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Abstract17

We fit a bioenergetics model based on a balance between mass and temperature-dependent18

anabolic and catabolic factors to growth data for juvenile steelhead trout (Oncorhynchus19

mykiss) from California. We grew fish from a small coastal stream (Scott Creek) conser-20

vation hatchery and a Central Valley (Coleman National Fish Hatchery on Battle Creek,21

Sacramento River) production hatchery in a common laboratory setting. Our growth22

model did not characterize the trajectories of all fish, likely as a consequence of enhanced23

growth via cannibalism or inhibited growth due to risk averse behavior such as avoidance of24

dominant individuals. For most individuals, however, it provides a close match and allows25

us to provide an excellent description of individual and stock-specific variation in specific26

rates of anabolism and catabolism. We use likelihood methods to conclude that there is a27

strong difference in the mean rates based on origin of the stock, with Central Valley fish28

having a higher maximal consumption ability but both strains having similar metabolic29

needs after standardizing for fish size and temperature. This suggests genetic differences30

between strains base on local adaptation and/or differing degrees of domestication). As31

a result, environmental change may affect the growth (and thus survival, life history, and32

demography) of the strains in different ways.33

Introduction34

Growth of juvenile salmonids has many important consequences for individual fitness and35

the resilience of populations to disturbance (Quinn 2005, Mangel 2006). In general, faster36

growth and larger size typically lead to higher survival in freshwater (but see Carlson et al.37

2008) and larger size at smolting leads to higher marine survival (McGurk 1996). For adult38

females larger size leads to higher fecundity (Allen and Sanger 1960). In addition, for highly39

plastic species such as the steelhead trout, growth rates may affect the life history pathways40

followed by individual fish (Satterthwaite et al. 2010), with implications for life history41
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diversity and overall population dynamics. Thus, understanding and predicting juvenile42

growth rates is an important tool in preserving the life history diversity and population43

health of steelhead trout in the face of environmental change.44

To date, most approaches to modeling the growth of fish have followed one of two45

strategies. First, many successful models use the von Bertalanffy growth equation (VBGE,46

von Bertalanffy 1938, Mangel 2006) or simple elaborations thereof (Fournier et al. 1998,47

Prajneshu and Venugopalan 1999). These models describe growth using relatively few48

parameters, which facilitates statistically rigorous means of fitting these models to data49

(Wang and Ellis 2005). However, there is little room to incorporate environmental effects50

into simple von Bertalanffy type models (except through seasonally dependent asymptotic51

size and growth rate), despite clear empirical evidence for the importance of environmental52

factors such as temperature (Wurtsbaugh and Davis 1977, Myrick and Cech 2000), food53

supply (Wurtsbaugh and Davis 1977), hydrodynamic and flow effects (Fausch 1984), and54

individual variation (McCarthy et al. 1992, Alvarez and Nicieza 2005). Furthermore, a55

statistically rigorous fit of a von Bertalanaffy growth model to a given set of environmental56

conditions does not guarantee any degree of predictive power if environmental conditions57

change. Finally, the VBGE model is inherently individual-based but the parameters are58

difficult to interpret when applied to population means (Siegfried and Sanso 2006).59

Second, parameter-rich bioenergetic models have been developed to allow the incorpo-60

ration of a wealth of environmental effects and information (see Hanson et al. 1997 for a61

review). Such models have been used to predict responses to environmental changes on62

scales ranging from individuals to food webs and ecosystems (Ney 1993). Because these63

models are parameter rich, they are subject to bias when fitting and are difficult to present64

in a way that fully accounts for uncertainty across all parameters, and often require in-65

advisable cross-species borrowing of parameters (Hilborn and Mangel 1997, Trudel et al.66

2004). In addition, despite their detail in accounting for various metabolic pathways, most67

bioenergetic models do a poor job coupling consumption and activity costs (Andersen and68
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Riis-Vestergaard 2004, Bajer 2004). Dynamic energy budget models (Kooijman 1986) may69

address this problem, but require additional hidden state variables that can never be com-70

pared against empirical observations, and thus require ad hoc choices of key parameters.71

The goal of this paper is to use modeling to gain insights into the growth of age 0 O.72

mykiss. We use a modeling framework flexible enough to be extended to describe growth73

in the field while incorporating environmental effects on growth, mediated by changes in74

temperature and the difficulty of acquiring food. Our goal is to use a data-rich lab study75

to infer key parameters of an energy-balance model that strikes a compromise between the76

simplicity of VBGE models and the complexity of bioenergetic models. The model may be77

applied in the field for growth prediction, and therefore management.78

An additional contribution of this work is to help define an ecologically significant dif-79

ference between O. mykiss from different Distinct Population Segments (DPSs) or Evolu-80

tionarily Significant Units (ESUs), terms which have both been applied to distinct lineages81

worthy of separate consideration and protection under endangered species legislation.82

According to Waples (1991), for purposes of the Endangered Species Act (ESA), a83

“species” is defined to include “any distinct population segment of any species of vertebrate84

fish or wildlife which interbreeds when mature.” Federal agencies charged with carrying out85

the provisions of the ESA have struggled for over a decade to develop a consistent approach86

for interpreting the term “distinct population segment.” Of the 15 evolutionarily significant87

units (ESUs) of steelhead listed by NOAA Fisheries, 7 occur throughout California and are88

currently listed or candidates for listing under the Endangered Species Act (Busby et al.89

1996). These include: Klamath Mountain Province; Northern California; Central Califor-90

nia Coast (where our CCC fish were sourced); South-Central California Coast, Southern91

California; and Central Valley (where our NCCV fish were sourced).92

The genetic distinctiveness of CCC fish has already been demonstrated (Pearse et al.93

2009), but an important consideration in how and to what extent the different DPSs94

should be managed as distinct units is whether they differ in ecologically relevant traits.95
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As mentioned above, size and growth rate have numerous impacts on survival, demography,96

and life history, thus an understanding of differential growth in fish from different DPSs97

provides management insights. Common garden experiments (Beakes et al. in review) can98

show differential growth in a common environment, suggesting genetic differences in the99

capacity for growth, but a more mechanistic understanding of how growth responds to the100

environment is necessary for managing these DPSs in the face of expected environmental101

change (Lindley et al. 2007).102

Lindley et al. (2007) state that regional-scale climate models for California are in broad103

agreement that temperatures in the future will warm significantly, total precipitation may104

decline, and snowfall will decline significantly. Melack et al. (1997) (as cited in Lindley105

et al. 2007) states that predicting the response of salmon to climate warming requires106

examination of the responses of all life history stages to the cumulative effects of likely107

environmental changes in the lakes, rivers and oceans inhabited by the fish. These fish108

may face a radically altered environment in the future, for example by 2100, mean summer109

temperatures in the Central Valley region may increase by 2-8◦C, precipitation will likely110

shift to more rain and less snow, with significant declines in total precipitation possible,111

and hydrographs will likely change, especially in the southern Sierra Nevada mountains112

(Lindely et al. 2007). Warming may increase the activity and metabolic demand of preda-113

tors, reducing the survival of juvenile salmonids (Vigg and Burley, 1991). For example,114

Peterson and Kitchell (2001) showed that on the Columbia River, pikeminnow predation115

on juvenile salmon during the warmest year was 96% higher than during the coldest. Ma-116

rine and Cech (2004) demonstrate that as juvenile salmonids are put under temperature117

stress, they are more susceptible to predation. Reese and Harvey (2002) demonstrate that118

temperature can reduce competitive advantage of salmonids with invasive species. Jensen119

(1990) found that variable temperature seems to increase feeding and growth in brown120

trout over stable temperatures. However temperature may not be the only important121

consideration. For example, Sogard et al. (2009) hypothesized that summer growth of122
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O. mykiss in Central Coast streams is constrained more by consumption rates than by123

temperature, highlighting the importance of a modeling framework that can incorporate124

multiple factors simultaneously.125

Because our model is a compromise among curve-fitting methods and detailed mass126

balance approaches; we call it a Compromise BioEnergetics Model (CBEM). We briefly127

describe the laboratory experiments and show how the CBEM, which is developed for field128

work, applies in the laboratory. We explain the numerical method that we use to predict129

mass from the CBEM and how we estimate the parameters in the model. We treat the130

parameters as data, characterized by stock of origin, and explain the likelihood methods we131

use to analyze the data. By treating the parameters of the CBEM as data, we conclude that132

the growth experiments provide overwhelming evidence for different rates of consumption133

according to stock of origin, although there is also considerable within-stock variation.134

Methods135

We combine features of VBGE models, bioenergetic models, and dynamic energy budgets.136

By modeling the effects of body size and temperature on anabolism using well established137

results from the literature, we incorporate some detailed insights from bioenergetic models138

into a modeling framework that, like VBGE models, has only a few parameters that must139

be fitted. Similar to dynamic energy budget models, but without resorting to hidden140

state variables, we incorporate an interaction between activity levels and consumption141

using fundamental insights from behavioral ecology (Clark and Mangel 2000, Mangel and142

Munch 2005).143

To apply one modeling framework to both field and lab systems, we make a key as-144

sumption about the different contexts of modeling growth in the laboratory versus in the145

field. In the lab, food availability is finite, depletable, and a known variable. By contrast,146

in the field, measuring the amount of food available even in a single location is a Herculean147

task given tremendous short and long term variability (e.g., Rand et al. 1993). Further-148
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more, from the perspective of an individual fish, even if it is territorial, the amount of food149

available in a given watershed is essentially infinite, with the real limit on consumption150

being set by the costs of acquiring food, which include energy spent traveling and search-151

ing, swimming costs of maintaining station in flow (Fausch 1984), conflict with inter- and152

intraspecifc competitors (Li and Brocksen 1977), and predation risk (Johnsson et al. 2004).153

Overview of the Model154

We model the rate of change in mass (W (t)) at time t in days as a balance of anabolic155

factors (first term on the right hand side below) and catabolic factors (second term on the156

right hand side)157

dW (t)
dt

= fcφ(T (t))W (t)0.86 a(t)
a(t) + κ(t)

− (1 + a(t))αe0.071T (t)W (t) (1)

The terms in Equation 1 can be interpreted as follows: there is some maximum amount158

of energy, fcφ(T (t))W (t)0.86, a fish can potentially take in during a day, depending on its159

size and temperature on that day, T (t). How close the fish comes to the maximal intake160

depends on its activity a compared to how difficult it is to acquire food κ(t). The basic161

catabolic costs of the fish αe0.071T (t)W (t) also depend on its size and temperature. When162

the anabolic term exceeds the catabolic term, net growth occurs and in the reverse situation163

the fish loses mass. The combination of either high or low values of c and α have different164

implications. When α is high and c is low, we expect the fish to have very slow growth,165

and to have very little response to changes in food availability. If α and c are both high,166

growth is poor when food scare, but responds well to an abundant supply of food. For a167

low α with a low c growth is slow, but not as slow as for high α, and fish respond poorly168

to increased food. For low α and high c growth is fast and responds well to increased food169

availability.170

We assume that each day the fish maximizes its net rate of mass gain by optimizing171

the right hand side of equation 1 with respect to a. This is possible since increases in a172
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increase both consumption and total catabolic costs but at different rates (Mangel and173

Munch 2005).174

The term a/(a + κ) is similar to the parameter P (fraction of maximum consumption175

achieved) in bioenergetic models (e.g. Railsback and Rose 1999), but a affects catabolic176

costs as well. The anabolic term describes the relative energy density of food versus fish177

tissue (f , discounted for conversion efficiency), the daily maximum consumption (weight of178

food) c of a one gram fish under optimal temperature conditions, the allometric scaling of179

consumption with fish weight W (t)0.86, and a function φ(T (t)) describing how maximum180

consumption scales with temperature. The basal catabolic term depends on a measure of181

weight-specific catabolic costs α and the effect of temperature (e0.071T (t), Brett and Groves182

1979). Both c and α are allowed to vary across individuals.183

We can apply this same modeling framework to the lab if we add a variable q(t) to denote184

the total amount of food available on day t, and assume the cost of food acquisition in the185

laboratory is small. In this case, κ approaches 0, a will be small, and a
a+κ approximately186

1. Growth in the laboratory can then be modeled as187

dW (t)
dt

= f min{q(t), cφ(T (t))W (t)0.86} − αe0.071T (t)W (t) (2)

The first term on the right hand side indicates that a fish will eat the lesser of either188

all the food available to it, or the maximal amount it can consume based on its size and189

temperature. This model can readily be applied to the growth of fish in a lab environment190

where temperature and food supply are known, once we estimate the share of the total191

food is available to each individual fish.192

Overview of the Laboratory Growth experiments193

We measured growth in juveniles from two stocks of California steelhead (Beakes et al. in194

review). The first stock comes from a conservation hatchery (http://www.mbstp.org/index.html)195

on a small coastal stream, Scott Creek; we denote this stock as Central California Coast196
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(CCC). The second stock comes from a production hatchery, Coleman National Fish Hatch-197

ery on Battle Creek, on the Sacramento River (http://www.fws.gov/NCCV/); we denote198

this stock as Northern California Central Valley (NCCV). Our goal is to obtain estimates199

of the mean and variance in c and α for fish from these two stocks by modeling growth200

under common, controlled conditions. This will allow further use of our model to describe201

growth in the field, with only κ(t) needing to be fitted from field data (Satterthwaite et202

al 2010). Consequently, we can develop models explicitly linking κ(t) to environmental203

factors such as flow and drift density, while also allowing projections of future fish growth204

under changing temperature or food availability. In the process of fitting this model to our205

lab data, we can also investigate evidence for local adaptation or effects of domestication206

when comparing fish from two stocks of origin.207

Results of our experiments are fully described in Beakes et al. (2009) and summarized208

here. In 2006, we transferred NCCV steelhead from the hatchery to the laboratory during209

the second week of June (mean FL 4.31cm ± .17cm, where ± represent plus or minus 1210

standard deviation), and CCC steelhead in the third week of May (mean FL 3.95cm ±211

.05cm). In 2007, we received both NCCV (mean FL 3.62cm ± 0.14cm) and CCC (mean212

FL 4.36cm ± 0.15cm) steelhead in the second week of May. We randomly assigned fish to213

cylindrical tanks (490 L) with 20 fish per tank with eight tanks of each stock. A continual214

flow of oxygenated fresh water supplied comparable water quality between tanks. Pieces215

of PVC pipe within each tank provided hiding habitat. Fish received ad libitum rations216

May and June to facilitate acclimation to the aquarium system.217

Our objective was to provide fish with a diet supporting moderate but restricted growth218

except for an eight week period in which ad libitum ration was available. In July, all tanks219

were placed on moderate rations. The sixteen tanks were assigned to four treatment groups220

with two replicate tanks per treatment. During the treatment period, fish received eight221

continuous weeks of ad libitum rations. The treatment periods were August 1 - September222

26, September 27 - November 22, November 23 - January 18, and January 19 - March223
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16. Outside of treatment periods we maintained fish on moderate rations distributed four224

days a week and supplemented with Spirulina algae three days a week (See - Beakes et225

al in review for more detailed description of how ration levels were defined and the ration226

schedule). Spirulina did not add growth potential to low ration periods but was readily227

consumed by fish and was used to maintain relative gut fullness and limit hunger based228

aggression.229

In 2006, we used relatively warm temperatures; in 2007 we chilled the water temper-230

atures. The temperature changed over the course of the experiment to match natural231

seasonal cycles. Photoperiod matched that at Santa Cruz, CA, USA. Gradual transitions232

in light level mimicked dawn and dusk patterns. We initially marked all fish with elas-233

tomer tags; at 6.5 cm all fish were injected with Passive Integrate Transponder (PIT) tags234

to distingush individuals. We checked tanks daily for mortalities and siphoned to remove235

feces and other waste material. We measured weights approximately every 4 weeks for a236

ten month period. In December the maximum number of fish/tank was reduced to fifteen237

in order to maintain higher water quality. Final size measurements used for our growth238

modeling included the period from June to March of each year. Excess fish were selected239

at random and euthanized.240

Energy Balance in the Lab Experiments241

We characterize the growth experiment in the laboratory by modeling the mass Wi(t) of242

the ith fish in a tank as243

dWi(t)
dt

= f min{qi(t), ciφ(T (t))Wi(t)0.86}︸ ︷︷ ︸
Energy Intake

−αie0.071T (t)Wi(t)︸ ︷︷ ︸
Catabolic Cost

(3)
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where αi and ci are the catabolic and anabolic growth parameters for the ith fish, and244

qi(t) = Q(t)︸︷︷︸
food available

Wi(t)∑NI
j=1Wj(t)︸ ︷︷ ︸

portion for ith fish

(4)

is the amount of food available to the ith fish. Behavioral interactions in salmonids, partic-245

ularly in lab settings, typically result in dominance hierarchies that have large influences246

in individual feeding success (e.g., Metcalfe 1986, Harwood et al. 2003), but we do not247

model these factors here.248

Equation (??) is similar to equation (??) but subscripted with i, for the ith fish in249

a tank and coupled with equation (??) to take into account the apportioning schemes.250

Q(t) is the total food put into the tank at time t, and NI is the number of fish in the251

tank. We assume that αi, the catabolic cost parameter for fish i and, ci, the consumption252

parameter for fish i, are constant throughout the fish’s life in the tank and independent253

of behavior (e.g. aggression) and temperature (since that the effects of temperature on254

both consumption and catabolism are modeled explicitly). Variation among fish in these255

parameters leads to variability in fish growth and it is the variation in these parameters256

that we wish to capture.257

It is not possible to measure αi and ci directly; we infer them from measuring fish258

masses Wi(t) over time. With the directly measured growth histories of each individual,259

we can calculate the growth parameters αi and ci for all fish in a tank. In particular, we260

find the αi and ci that minimize a distance measure (defined below) between the observed261

mass of the fish and the solution of equations (??, ??). Our approach is essentially a262

non-linear least squares method for parameter estimation (Mangel 2006).263

Over the course of our experiments, the observed mass of a single fish may vary between264

2 to 3 orders of magnitude. Thus we choose the distance function to be a sum of squares265
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of relative errors (with the subscript indexing fish suppressed)266

d =
∑
t

((experimental mass)t − (predicted mass)t)2

(experimental mass)2t
. (5)

We use relative error to reduce the bias at large fish weights, and the summation is over267

all measured times. Although occasionally an individual trajectory has missing mass data,268

Q(t) and T (t) are known for all days269

Fitting Data270

To minimize the number of parameters to be estimated, we took several parameters from271

the literature. We modeled φ(T (t)), the temperature-dependence of maximal daily con-272

sumption, using the algorithm first described by Thornton and Lessem (1978), and param-273

eterized for California steelhead by Railsback and Rose (1999). This parameterization is274

more suitable than those used by Rand et al. (1993) or Sullivan et al. (2000) because it275

allows for the most consumption at higher temperatures, consistent with observed rapid276

growth in warm coastal lagoons (Hayes et al. 2008) and Central Valley rivers (Satterth-277

waite et al. 2009b). We assume that maximal consumption scales as W 0.86 (Moses et al.278

2008, Jobling 1994, p. 100). We assume that catabolism scales linearly with weight (Es-279

sington et al. 2001) and with e0.071T (t) based on Brett and Groves (1979). We calculated280

f , the relative density of food versus fish tissue, as 2.148 based on nutritional information281

provided on the Silver Cup feed used in lab experiments and energy densities of fish tissues282

reported by Hartman and Brandt (1995), assuming that about 30% of ingested energy is283

unavailable for growth or respiration (Brett and Groves 1979).284

To solve equations (??, ??) we use a 4th order Runge-Kutta scheme (Press et al 2007)285

with a daily time step, and interpolate W (t) with a cubic spline for days on which it286

was not measured. We solve equation (??) over a grid of parameter values αgrid =287

[α1, . . . , αm, . . . , αMα ] and cgrid = [c1, . . . , cn, . . . , cNc ] and obtain the values (α∗m, c
∗
n) that288
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minimize the distance from equation (5).289

We denote a solution of equation (??) with (αm, cn) by W (αm,cn)
i (t) and the measured290

values of fish masses be W e
i (t). The distance between W e

i (t), and W
(αm,cn)
i (t) is the sum291

of relative deviations between the observed and predicted growth at the observation times292

d(αm, cn, i) =
∑

τ=observed days

(W (αm,cn)
i (τ)−W e

i (τ))2

(W e
i (τ))2

(6)

Once we have solved equations (??,??) with (αm, cn) for all (m,n), 1 ≤ m ≤Mα, 1 ≤ n ≤293

Nc for the ith fish, we then find the pair (α∗mi , c
∗
ni) such that,294

d(i) = d(α∗mi , c
∗
ni , i) = min

αm,cn
{d(αm, cn, i)} (7)

We reserve i to indicate fish, while m and n indicate parameter values in the grid. For295

each fish, set a minimizing pair of parameter values αi = α∗mi and ci = c∗ni .296

At the conclusion of this process, we have estimates αi, ci for each fish. To estimate297

the quality of the fit for fish i we compute the set of relative errors,298

RE(i) =


∣∣∣∣∣∣(W

(α∗mi ,c
∗
ni

)

i (τ)−W e
i (τ))

(W e
i (τ))

∣∣∣∣∣∣
∣∣∣∣∣τ = observed days

 (8)

and choose the maximum of these, which we denote by MRE(i). The maximum relative299

error is used to compute the acceptability of a trajectory for further analysis. To summarize,300

we use the following procedure:301

1. We interpolate the mass data for all time intervals to estimate qi(t).302

2. We compute the mass trajectory for every fish based on its starting size and these303

estimates of qi(t).304

3. We compute the relative distance for every day for every fish.305

4. We compute the maximum relative distance for every fish.306
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5. We consider that a trajectory is acceptable for further analysis if it has positive α∗mi307

and c∗ni , more than 3 measured time points and a MRE(i) less than 1/3.308

A Gaussian Likelihood for αi, ci and Model Selection309

Our next step is to treat α∗mi and c∗ni as data, for which we suppress the indices m and n310

and thus refer to αi,and ci. We assume that these are independent random variables, for311

i = 1, 2, ...Nf , the total number of fish that met the criterion described in point 5 above,312

and are each drawn from a bivariate normal distribution. With the hypothesis that there313

is no difference between the CCC and NCCV fish, this density is314

f(αi, ci|µα, µc, σα, σc, ρ) =
1

2πσασc
√

1− ρ2
exp

(
− 1

2(1− ρ2)

(
(αi − µα)2

σ2
α

−2(αi − µα)(ci − µc)
σασc

+
(ci − µc)2

σ2
c

))
. (9)

The likelihood of the data (denoted by −→α = (α1, α2, ...., αNf ) and −→c = (c1, c2, ...., cNf )315

under this assumption is316

L(−→α ,−→c |µα, µc, σα, σc, ρ) =
Nf∏
i=1

f(αi, ci|µα, µc, σa, σc, ρ) (10)

We also consider an alternative model in which the NCCV and CCC fish each have317

their own means and correlations. We thus let NfC denote the number of NCCV fish and318

NfS the number of CCC fish Our model now involves a parameter vector319

−→
θ = (µαC , µcC , σαC , σcC , ρC , µαS , µcS , σαS , σcS , ρS) (11)

and equation (10) is replaced by320
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L(−→α ,−→c |−→θ ) =
NfC∏
i=1

f(αi, ci|µαC , µcC , σαC , σcC , ρC) ·
NfS∏
i=1

f(αi, ci|µαS , µcS , σαS , σcS , ρS) (12)

We then choose the values of the parameters that maximize the likelihood. To select the321

better model using the maximum likelihood values, we use the Akaike Information Criterion322

(AIC) and Bayesian Information Criterion (BIC) (Hilborn and Mangel 1997, Burnham and323

Anderson 1998, Hurvich and Tsai 1989).324

Results325

We used a grid for which 0 ≤ α ≤ .011 and c and 0 ≤ c ≤ .12. We screened 550 trajectories326

and 318 met our criteria for acceptance. There is considerable variation in the growth of327

individual fish in the tanks (Figure 1) and there are cases in which the CBEM model fits328

poorly (an example is shown in (Figure 2).329

Our main results are shown in Figures (3A and 3B). Taking both strains together,330

our estimates of c for individual fish ranged from [7 × 10−3 to 0.105] and α ranged from331

2 × 10−4 to 1 × 10−2. There was a tendency for fish with higher estimates for α to have332

higher estimates for c as well, suggesting a correlation between metabolic rate and maximal333

consumption capacity. Parameter estimates tended to separate out by strain, particularly334

due to higher values of c for NCCV fish (Figure 3B). In the left hand panel we show335

the data points and the 95 % contour associated with the likelihood in equation 10. In336

panel (B) we show the data, separated by origin of stock for the likelihood associated with337

equation (12) (i.e., allowing the mean of c and α to vary between strains). The values of338

AIC and BIC for equation (10) (i.e., ignoring possible strain effects) are -5005 and -4985339

respectively and for equation (12) they are -5068 and -5031 respectively. These very large340

differences in AIC and BIC provide clear support for the model in which the stock origins341

are separated.342
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For all fish taken together, the mean value of c is 0.0418±0.149 and the mean value of343

α is 0.0042 ± 0.0018, with a correlation of 0.54. For just NCCV fish, c = 0.044 ± 0.015344

and α = 0.004 ± 0.0015 with a correlation of 0.58. For just CCC fish, c = 0.037 ± 0.014345

and α = 0.0044 ± 0.0021 with a correlation of 0.64. Thus the two strains appear similar346

in metabolic costs (α) once the effects of size and temperature are accounted for, but it347

appears that NCCV fish have a higher maximum food consumption ability.348

Discussion349

Our quantitative estimates of c and α can be compared to other, independently derived350

estimates of similar parameters in other bioenergetic models. The oxygen consumption351

reported by Rand et al. (1993) can be converted (Satterthwaite et al 2010) into an estimate352

of 0.00607 for α in the units used by our model, compared to the global mean of 0.00418353

estimated here. The consumption coefficient c is sensitive to the type of food provided and354

the allometry of consumption assumed (Rand et al 1993), but if we assume consumption355

of energy (as opposed to wet weight of food) is what is constrained, the product of f · c =356

2.148 · 0.418 = 0.0898 for the grand mean is comparable to the estimate for f · c = 0.297 ·357

0.628 = 0.187 as described in Satterthwate et al. (2010). Thus our estimates for c and α358

from this model are within an order of magnitude of independently derived estimates.359

There are at least four reasons for a fish being excluded from our analysis. First,360

we did not include fish for which we had three or fewer data points (this excluded 90361

of the original 640 fish in our experiments). Second, we did not allow for cannibalism362

(which we observed – see Beakes et al. 2009) in the growth model. Cannibalism will363

cause one trajectory to suddenly disappear and may cause an abrupt increase in the other364

trajectory; neither outcome can be captured by equation (3) and such trajectories was365

excluded. Third, we assume that the individuals could get food without an expenditure366

of energy (compare equations (1) and (2)). This enormously simplifies the estimation367

problem because otherwise we would have to estimate κ(t) in equation (1) for each fish.368
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However even in a tank fish must expend some energy to obtain food and the model may369

have underestimated that energy for some fish. Fourth, these fish have surely evolved to370

deal with a starvation risk/predation risk trade-off (sensu Mangel and Clark 1988, Clark371

and Mangel 2000). It is well known that individual animals express variation (‘personality372

traits’) in dealing with such trade-offs and growth of some subordinate individuals may373

have been suppressed by interactions with dominant individuals (Bell and Sih, 2007, Frost374

et al 2007, Stamps 2007, Dyer et al 2008). Our modeling framework does not account for375

individual variation in risk avoidance; doing so requires a much more detailed behavioral376

model.377

Nevertheless, we have shown that a compromise between purely descriptive (von Berta-378

lanffy) models and parameter rich models of growth can adequately describe a large subset379

of our data and can lead to new and novel insights into the life histories and growth patterns380

of these fish.381

Because a model that allowed mean values of c and α to vary between strains fit much382

better than a model assuming no differences between strains, we can conclude that stock383

origin has a significant effect on growth capacity in these fish, suggesting genetic differences.384

These differences may reflect local adaptation to very different growing conditions in the two385

systems (Beakes et al in review), although it is important to note that hatchery practices386

(NCCV focused on production, CCC focused on conservation) differ along with the riparian387

habitats (warm and food rich for NCCV, less warm and lower food availability for CCC)388

so it is unclear whether this reflects local adaptation to different river environments or to389

different hatcheries. In addition, we cannot rule out genetic drift rather than divergent390

selection as the cause of this difference (Adkison 1995). While estimates of α were similar391

between strains, consumption ability was higher for NCCV fish, and among individuals392

as α increased there was a greater increase in c for NCCV fish as compared to CCC fish.393

This difference in consumption capacity is likely to have significant implications for the394

response of these ecologically distinct population segments to a changing environment. For395
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example, if flow alterations lead to food availability changing to become more flashy with396

large pulses separated by periods with little if any food [Joe may be able to provide397

cites suggesting this possibility], NCCV fish will likely be better equipped to take398

maximal advantage of high food pulses and thus better able to ride out the lulls between399

pulses. NCCV fish may also be better equipped to deal with the increases in metabolic400

rates expected if temperatures increase (e.g. the Catabolic Cost component of equation401

(3)), provided that there is enough food available for NCCV fish to utilize their greater402

feeding capacity. At the same time, the low consumption of CCC fish may reflect behavioral403

patterns where the fish are choosing to shelter, minimizing predation risk, and as a result404

feed less. Although this difference may be a result of increased domestication in the NCCV405

fish due to differing hatchery practices and not a difference displayed by wild fish as well, if406

these DPSs do differ in their predation avoidance behavior the CCC fish may be better able407

to deal with increased predation risk due to introduced predators or increased temperatures408

that boost activity and metabolic needs of piscivorous fish [again Joe may have some409

cites] (Vigg and Burley 1991). Because f and c are multiplied together and we assumed410

constant f , it may be that the apparent higher food consumption ability we inferred for411

NCCV fish actually reflects more efficient conversion of the same amount of food into fish412

tissue. However, behavioral observations (NCCV fish were aggressive feeders striking at413

the surface a soon as food was added, CCC fish tended to remain in their PVC shelters)414

and the amount of uneaten food observed on the bottom of the tanks (higher for CCC415

fish) suggest that consumption rather than conversion efficiency is the main driver of this416

difference.417

The growth model we use here is a key component of our state dependent life history418

theory (Satterthwaite et al. 2009, 2010), which relates water policy to growth, survival419

and smolting of steelhead. The results of our common laboratory study show the potential420

for substantial differences both between stocks and among individuals within a stock in421

the capacity for growth. Tyler and Bolduc (2008) found similar individual variation in422
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young-of-year rainbow trout. These intrinsic differences in growth capacity interact with423

responses to environmental differences experienced by each local population. Thus, an424

understanding of local differences in the genetics, physiology, and foraging behavior of425

fish is important in site - or population-specific predictions of how growth will respond to426

changes in the environment. The capacity to predict growth responses is itself an essential427

component in successfully managing the environment to encourage the recovery of steelhead428

populations and the maintenance of anadromy, see Satterthwaite et al(2009, 2010). Thus429

our model, appropriately parameterized from data for the DPS under consideration, can430

be used to predict the context-specific effects of management on growth rates in different431

DPSs. This will allow predicting other size-related traits of management interest, such as432

survival (Carlson et al 2008), and life history (Satterthwaite et al 2010), which may feed433

into demographic models and projections of DPS viability.434
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Captions for Figures606

Figure 1. Mass trajectories from fish measured approximately every four weeks in tank 10607

(CCC fish) in the 2006 lab experiment, illustrating the large variation in growth among608

individuals in a single tank.609

610

Figure 2. Examples of good (panel A) and poor (panel B) fits of the CBEM for individual611

growth trajectories. Panel (A) has a d = 0.009 and was included for further analysis. Panel612

(B) has d = 0.39 and was rejected.613

614

Figure 3. Comparison of the distribution of α and c assuming that all of the lab data615

come from a single stock or from two different stocks. In panel (A) we show the data616

points and the 95 % contour (ellipse) associated with the likelihood based on a single617

growth model for both stocks combined. In panel (B) shows the data and contours sepa-618

rated by stock (circles = Scott Creek, crosses = Coleman Hatchery). As explained in the619

text, the statistical evidence greatly supports the notion of separate stocks.620
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