Simplify [6] or
Z3 [5]. A symbolic expression is essentially a tree with unary and binary operators
on internal nodes (created via SE unary and SE binary) and with symbolic
variables and constants at the leafs (created via SE var and SE constant). The
API also maintains a collection of constraints, where (SE constrain se) adds
an additional constraint that the symbolic expression se must hold. Finally, the
function call (SE sat se) checks if the symbolic expression se is satisfiable given
the current constraints (that is, it checks if the current constraint set plus the
additional constraint se is satisfiable).

Using this API, we generate symbolic proxies that can be passed to the soft-
ware under test. The variable unproxy maps these proxies to the underlying
symbolic expression. The function toSymExp map program values to a corre-
sponding symbolic expression, either by looking up the unproxy table (for sym-
bolic proxies) or by calling SE constant (for numeric and boolean constants).

The function toSymProxy converts a symbolic expression se to a proxy p,
where the unary, left, and right traps of p perform the appropriate API
operations on se to yield a new symbolic expression that is then wrapped in
a proxy. Thus, for example, if X is an SE var, then the expression (1 + (2 *
toSymProxy(X))) evaluates to a proxy containing a symbolic representation of
“1 + (2 * X)”. Essentially, the operator traps simply record how new symbolic
values are generated from previous ones.

The interesting case is in the test trap, at which point execution can no
longer be entirely symbolic, since it must commit to executing one of the two
possible branches. The trap first determines the possible values for the test ex-
pression se. If both paths are possible, then one path is chosen via the function
heuristicallyPickBranch in a heuristic manner (for example, to explore a

17

branch not yet tested, in order to maximize branch or path coverage). Once the
branch choice is chosen, the trap handler records the new constraint and then
returns choice to the [TestProxy] rule.

The symbolic execution module exports a single thunk, symbolicValue,
which can be used to generate symbolic inputs for testing the target software.

For brevity, this symbolic evaluation proxy is rather simplified: it omits error
checking and does not support symbolic record indices (no geti or seti traps).
Nevertheless, this simple implementation demonstrates the key ideas.

As an example, suppose we wanted to test a function sort that takes as input
an array, using a function checkSorted to check the result is indeed sorted. (As
in Javascript, an array is represented as a record whose indices are consecutive
integers.) We could test sort by applying it to sample inputs, as in

1 checkSorted (sort { 0:15 , 1:10 , 2:20 });
2 checkSorted (sort { 0:14 , 1:11 , 2:30 });

Unfortunately, this test suite is rather ill-chosen, since both test inputs will
execute the same code path through sort (assuming the sort is implemented
by repeated comparisons, rather than by e.g. bucket sorting). In general, it is
quite difficult to manually choose sufficient test inputs to exercise all code paths.

Symbolic values allow us to avoid pre-committing to specific test inputs, and
instead to heuristically refine the chosen symbolic inputs on-the-fly to execute
desired code paths. In particular, we can instead test sort by evaluating:

1 checkSorted (sort ({ 0: symbolicValue() , 1: symbolicValue() , 2: symbolicValue() })

By evaluating the above expression repeatedly and configuring the function
heuristicallyPickBranch to execute a different path on each iteration, we
can exhaustively test sort on all possible arrays of length 3. Interestingly, for
most sort implementations, this approach terminates after just six iterations.

As expected, symbolic proxies are compatible with other proxy extensions.
For example, we can generate symbolic complex numbers by evaluating:

1 symbolicValue() + (symbolicValue() ∗ i)

11 Implementation in Firefox and JavaScript

In order to evaluate our approach, we extended this design for virtual values to
the Javascript programming language and implemented the extended language
within the Firefox browser. Our implementation leveraged the recently developed
Zaphod add-on [26] for Firefox, which is based on the Narcissus [30] meta-circular
Javascript interpreter. Since JavaScript is a richer language than λproxy, this
extension required the introduction of the following additional traps:

– A has trap to determine if a proxy object has a given field.
– A construct trap similar to call, but used when the proxy is called with

the new keyword.
– A keys trap to define a proxy value’s behavior in a for/in loop.

We then implemented several of the language extension modules, including
lazy evaluation, complex numbers, and units of measure. These implementations

18

Fig. 11. Sample web page with a Javascript evaluator running in Firefox

were quite straightforward and helped to validate the utility of our design. Our
modified Narcissus implementation, the proxy extension modules, and the proxy
test code are all available online [1]. As an illustration, figure 11 shows a brief
web application that uses the units of measurement proxy extension.

Performance. As a meta-circular interpreter, Narcissus does not provide a
good foundation for evaluating the performance overhead of proxies. However,
we believe this overhead is likely to be quite small for the common case where
traps are not invoked.

In dynamically-typed languages, the implementation of each primitive oper-
ation typically needs to perform a tag check that identifies the dynamic type of
each argument value. Figure 12 contains a code snippet from the SpiderMonkey
Javascript interpreter for performing unary minus. This code contains a fast path
for handling integer values, a second fast path for doubles, and then a slow path
for handling Javascript’s various implicit conversions, error handling, etc. We
expect that the slow path would be an ideal place for incorporating proxy han-
dling, without introducing any additional overhead on the common fast paths.
Andreas Gal demonstrated that Javascript Catch-All Proxies introduce negligi-
ble overheads for the common case where traps are not invoked [4, table 2], and
he expects that the performance overhead for virtual values would be compara-
bly small. Of course, frequent trap invocations (e.g., for complex numbers) could
introduce significant overhead, and might motivate the need for additional op-
timization techniques. Trace-based compilation could provide highly optimized
code paths that inline trap code into client code within hot loops [11].

In our current design, a proxy needs a handler record with nine traps, each
of which likely needs to close over the underlying value. More efficient represen-
tations are possible. For example, “proxy a v” could represent a proxy for the
value v, where the handler a is common to many proxies, and each trap is passed
the underlying value v each time it is invoked. This alternative representation
would reduce the space required for each proxy from tens of words to perhaps
three words: a header word plus slots for a and v. Overall, it appears likely that
proxies can be implemented fairly efficiently, particular in a dynamic languages.

19

1 if (JSVAL IS INT(rval)&&(i=JSVAL TO INT(rval))!=0) {
2 i = −i; regs . sp[−1] = INT TO JSVAL(i); // Fast path for ints
3 } else if (JSVAL IS DOUBLE(rval)) {
4 · · · // Second fast path for doubles
5 } else {
6 · · · // Slow path for handling implicit conversions
7 · · · // Ideal spot for handling proxies
8 · · · // Error handling
9 }

Fig. 12. Tag Checks in SpiderMonkey’s Unary Minus Code

12 Discussion and Future Work

The language extensions presented in Sections 3–10 provide anecdotal evidence
that virtual values provide a flexible and useful language extension mechanism.
In addition, our experience suggest that virtual values are fairly straightforward
to incorporate into a language implementation, and that programming in the
extended language remains intuitive and convenient.

The introduction of virtual values does significantly change the semantics
and denotational structure of the language, and suggests that further study of
the resulting denotational semantics is required. In particular, a full abstraction
result [3] for λproxy might be helpful in deciding how to design proxy APIs that
facilitate security and program verification, while still providing flexibility to
enable interesting language extensions. More research is still needed on efficient
compilation and optimization techniques for virtual values.

Virtual values are motivated by the rich proliferation of research on various
kinds of wrappers and proxies, including higher-order contracts [8, 7], language
interoperation via proxies [15], and hybrid and gradual typing [28, 9], and space-
efficient gradual typing [29]. We conjecture that virtual values may allow some
of this research to be performed simply by experimenting within a language with
virtual values, rather than by designing new languages and implementations.

Acknowledgements We thank David Herman, Tom Van Cutsem, and Mark
Miller for valuable comments on an earlier draft of this paper.

References

1. T. H. Austin. Proxy values implementation and examples.
http://slang.soe.ucsc.edu/proxy-values, 2010.

2. G. Bracha and D. Ungar. Mirrors: design principles for meta-level facilities of
object-oriented programming languages. In OOPSLA, pages 331–344, 2004.

3. R. Cartwright, P.-L. Curien, and M. Felleisen. Fully abstract semantics for observ-
ably sequential languages. Inf. Comput., 111(2):297–401, 1994.

4. T. V. Cutsem and M. S. Miller. Proxies: Design principles for robust object-oriented
intercession APIs. In Dynamic Languages Symposium, 2010.

5. L. M. de Moura and N. Bjørner. Z3: An efficient smt solver. In TACAS, pages
337–340, 2008.

6. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program
checking. J. ACM, 52(3):365–473, 2005.

7. R. B. Findler and M. Blume. Contracts as pairs of projections. In International
Symposium on Functional and Logic Programming, pages 226–241, 2006.

8. R. B. Findler and M. Felleisen. Contracts for higher-order functions. In Proceedings
of the International Conference on Functional Programming, pages 48–59, 2002.

20

9. C. Flanagan. Hybrid type checking. In Symposium on Principles of Programming
Languages, pages 245 – 256, 2006.

10. M. Flatt and PLT. Reference: Racket. Technical Report PLT-TR2010-1, PLT Inc.,
June 7, 2010. http://racket-lang.org/tr1/.

11. A. Gal, B. Eich, M. Shaver, D. Anderson, B. Kaplan, G. Hoare, D. Mandelin,
B. Zbarsky, J. Orendorff, M. Bebenita, M. Chang, M. Franz, E. Smith, R. Reit-
maier, and M. Haghighat. Trace-based just-in-time type specialization for dynamic
languages. In PLDI, 2009.

12. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-
Wesley, Boston, MA, 1995.

13. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random test-
ing. In Conference on Programming Language Design and Implementation, pages
213–223, 2005.

14. A. Goldberg and D. Robson. Smalltalk-80: the language and its implementation.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1983.

15. K. E. Gray, R. B. Findler, and M. Flatt. Fine-grained interoperability through
mirrors and contracts. In OOPSLA, pages 231–245, 2005.

16. B. Hayes. Ephemerons: a new finalization mechanism. In OOPSLA ’97: Proceedings
of the 12th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 176–183, New York, NY, USA, 1997. ACM.

17. A. Kennedy. Relational parametricity and units of measure. In Principles of
Programming Languages, pages 442–455, 1997.

18. G. Kiczales. Aspect-oriented programming. ACM Comput. Surv., page 154, 1996.
19. G. Kiczales, J. D. Rivieres, and D. G. Bobrow. The Art of the Metaobject Protocol.

The MIT Press, July 1991.
20. J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–

394, 1976.
21. L. A. Meyerovich, A. P. Felt, and M. S. Miller. Object views: Fine-grained sharing

in browsers. In Proceedings of the WWW 2010, Raleigh NC, USA, 2010.
22. M. S. Miller. Robust Composition: Towards a Unified Approach to Access Con-

trol and Concurrency Control. PhD thesis, Johns Hopkins University, Baltimore,
Maryland, USA, May 2006.

23. M. S. Miller and T. V. Cutsem. Catch-all proxies. http://

wiki.ecmascript.org/doku.php?id=harmony:proxies.
24. M. S. Miller, E. D. Tribble, and J. Shapiro. Concurrency among strangers: Pro-

gramming in E as plan coordination. In In Trustworthy Global Computing, Inter-
national Symposium, TGC 2005, pages 195–229. Springer, 2005.

25. S. Mostinckx, T. V. Cutsem, S. Timbermont, E. G. Boix, É. Tanter, and W. D.
Meuter. Mirror-based reflection in AmbientTalk. Softw., Pract. Exper., 39(7):661–
699, 2009.

26. Mozilla labs: Zaphod addon. http://mozillalabs.com/zaphod, accessed October
2010.

27. Paul Hudak and Simon Peyton-Jones and Philip Wadler (eds.). Report on the
programming language Haskell: A non-strict, purely functional language version
1.2. SIGPLAN Notices, 27(5), 1992.

28. J. Siek and W. Taha. Gradual typing for objects. In European Conference on
Object Oriented Programming, pages 2–27, 2007.

29. J. G. Siek and P. Wadler. Threesomes, with and without blame. In POPL, pages
365–376, 2010.

30. Wikipedia: Narcissus JavaScript engine. http://en.wikipedia.org/wiki/

Narcissus %28JavaScript engine%29, accessed October 2010.

21

Figure 13: Revised Identity Proxy

1 λx. proxy {
2 cal l : λy. x y
3 getr : λn. x[n]
4 geti : λr . r [x]
5 setr : λn,y. x[n] := y
6 seti : λr ,y. r [x] := y
7 unary: λo. { "-" : λx. −x
8 "!" : λx. !x // negation
9 isBool : λx. isBool x

10 // etc for a l l unary ops
11 }[o] x
12 l e f t : λo, r . { "+" : λx,y. x+y
13 "=" : λx,y. x=y
14 // etc for a l l binary ops
15 }[o] x r
16 right : λo, l . { "+" : λx,y. x+y
17 "=" : λx,y. x=y
18 // etc for a l l binary ops
19 }[o] l x
20 test : λ . x
21 }

A Correctness Proof for the Identity Proxy

In this appendix, we provide an illustrative proof that the identity proxy is
semantically transparent. Correctness proofs for the other language extensions
are similar but somewhat more involved.

To allow a more direct and cleaner proof, we rewrite the identity proxy as
shown in figure 13, and use

HRv = {call : λy. v y, . . .}

to denote the handler record from figure 13 with x replaced by v.
As defined earlier, a state S = H, e is a pair of a heap and an expression. We

say a closed expression e converges, written e↓, if ∅, e→∗ S for some irreducible
state S. Two expressions are contextually equivalent, written e1 ∼= e2, if for all
contexts C,

C[e1]↓⇔ C[e2]↓

To show that a value v and its corresponding proxy HRv are contextually
equivalently, we define a simulation relation that relates the evaluations of C[v]
and C[HRv]. The evaluation of C[HRv] will execute additional proxy code that
will allocate additional records in the heap. We refer to these proxy-allocated
records as meta-records, and use G to refer to the meta portion of the heap. We
define the simulation relation ∼ on evaluation states as:

(H1, e1) ∼ (H2 +G, e2) iff e1 ∼G e2 and H1 ∼G H2

22

Figure 14: Definition of ∼G

e ∼G e
[identity]

G(a) = HRv′ v ∼G v′

v ∼G proxy a
[Proxy]

e ∼G e′

λx. e ∼G λx. e′ [Abstraction]

e1 ∼G e′
1 e1 ∼G e′

2

e1 e2 ∼G e′
1 e

′
2

[Application]

e1 ∼G e′
1 e2 ∼G e′

2 e3 ∼G e′
3

if e1 e2 e3 ∼G if e′
1 e

′
2 e

′
3

[Conditional]

e ∼G e′

uop e ∼G uop e′ [Unary]

e1 ∼G e′
1 e2 ∼G e′

2

e1 bop e2 ∼G e′
1 bop e′

2

[Binary]

ef ∼G e′
f ev ∼G e′

v

{ ef : ev } ∼G { e′
f : e′

v }
[Record Creation]

e1 ∼G e′
1 e2 ∼G e′

2

e1[e2] ∼G e′
1[e′

2]
[Record Lookup]

e1 ∼G e′
1 e2 ∼G e′

2 e3 ∼G e′
3

e1[e2] := e3 ∼G e′
1[e′

2] := e′
3

[Record Update]

e ∼G e′

proxy e ∼G proxy e′ [Proxy Creation]

e ∼G e′

isProxy e ∼G isProxy e′ [Proxy Predicate]

where figure 14 defines the simulation relation e1 ∼G e2 on expressions with
respect to a meta-heap G, and we define H1 ∼G H2 to hold if:

dom(H1) = dom(H2)
and ∀ a ∈ dom(H1). dom(H1(a)) = dom(H2(a))
and ∀ w ∈ dom(H1(a)). H1(a)(w) ∼G H2(a)(w)

The following lemma shows that this relation ∼ is indeed a simulation rela-
tion.

23

Lemma 1. Suppose S1 ∼ S2 and S1 → S′1. Then there exists S′2 st . S2 →+ S′2
and S′1 ∼ S′2.

Proof: We have that

S1 = H1, e1 ∼ H2 +G, e2 = S2

where H1 ∼G H2 and e1 ∼G e2. The proof proceeds by induction on the deriva-
tion of e1 ∼G e2 and by a second induction and case analysis on the derivation
of S1 → S′1.

– [call] In this case

S1 = H1, (λx. e) v → H1, e[x := v] = S′1

Also, S2 = f v′ where λx. e ∼G f and v ∼G v′. This case proceeds by subcase
analysis on λx. e ∼G f .
• For f = (λx. e′) where e ∼G e′ we have:

S2 = H2 +G, (λx. e′) v′

→ H2 +G, e′[x := v′] [Call]
= S′2

Thus we have S′1 ∼ S′2.
• For f = (proxy a) where G(a) = HRv′′ and (λx. e) ∼G v′′ we have:

S2 = H2 +G, (proxy a) v′

→ H2 +G, a.call v′ [CallProxy]
→ H2 +G, (λy. v′′ y) v′ [Call]
→ H2 +G, v′′ v′ [Call]
= S′′2

Then (λx. e) v ∼G v′′ v′ by a smaller derivation, so by induction ∃ S′2 st . S′′2 →+

S′2 and S′1 ∼ S′2.
– [Alloc] In this case

S1 = H1, { s : v } → H1[a := { s : v }], a = S′1

where a 6∈ dom(H1). Since e2 has a single case we have:

S2 = H2 +G, { s′ : v′ }
→ H2[a := { s′ : v′ }] +G, a [Alloc]
= S′2

Since we have H1[a := { a : v }] ∼G H2[a := { s′ : v′ }] we also have S′1 ∼ S′2.
– [Get] In this case

S1 = H1, a[i] → H1, v = S′1

where v = H1(a)(i). This case proceeds by subcase analysis on a[i] ∼G e2.

24

• For e2 = a[i] we have:

S2 = H2 +G, a[i]
→ H2 +G, v′ [Get]
= S′2

where v = H1(a)(i) ∼G H2(a)(r) = v′.
• For e2 = (proxy b)[v′] where G(b) = HRv and a ∼G v and i ∼G v′ we

have:
S2 = H2 +G, (proxy b)[v′]
→ H2 +G, b.getr v′ [GetrProxy]
→ H2 +G, (λn. v[n]) v′ [Getr]
→ H2 +G, v[v′] [Call]
= S′′2

By induction ∃ S′2 st . S′′2 →+ S′2 and S′1 ∼ S′2.
• For e2 = a[(proxy b)] where G(b) = HRv and i ∼G v we have:

S2 = H2 +G, a[(proxy b)]
→ H2 +G, b.geti a [GetiProxy]
→ H2 +G, (λq. q[v]) a [Geti]
→ H2 +G, a[v] [Call]
= S′′2

We have S1 ∼ S′′2 by a smaller derivation, so by induction ∃ S′2 st . S′′2 →+

S′2 and S′1 ∼ S′2.
– [set] In this case

S1 = H1, a[i] = v → H ′1, v = S′1

where H ′1 = H1[a := H1(a)[i := v]]. We proceed by subcase analysis on
a[i] = v ∼G e2.
• For e2 = a[i] = v′ where v ∼G v′ we have:

S2 = H2 +G, a[i] = v′

→ H ′2 +G, v′ [Set]
= S′2

where H ′2 = H2[a := H2(a)[i := v′]]. Since we know v ∼G v′ we have
H ′1 ∼G H ′2 and S′1 ∼ S′2.

• For e2 = (proxy b)[w′] = v′ where v ∼G v′, G(b) = HRw, a ∼G w and
i ∼G w′ we have:

S2 = H2 +G, (proxy b)[w′] = v′

→ H2 +G, (b.setr w′ v′); v′ [SetrProxy]
→ H2 +G, (λn, y. w[n] = y) w′ v′; v′ [Setr]
→ H2 +G,w[w′] = v′; v′ [Call]
= S′′2

where H ′2 = H2[a := H2(a)[w := v′]]. By induction ∃ S′2 st . S′′2 →+ S′2
and S′1 ∼ S′2.

25

• For e2 = a[(proxy b)] = v′ where G(b) = HRw, v ∼G v′ and i ∼G w we
have:

S2 = H2 +G, a[proxy b] = v′

→ H2 +G, (b.seti a v′); v′ [SetiProxy]
→ H2 +G, (λr, y. r[w] = y) a v′; v′ [Seti]
→ H2 +G, a[w] := v′; v′ [Call]
= S′′2

where H ′2 = H2[a := H2(a)[w := v′]]. We have S1 ∼ S′′2 by a smaller
derivation, so by induction ∃ S′2 st . S′′2 →+ S′2 and S′1 ∼ S′2.

– [Unary] In this case

S1 = H1, uop r → H1, δ(uop, r) = S′1

This case proceeds by subcase analysis on uop r ∼G e2.
• For e2 = uop r′ where r ∼G r′ we have:

S2 = H2 +G, uop r′

→ H2 +G, δ(uop, r′) [UnaryOp]
= S′2

Thus we have S′1 ∼ S′2.
• For e2 = uop (proxy a) where G(a) = HRv, r ∼g v we have:

S2 = H2 +G, uop (proxy a)
→ H2 +G, a.unary ”uop” [UnaryProxy]
→ H2 +G, uop v [unary]
= S′′2

By induction ∃ S′2 st . S′′2 →+ S′2 and S′1 ∼ S′2.
– [Binary] In this case

S1 = H1, r1 bop r2 → H1, δ(bop, r1, r2) = S′1

This case proceeds by subcase analysis on r1 bop r2 ∼G e2.
• For e2 = r′1 bop r′2 where r1 ∼G r′1, r2 ∼G r′2 we have:

S2 = H2 +G, r′1 bop r′2
→ H2 +G, δ(bop, r′1, r

′
2) [BinaryOp]

= S′2

Thus we have S′1 ∼ S′2.
• For e2 = (proxy a) bopr′2 where G(a) = HRv, r1 ∼G v, r2 ∼G r′2 we have:

S2 = H2 +G, (proxy a) bop r′2
→ H2 +G, a.left r′2 [LeftProxy]
→ H2 +G, v bop r′2 [Left]
= S′′2

By induction ∃ S′2 st . S′′2 →+ S′2 and S′1 ∼ S′2.

26

• For e2 = r′1 bop (proxy a) where G(a) = HRv, r1 ∼G r′1, r2 ∼G v we have:

S2 = H2 +G, r′1 bop (proxy a)
→ H2 +G, a.right r′1 [LeftProxy]
→ H2 +G, r′1 bop v [Right]
= S′′2

By induction ∃ S′2 st . S′′2 →+ S′2 and S′1 ∼ S′2.
– [IfTrue] In this case

S1 = H1, if r e1 e2 → e1 = S′1

where r = true This case proceeds by subcase analysis on if r e1 e2 ∼G e3.
• For e3 = if r e′1 e

′
2 where e1 ∼G e′1, e2 ∼G e′2 we have:

S2 = H2 +G, if r e′1 e
′
2

→ H2 +G, e′1 [IfTrue]
= S′2

Thus we have S′1 ∼ S′2.
• For e3 = if (proxy a) e′1 e

′
2 where G(a) = HRv, r ∼G v, e1 ∼G e′1, e2 ∼G

e′2 we have:

S2 = H2 +G, if (proxy a) e′1 e
′
2

→ H2 +G, if (a.test()) e′1 e
′
2 [TestProxy]

→ H2 +G, if v e′1 e
′
2 [Test]

= S′′2

By induction ∃ S′2 st . S′′2 →+ S′2 and S′1 ∼ S′2.
– [IfFalse] In this case

S1 = H1, if false e1 e2 → e2 = S′1

This case proceeds by subcase analysis on if false e1 e2 ∼G e3.
• For e3 = if false e′1 e

′
2 where e1 ∼G e′1, e2 ∼G e′2 we have:

S2 = H2 +G, if false e′1 e
′
2

→ H2 +G, e′2 [IfFalse]
= S′2

Thus we have S′1 ∼ S′2.
• For e3 = if (proxy a) e′1 e′2 where G(a) = HRv, false ∼G v, e1 ∼G
e′1, e2 ∼G e′2 we have:

S2 = H2 +G, if (proxy a) e′1 e
′
2

→ H2 +G, if (a.test()) e′1 e
′
2 [TestProxy]

→ H2 +G, if v e′1 e
′
2 [Test]

= S′′2

By induction ∃ S′2 st . S′′2 →+ S′2 and S′1 ∼ S′2.

27

– [IsProxy] In this case

S1 = H1, isProxy (proxy a)→ true = S′1

Since there are no possible subcases we have S2 = H2+G, isProxy (proxy a)→
true = S′2 and thus S′1 ∼ S′2 is shown directly.

– [IsNotProxy] Similar reasoning as in the [IsProxy] case.
– [context] In this case we have

S1 = H1, E1[e1]→ H ′1, E1[e′1] = S′1

where H1, e1 → H ′1, e
′
1. In order to have S1 ∼ S2 we must have S2 = H2 +

G, e3 whereH1 ∼G H2 and E1[e1] ∼G e3. So it must be that ∃E2, e2 st . E2[e2] =
e3 and E1 ∼G E2, e1 ∼G e2.
Since we have H1, e1 ∼ H2 + G, e2 and H1, e1 → H ′1, e

′
1 we can say by

induction ∃H ′2, e′2, G′ st . H2 +G, e2 → H ′2,+G
′, e′2 with H ′1, e

′
1 ∼ H ′2 +G′, e′2.

So by the [Context] rule we have H2 +G,E2[e2]→ H ′2 +G′, E2[e′2].

We next show that ∼-related states are equi-convergent.

Lemma 2. If S1 ∼ S2 then S1 ↓ ⇔ S2 ↓

Proof: Follows from the previous lemma.

Finally, we show that any value v is contextually equivalent to the proxy handler
for that value.

Lemma 3. ∀v. v ∼= (HRv)

Proof: We note that for any context C,

∅, C[v] ∼ ∅, C[HRv]

The proof then follows from the previous lemma.

