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Abstract
We introduce a new class of dynamic models for networks that extends stochastic

blockmodels to settings where the interactions between a group of actors are observed
at multiple points in time. Our goal is to identify structural changes in model features
such as differential attachment, homophily by attributes, transitivity and clustering as
the network evolves. Our focus is on Bayesian inference, so the models are constructed
hierarchically by combining different classes of Bayesian nonparametric priors. The
methods are illustrated through a simulation study and two real data sets.

1 Introduction

A social network is a model for the interactions between multiple individuals u organizations
(often called actors), who are connected to each other by one or more specific types of
relationships, such as collaboration, kinship, financial exchange, dislikes or beliefs. Typically,
the data associated with the network includes a measurement of the presence/absence or
the level of interdependence among some or all of the actors in the network, along with
predictors describing the features of the actors. The objectives of the model might include
the estimation of global network features (such as the degree of connectivity), or local features
(such as the unobserved interdependency between two actors).

Social networks are widely used in areas as distinct as psychology, sociology, epidemiology
and finance. For example, consider the application of social networks to two problems in
defense and national security. In the last 20 years, the armed conflicts around the world have
progressively tended to become fourth generation warfare (4GW), i.e., conflicts in which one
of the major participants is not a state but rather a violent non-state actor. Hence, the enemy
in 4GW typically comprises a large number of small and semi-independent units, which
interact and coordinate to varying degrees. Identifying factions encompassing these actors
and understanding how they interact is a critical intelligence task that can be addressed using
social network models. Similarly, social network modeling can be used in epidemiological
applications to understand how emergent diseases are transmitted, allowing for better design
of interventions and public response plans.
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Constructing probabilistic models that yield networks with realistic features is a major
challenge in the development of formal inferential tools for social network data. In practice,
social networks exhibit differential propensities (some actors tend to be more popular than
others, see for example Davis & Leinhardt, 1972), transitivity (two actors that have a tie to a
third actor are more likely to be tied together than actors that do not, see for example White
et al., 1976), homophily by attributes (the tendency of actors with similar – or completely
opposite – features to have a higher probability of presenting a link, McPherson et al.,
2001), and clustering (the tendency of individuals to form communities beyond what can be
explained by popularity, transitivity and homophily, Wasserman & Faust, 1994).

Exponentially parameterized random graph (EPRG) models, also known as p∗ models
in the psychology and sociology literature (Frank & Strauss, 1986; Wasserman & Pattison,
1996), extend the work of Besag (1974) from spatial statistics to general network models.
EPRG models attempt to place a probability distribution directly on the full sociomatrix.
This distribution usually depends on low-dimensional summaries of the network topology
such as the number of edges, the number of two-stars and the number of triangles (Snijders,
2002). Although EPRG models can in principle model transitivity in network structure,
work by Besag (2000), Handcock (2000) and Snijders (2002) suggests that they struggle to
capture local structure associated with realistic social networks.

Latent social space (LSS) models (Hoff et al., 2002; Handcock et al., 2007) represent a
second alternative to understand social networks. They foster transitivity by associating a
coordinate in a latent Euclidean space with each actor in the network; if actor i is close
to actor j in the social space, and actor j is close to actor k, then typically actors i is
close to actor k. The location of each actor in the social space is estimated from the data
rather than fixed in advance, which allows us to automatically learn about the underlying
similarities between the subjects. The drawback of LSS models it that they cannot easily
model clustering or distinguish between homophily and stochastic equivalence (Hoff, 2007).

In this paper we focus on stochastic blockmodels (Wang & Wong, 1987; Airoldi et al.,
2008), which divide actors into tightly knit factions, and then model interactions between
these factions. Stochastic blockmodels can be conceived as LSS models where the social
space is discrete; they are particularly appealing because of their interpretability: factions are
meaningful social constructs that are often driven by unobserved (or unobservable) variables.

The models we develop are constructed hierarchically by combining different classes of
Bayesian nonparametric priors. Network models that employ nonparametric Bayesian priors
have recently been proposed by Kemp et al. (2006) and Xu et al. (2006); they treat the
number of factions (along with faction membership) as a random quantity that is to be
estimated from the data. We extend these models in two directions. First, we develop a
framework for network models based on generalized linear models that allows us to account
not only for clustering, but also for differential attachment and homophily. Second, we
embed this single-network models into a nonparametric version of a hidden Markov model
to generate a hierarchical model that allows us to identify structural changes in the network.
Since posterior distributions for these models are not analytically tractable, all computation
is carried out using Markov chain Monte Carlo (MCMC) algorithms (Robert & Casella,
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2005).
The remaining of the paper is organized as follows: Section 2 describes a general frame-

works for modeling a single social network and reviews the use of nonparametric mixture
priors in the context of social networks. This framework is illustrated in Section 3 with
a classical example that demonstrates the usefulness of social network models in defense
and national security applications. Section 4 extends the single-network model to a setting
where interactions between a given group of actors are observed over time; the objective
of the model is to identify changes in the latent parameters driving the structure of the
network. This dynamic model is illustrated in Section 5 using first a simulation study and
then a dataset of roll call voting patterns in the Senate. Finally, Section 6 presents a brief
discussion of our models and future research directions.

2 Modeling a single social network

We introduce our notation by describing a model for a single social network. For the purpose
of this paper, a network corresponds to a n × n matrix-variate random variable Y = [yij],
where yij measures the strength of the relationship between actor i and actor j. The network
is called undirected if yij = yji and directed otherwise. Similarly, the network is called
acyclical if subjects do not interact with themselves (in which case the diagonal of Y is
typically taken to be structural zeros), and cyclical otherwise. In addition to the response
matrix Y, covariate vectors x1, . . . ,xn might be available for each of the actors in the network.

It is natural to assume that actors in a social network are (partially) exchangeable, which
suggests a model where the entries of Y are conditionally independent given a n× n matrix
of parameters Λ = [λij]. In the sequel we model yij|λij using a generalized linear model

yij|λij ∼ Ψ(yij|λij)

where Ψ(·|λij) is distribution in the exponential family with location parameter λij ∈ X .
This allows for a rich class of models that can be used to explain different types of data. For
example, if we only know whether the relationship is present of absent, then we could take
yij ∈ {0, 1} where yij = 1 if the relationship is present and yij = 0 otherwise. In that case,
it is natural to assume that yij|λij ∼ Ber(λij) where λij = Pr(yij = 1). In contrast, yij might
corresponds to the number of times actor i and actor j interacted over a period of time, in
which case yij ∈ N and it is natural to take yij|λij ∼ Poi(λij), where λij = E(yij).

In order to generate models that display realistic features, we link the parameter λij with
a linear predictor using an appropriate link function g : X → R, so that

g(λij) = µ+ αi + αj + θij + wijβ (1)

where µ is the global average response across all subjects, α = (α1, . . . , αn) is a vector of
subject-specific random effects, Θ = [θij] is an n×n matrix of random effects associated with
the interactions between individuals, β = (β1, . . . , βR)′ is a vector of fixed effects associated
with a covariate vector wij = (wij1, . . . , wijR) (which is constructed from xi and xj). Note
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that introducing a linear predictor that incorporates these four terms allow us to account
for differential propensities, homophily by attributes, transitivity, and clustering. In par-
ticular, the additive terms αi and αj capture differential propensities, the interaction term
θij captures transitity in the network, and the regression term wijβ captures homophily by
attributes. By suitably choosing the distribution for the random effects α and Θ the model
can also incorporate clustering (more on this below).

Framing network models in the context of generalized linear models is particularly ap-
pealing because it dramatically simplifies computation and allows us to adapt hierarchical
specifications used in other contexts to answer questions related to the topology of the net-
work.

2.1 Modeling the random effects

We start by discussing how to model differential propensities through the individual random
effects. A natural approach to model subject-specific random effects in α is to assume that
they are independently sampled from a common distribution G; for example, we could take
αi ∼ G = N(0, τ 2). This approach is appealing because it is easily interpretable; we can think
of τ 2 as controlling the dispersion of individual propensities about the population average.
In addition, conditional normality can usually can lead to simpler computational algorithms
because it allows us to exploit conditional conjugacy to generate simple Gibbs sampling
algorithms. Typically τ 2 will be unknown, so an additional prior needs to be incorporated
into the model.

Alternatively, rather than assuming that G belongs to a given parametric family that
depends only on a small number of parameters, we use the Dirichlet Process (DP) (Fer-
guson, 1973; Blackwell & MacQueen, 1973; Sethuraman, 1994) to provide a more flexible
specification for the random-effect distribution. A random distribution G is said to follow
a Dirichlet process with baseline probability measure G0 and precision parameter a > 0,
denoted G ∼ DP(a,G0), if it constructed as

G(·) =
∞∑
k=1

ωkδα∗k(·) (2)

where δα(·) denotes the degenerate measure at α, α∗1, α
∗
2, . . . are independent and identically

distributed samples fromG0 and ωk are constructed from another independent and identically
distributed sequence u1, u2, . . . where uk ∼ Beta(1, a) and ωk = uk

∏
r<k(1 − ur). The joint

distribution on the weights ω = (ω1, ω2, ...) induced by this prior is called a stick-breaking
prior with parameter a, denoted ω ∼ SB(a).

Note that, for any measurable set A, we have E(G(A)) = G0(A). Therefore, we can think
of the baseline measure as providing a center for the nonparametric prior. This suggests
setting G0 = N(µ, τ 2), i.e., centering G around the simpler parametric model described at
the beginning of this section. Similarly, Var(G(A)) = G0(A){1−G0(A)}/(1+a), so a controls
how close the samples from the DP are to G0.
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Figure 1: Graphical representation of the Chinese restaurant process, which describes the
process by which observations are allocated to clusters under the Dirichlet process prior. In
this analogy, customers sequentially sit at the tables of an infinite-capacity restaurant. The
next customer sits at one of the currently occupied table with probability proportional to
the number of customers in that table, and open a new table with probability proportional
to a. In this case, customer 9 would sit table 1 with probability 4/(8 + a), at table 2 with
probability 3/(8+a), at table 4 with probability 1/(8+a) and at a new table with probability
a/(8 + a).

The discrete nature of G implies ties among the random effects. Blackwell & MacQueen
(1973) showed that the joint distribution of α = (α1, . . . , αn) (after integrating out the
unknown distribution G) can be written in terms of a collection of unique values α∗1, α

∗
2, . . .

and indicators ξ = (ξ1, . . . , ξn) by setting αi = α∗ξi . As in the constructive definition in (2),
the unique values are independent and identically distributed with α∗k ∼ G0. On the other
hand, the indicators in ξ follow a simple set of predictive rules satisfying ξ1 = 1 and

ξi|ξi−1, . . . , ξ1 ∼
Ki−1∑
k=1

mi
k

a+ i− 1
δk +

a

a+ i− 1
δKi−1+1 i ≥ 2, (3)

where Ki−1 = max{ξ1, . . . , ξi−1} is the number of distinct values among the first i − 1
indicators, and mi

k =
∑i−1

j=1 1(ξj = k) is the number of indicators taking the value k, for

k ≤ Ki−1.
This generative model for ξ is often called the Chinese Restaurant Process (Pitman, 1995,

1996), and is denoted ξ ∼ CRP(a). In this analogy, one imagines observations representing
customers arriving to a Dim Sum restaurant with an infinite number of tables. The value
of ξi indicates what table customer i is assigned to; the first customer sits in table 1, and
subsequent customers sit at one of the occupied tables with probability proportional to the
number of people already sitting in the table, or at a new table with probability propor-
tional to c. Customers sitting at the k-th table “share” a common dish for dinner, which
corresponds to α∗k. A graphical representation of the CRP is presented in Figure 1.

A similar approach, first presented by Kemp et al. (2006) and Xu et al. (2006), can be
used to generate a prior for the matrix of interactions Θ. As before we introduce a sequence
of indicators ζ = (ζ1, . . . , ζn) ∼ CRP(b), where ζi is associated with actor i and b > 0 is a
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precision parameter. To construct the interactions, we pair ζ with a matrix of unique values
Θ∗ = [θ∗kl], where θ∗kl ∼ H0 for some baseline measure H0, and let θij = θ∗ζi,ζj . Note that,
since the CRP produces an exchangeable sequence of indicators and the entries of Θ∗ are
independently sampled from H0, the resulting matrix Θ is also invariant to the labeling of
the actors.

Our specification of the random effects using almost-surely discrete distribution implies
clustering among the actors in the network, both at the level of the αis and the θijs. However,
the interpretation of both classes of cluster are subtly different. The indicators in ξ allow
us to identify subjects with similar popularity levels, which is a measure that is specific
to each single individual. On the other hand, the indicator ζ cluster actors according to
the way they interact with each other; hence, the clustering is based on the properties of
pairs of subjects, making it natural to think of the clusters induced by ζ as “factions” or
“communities” within the network.

2.2 Modeling the fixed effects

Often, identifying features of the actors that affect the topology of the network is of key
importance in social network analysis. Since the covariates enter the model through the
regression term wijβ, variable selection can be accomplished by carefully selecting a prior
for β.

Mixture priors (George & McCulloch, 1997) are particularly appealing because they
combine simplicity of implementation with interpretability. Covariates are assumed inde-
pendently a priori from a zero-inflated normal distribution,

βr|$, κ2 ∼ $N(0, κ2) + (1−$)δ0

The model can be more conveniently written in terms of indicators ς1, . . . , ςR such that,
for r = 1, . . . , R, ςr = 0 if βr = 0 and ςr = 1 if βr 6= 0. A priori, each variable is assumed to
be present in the model independently of the others with probability $, i.e., Pr(ςr) = $. In
order to adjust for multiple comparisons, we model $ hierarchically by setting $ ∼ Beta(c, d)
(Scott & Berger, 2006). Alternatively to mixture priors, g-priors (Liang et al., 2008) or other
shrinkage priors (Polson & Scott, 2010) could be used.

3 An illustration: Modeling a network of political al-

liances

To illustrate how our hierarchical Bayesian models can capture latent communities in so-
cial networks, we present an analysis of a network of political alliances and enmities among
16 Gahuku-Gama sub-tribes of Eastern Central Highlands of New Guinea, originally doc-
umented by Read (1954) and available on-line from http://vlado.fmf.uni-lj.si/pub/

networks/data/UciNet/UciData.htm. The data, which corresponds to an undirected rela-
tionship, corresponds to a 16 × 16 symmetric matrix Y = [yij], where yij = 1 if the clans
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Figure 2: Raw network of political alliances among 16 Gahuku-Gama sub-tribes of Eastern
Central Highlands of New Guinea. Panel (a) presents a circular plot where vertices corre-
spond to tribes, green lines correspond to alliances among tribes, and red lines correspond to
enmities. Panel (b) presents the same raw data in matrix form; again green cells correspond
to alliances, red cells to enmities and white cells to neutrality. In both cases, the names of
the tribes have been colored and reordered to reflect faction membership as elicited from our
analysis.

are allied, yij = −1 if they are enemies, and yij = 0 if they are neutral. Analysis of similar
datasets arises in intelligence tasks in countries like Iraq, Pakistan, and Afghanistan, where
a large number of militias and armed groups are simultaneously active.

Figure 2(a) presents a circular plot for the network, where vertices correspond to tribes,
green lines correspond to alliances among tribes, and red lines correspond to enmities. Figure
2(b) shows the same data in matrix form, where green cells correspond to alliances, red cells
to enmities and white cells to neutrality. In both cases, the names of the tribes have been
colored and reordered to reflect faction membership as elicited from our analysis. These
figures strongly suggest the presence of three factions among the 16 tribes, with close alliances
among member of the same faction and moderate to mild enmities among the factions.

Since the main goal of the analysis is identifying factions and covariates are not available
for this dataset, we define the probabilities of the three possible outcomes using a simple
continuations ratio probit model,

Pr(yij = −1) = Φ(θij), Pr(yij = 0|yij 6= −1) = Φ(φij),

where Φ is the standard cumulative normal distribution, θij = θ∗ζi,ζj , φij = φ∗ζi,ζj , ζ ∼ CRP(b),
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θkl ∼ N(%1, τ
2
1 ) and φkl ∼ N(%2, τ

2
2 ). The model is completed with a hierarchical specification

for the hyperparameters b ∼ Gam(1, 1), %1 ∼ N(0, 1), τ 2
1 ∼ IGam(2, 1), %2 ∼ N(0, 1) and

τ 2
2 ∼ IGam(2, 1), where IGam(e, f) denotes the inverse-gamma distribution with e degrees of

freedom and mean f/(e− 1).
We fitted the model using an iterative MCMC algorithm (see appendix A for details).

All inferences reported below are based on 20,000 iterations obtained after a burn-in period
of 5,000 iterations. Visual inspection of trace plots of enmity and alliance probabilities does
not suggest any mixing problem.

Figure 3(a) presents the average posterior pairwise incidence matrix for this problem.
The (i, j) entry of the matrix provides the posterior probability that tribes i and j belong
to the same cluster. As expected, the plot suggests that there are three factions in this
network; however, there is fair amount of uncertainty surrounding some aspects of the cluster
structure. In particular, the first cluster (composed of four tribes, Gaveve, Kotuni, Nagamiza
and Gama) is very well defined, but there is a small probability (around .25) that clusters
two and three are really one cluster. Similarly, the Masilakidzuha tribe would seem to be
somewhat of an outlier within cluster 2, and there is close to a 0.5 probability that this tribe
belongs to a cluster of its own.

In addition to the pairwise clustering structure, we present in Figure 3(b) the posterior
mean for the probability that any two tribes are allies, E{[1− Φ(φij)][1− Φ(θij)]|Y}, while
in Figure 3(c) shows the posterior means for the probability that any two tribes are enemies,
E{Φ(θij)|Y}. Note that his estimates average over the uncertainty in the number of clusters,
providing a more accurate estimate of the interactions among actors. As expected, the
probability of alliances within the same faction are very high (specially among members of
the first faction), while the probability of alliances across factions tends to be low. On the
other hand, there is a moderate probability of enmities between members of faction 1 and
the members of the other two factions, but the members of the second factions tend to be
mostly neutral towards the members of the third faction.

4 Identifying structural changes in social networks

Many interesting applications of network models involve systems where the structure of the
network evolves in time. This section extends the hierarchical blockmodel of Section 2 to
model a sequence of social networks observed over time. We account for time dependence
by introducing a hidden Markov model for the parameters of the network, which allows us
to identify points in time when structural changes seem to have occured.

In the sequel, we assume that the interactions among a group of n actors are observed
over T consecutive time intervals. Hence, the data consists of a sequence Y1, . . .YT of n×n
matrices where Yt = [yijt] and yijt corresponds to the strength of the relationship between
actors i and j at time t. As in Section 2, we model yijt conditionally on a linear predictor
λijt using an exponential family likelihood,

yijt|λijt ∼ Ψ(yijt|λijt)
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(a) Average pairwise incidence
matrix.
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(b) Probability of an alliance.
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(c) Probability of an enmity.
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Figure 3: Summary of the posterior distribution of model parameters for the tribes dataset.
Panel (a) corresponds to the average pairwise incidence matrix, where entry (i, j) of the
matrix provides the posterior probability that tribes i and j belong to the same cluster. Red
squares correspond to clearly defined factions in the network. Panels (b) and (c) provide
posterior means for the posterior probability that any two tribes are allis or enemies.

where the linear predictor λijt is connected through a link function g to state-specific pa-
rameters,

g(λijt) = µγt + αi,γt + αj,γt + θi,j,γt + wijtβγt

where γt ∈ {1, 2, ...} is a state indictor associated with time t, µl is the mean response when
the system is in state l, αil corresponds to the propensity of individual i in state l, θijl
captures transitivity between subjects i and j in state l, and βl captures the effects of the
actor’s attributes on the network in state l.

The state of the system is assumed to evolve according to a discrete-time Markovian
processes where

γt|γt−1 ∼ Multinomial(πγt−1) πl|η ∼ DP(d,η) η ∼ SB(e)

and πl = (πl1, πl2, . . .) represents the vector of transition out of state l. This specification
implies that E(πl|η) = η, hence η corresponds to the average transition probabilities out
of a state. The precision parameter d controls the amount of variability of each πl around
η, while e controls the way mass is spread over the entries of η. Using a hierarchy of stick-
breaking priors to generate infinite-dimensional hidden Markov models was first proposed
by (Beal et al., 2001) and (Teh et al., 2006) and allows us to treat the number of states in
the system as a random variable that needs to be estimated from the data.

Given the states, networks are assumed to be independent from each other and the
parameters associated with each state constructed by following essentially the same recipe
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we provided in Section 2. In particular, for each state l = 1, 2, . . . we set αi,l = α∗ξi,l,l where

α∗kl ∼ Gl0 independently and ξl = (ξ1,l, . . . , ξn,l) ∼ CRP(al) is a set of unique indicators for
the individuals at state l. Similarly, we construct the interactions by letting θi,j,l = θ∗ζil,ζjl,l,

where ζl = (ζ1,l, . . . , ζn,l) ∼ CRP(bl) is another set of unique indicators for the individuals
at state l. Finally, for the regression coefficients we let βrl ∼ $lN(0, κ2) + (1 − $l)δ0 with
$l ∼ Beta(c, d) independently for each l = 1, 2, . . ..

5 Illustrations

5.1 A simulation study

We first test our dynamic model for networks using a simulated dataset consisting of dyadic
relationships among n = 20 actors observed over T = 40 time points. There are three
possible states for the system. From t = 1 to t = 10 the network is in state 1, from t = 11
to t = 15 the system is in state 2, from t = 16 to t = 20 the system returns to state 1, from
t = 21 to t = 28 the system moves to state 3, and from t = 29 to t = 40 the system moves
back to state 2 (see Figure 4(a)). In state 1 individuals group into two factions consisting
of actors 1 to 10 and 11 to 20 respectively; in state 2 we observe three factions consisting
of subjects 1 to 6, 7 to 12 and 13 to 20; in state 3 we have four factions comprising of
subjects 1 to 8, 9 to 13, 14 to 17 and 18 to 20. Figures 4(b), 4(c) and 4(d) show the true
faction membership and the true interaction probability among subjects on each of these
three states.

We model the data using a simplified version of the model described in Section 4. In
particular, we let yi,j,t ∼ Ber(Φ(θi,j,γt)) where θi,j,l = θ∗ζi,l,ζj,l,l. In addition, we let θ∗k,k′,l ∼
N(%l, τ

2
l ) and ζl ∼ CRP(bl) independently for each state. The hyperparameters are also given

independent priors %l ∼ N(0, 1), τ 2
l ∼ IGam(2, 1), bl ∼ Gam(1, 1). Finally, as discussed in

Section 4, we have

γt|γt−1 ∼ Multinomial(πγt−1) πl|η ∼ DP(d,η) η ∼ SB(e)

and we place priors on the parameters controlling the structure of the inifinite hidden Markov
model, with d ∼ Gam(1, 1) and e ∼ Gam(1, 1). A graphical representation of the model,
highlighting how the hidden Markov model relates to the CRP priors on faction membership
can be seen in Figure 5.1.

We fitted the model using an iterative MCMC algorithm; a full description can be seen
in appendix B. All inferences reported below are based on 60,000 iterations obtained after
a burn-in period of 10,000 iterations. The algorithms were implemented using R; one full
run takes about 25 hours on a MacBook Pro laptop. To initialize the chain, we assign each
network to a separate state and run the rest of the MCMC algorithm using this fixed state
for a preliminary burn-in period of 3,000 iterations. This provides reasonable estimates of
the faction structure for each network that can be used as an initial state for a final burn-in
period consisting of 7,000 iterations in which the full algorithm is run. Visual inspection of
trace plots for the interaction probabilities do not suggest any major problem with mixing;
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Figure 4: True states and interaction probabilities for the simulation study. The system is
assumed to consist of n = 40 subjects observed over T = 40 periods. There are three states
consisting of two, three and four factions respectively.
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Figure 5: Graphical representation of the clustering mechanism associated with our dynamic
relational model. Each state has associated with it a different CRP process, potentially
controlled by a different parameter bl. Each of these CRPs provides a prior on faction
membership that is specific to each state.

however, trace plots for the number of states in the system suggests that mixing on ζ is
relatively slow.

Posterior estimates for a representative simulated dataset are presented in Figures 6(a)
to 6(d). In particular, Figure 6(a) presents posterior means for the probabilities that any
two networks (corresponding to two different time points) belongs to the same state. Note
that networks generated in state 1 are clearly separated from networks generated in state 2.
Similarly networks generated in state 2 are never assigned to the same group with networks
generated under state 3. However, the model finds it difficult to separate states 1 and 3;
the networks observed at times 16 to 20 have between 0.45 and 0.48 probability of being
clustered with at least one network generated at state 1. More generally, our algorithm visits
models containing between 2 and 5 states (posterior probabilities are approximately 0.45,
0.53, 0.01, and < 0.01). The difficulties in identifying the third state are probably due to
the fact that the number of actors associated with each of the four factions is very small
for these networks, which translates into a high degree of uncertainty in the probability of
interaction among factions.

Figures 6(b), 6(c) and 6(d) present posterior means for the probability that any two
subjects interact for three of the networks (one associated with each of the original states).
Note that, in spite of the uncertainty associated with the existence of state 3, the estimates
for the probability of association between subjects for specific networks are relatively close
to the true values. In particular, the estimates of interaction between subjects at time 1
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(b) Interaction probability at time 1
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(c) Interaction probability at time 12
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(d) Interaction probability at time 24
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Figure 6: Posteriors estimates for a representative Monte Carlo simulation. Panel (a) shows
the mean posterior pairwise clustering probabilities for every pair of states. Panels (b) to
(d) show the pairwise interaction probability associated with three of the networks, one
associated with each of the original states.
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suffer very little due to the misclassification of networks associated with state 3. The main
discrepancies arise in the estimation of the interaction probabilities in state 3, particularly
in the estimation of the probability of interaction among subjects 18 to 20.

5.2 Roll call votes in the 109th Senate

As a second illustration we consider a dataset consisting of roll call votes in the first Session

of the 109th U.S. Senate, which served during the year 2005; the data is available at http:
//thomas.loc.gov/home/rollcallvotes.html. We focus on a small subset of the votes
consisting of 15 Senate confirmations, which include the confirmation of a number of high
level officials (including Condoleeza Rice as Secretary of State on January 6 and of Alberto
R. Gonzales as Attorney General on February 3), as well as the confirmation of a number
of U.S. District Court Judge Judges. Since confirmations are influenced by the dynamically
changing general political climate in the nation, we could expect some sort of temporal
dependence in the votes.

To construct the networks, two senators are said to interact if their vote agreed for a
given confirmation. In this illustration we ignore party affiliation and fit the same dynamic
model described in Section 5.1, which allows us to identify factions in the networks. We
expect that one of the states of the network will correspond to votes along partisan lines
(hence, factions will mirror party affiliation), and we are interested in identifying alternative
configurations. Note that, since Senators might be absent from the vote on any given date,
the dataset contains a number of missing values.

Again, we fit the model using the MCMC algorithm described in Appendix B. We assume
that missing data is missing completely at random and augment the sampler by imputing
the missing values from the likelihood function at each iteration. As in our simulation study
we report posterior estimates based on 60,000 iterations obtained after a burn-in period of
10,000 iterations.

Our algorithm identifies four states for the network; Figures 7(a) to 7(d) presents the
probability of pairwise interaction associated with them. States 2 and 3 are easy to interpret;
state 2 (for which February 3 is a representative date) corresponds to a vote along partisan
lines, while state 3 (for which April 11 is a good example) corresponds to a unanimous vote.
On the other hand, states 1 (corresponding to January 26) and state 4 (July 18) correspond to
different alignments of dissenting Democrat senators with the Republican majority. However,
the features of both networks are very different; state 1 is a quasi-unanimous vote with a
small number of dissenting Democrats, while in state 4 a number of democratic senators are
unreliable swing voters.

6 Conclusions and future work

We have discussed probabilistic models for dynamic social networks that allow us to identify
structural changes in the structure of the network. The models are extremely general and

14

http://thomas.loc.gov/home/rollcallvotes.html
http://thomas.loc.gov/home/rollcallvotes.html


1 5 9 13 18 23 28 33 38 43 48 53 58 63 68 73 78 83 88 93 98

1
5

9
14

19
24

29
34

39
44

49
54

59
64

69
74

79
84

89
94

99

(a) Interaction probability on January 26
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(b) Interaction probability on February 3
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(c) Interaction probability on April 11
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(d) Interaction probability on July 18
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Figure 7: Posteriors means for the interaction probabilities for four time points, each one
associated with a different state in the system. Vertical lines mark partisan divisions, with
senators Democrat senators being placed on the left/bottom area and Republican senators
being on the right/top section of the plot. Senator Jeffords (I-VT) was considered Democrat
for the purpose of this classification.
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can account for differential attachment, homiphily by attributes, transitivity and clustering
in the network as well as for binary, count and continuous data.

In order to explore the posterior distribution, we have introduced a Markov chain Monte
Carlo algorithm based on the CRP representation of the process. Although the algorithms
seem to perform reasonable well in our examples, there is plenty of room for improvement.
In general, two important issues arise from our experiments. First, it is not clear that the
algorithms will be able to mix well in more complex datasets with a substantially larger
number of actors. To address this issue we plan to explore in the future alternatives such as
slice samplers Walker (2007) and split-mergue algorithms Dahl (2003). The second issue is
speed, specially in on-line problems where the data is collected sequentially and inferences
must be performed after each new data point is observed. In this setting, sequential Monte
Carlo algorithms Cappe et al. (2007); Carvalho et al. (2009); Rodriguez (2010) are a natural
alternative that can provide fast computation.

Our models utilize nonparametric mixture priors to identify factions and model differen-
tial attachment. In particular, we use constructions based on the Dirichlet process priors and
the Chinese restaurant process. However, the CRP is a restrictive allocation mechanism; in
particular, it implies the prior assumption that the number of factions increases logarithmi-
cally with the number of actors in the system. In the future we plan to explore more general
allocation mechanisms such as the Pitman-Yor process (Pitman, 1995), which allows for
power-law rates of growth in the number of factions while preserving all the computational
advantages associated with the CRP.

The dynamic models we describe in this paper are appealing because of their inter-
pretability. States can be thought of as stable periods when the system is in equilibrium;
variability within the state is assumed to be due to the uncertainty associated with the
stochastic nature of the relationship and not due to any structural change in the system.
However, the model implies that states are (conditionally) independent among themselves,
an assumption that might not be supported by the data. Also, it is not clear that social
systems are ever “in equilibrium”, making hidden Markov models and other change-point
models unrealistic. In the future we plan to explore more general mechanisms to introduce
dynamic structure into network models that do not rely on discrete state space models.

A Computation in the single-network model using Markov

chain Monte Carlo algorithms

To develop our MCMC sampler, introduce two sets of latent variables, {zij1} and {zij2},
such that zij1 ∼ N(θij, 1) and zij2 ∼ N(φij, 1). In addition, let

yij|zij1, zij2 =


−1 zij1 ≥ 0

0 zij1 < 0, zij2 ≥ 0

1 zij1 < 0, zij2 < 0

16



Integrating zij1 and zij2 leads to Pr(yij = −1) = Φ(θij), Pr(yij = 0) = Φ(φij){1−Φ(θij)}
and Pr(yij = 1) = {1−Φ(φij)}{1−Φ(θij)} as desired. Then, the joint posterior distribution
is given by

p(Z1,Z2, ζ,Θ
∗,Φ∗, c, %1, %2, τ1, τ2) ∝

{
n∏
i=1

n∏
j=i+1

p(yij|zij1, zij2)p(zij1|θ∗ζi,ζj)p(zij2|φ
∗
ζi,ζj

)

}

×


maxi≤n{ζi}∏

k=1

maxi≤n{ζi}∏
l=k

p(θ∗lk)p(φ
∗
lk)

 p(ζ)p(c)p(%1)p(%2)p(τ1)p(τ2)

where Zk = [zijk] and p(ζ) is given by (3). Since the entries of ζ are exchangeable a priori,
the prior full conditional distribution for the faction indicator ζi is given by

ζi|ζ−i, · · · ∼
K−i∑
k=1

m−ik
b+ n− 1

δk +
b

b+ n− 1
δK−i+1

where L−i = maxj 6=i{ζj} is the current number of factions when observation i has been
removed from the sample and m−ik =

∑
j 6=i 1{ζj=k} is the number of components in faction

k, possibly excluding observation i. The posterior full conditional is therefore given by:

Pr(ζi = k| · · · ) ∝
m−ik

∏2
u=1

∏K−i

k′=1

Υ

 
m−i
k′ +r−i

k,k′ ,
P

(j,j′)∈Ωi
k′
∪Ω−i

k,k′
zj,j′,u,

P
(j,j′)∈Ωi

k′
∪Ω−i

k,k′
z2
j,j′,u,%u,τ

2
u

!

Υ

 
r−i
k,k′ ,

P
(j,j′)∈Ω−i

k,k′
zj,j′,u,

P
(j,j′)∈Ω−i

k,k′
z2
j,j′,u,%u,τ

2
u

! k ≤ K−i

b
∏2

u=1

∏K−i

k′=1 Υ
(
m−ik′ ,

∑
(j,j′)∈Ωi

k′
zj,j′,u,

∑
(j,j′)∈Ωi

k′
z2
j,j′,u, %u, τ

2
u

)
k = K−i + 1

where Ωi
k′ = {(j, j′) : ζj′ = k′, j = i, j′ 6= i}, Ω−ik,k′ = {(j, j′) : ζj = k, ζj′ = k′, j 6= i, j′ 6= i},

r−ik,k′ =
∑

(j,j′)∈Ω−i
k,k′

1 and

Υ(n, a, b, %, τ 2) =

(
1

2π

)n/2(
1

1 + nτ 2

)1/2

exp

{
−1

2

(
b+

%

τ 2
− (a+ %/τ 2)2

n+ 1/τ 2

)}
The full conditional for the interaction terms are given by

θ∗k,k′ | · · · ∼ N

{rk,k′ + 1

τ 2
1

}−1

 ∑
(i,j)∈Ωk,k′

zi,j,1 +
%1

τ 2
1

 ,

{
rk,k′ +

1

τ 2
1

}−1


and

φ∗k,k′| · · · ∼ N

{rk,k′ + 1

τ 2
2

}−1

 ∑
(i,j)∈Ωk,k′

zi,j,2 +
%2

τ 2
2

 ,

{
rk,k′ +

1

τ 2
2

}−1
 .
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where Ωk,k′ = {(j, j′) : ζj = k, ζj′ = k′, j′ > j}, rk,k′ =
∑

(j,j′)∈Ωk,k′
1.

The baseline parameters are sampled as

%1| · · · ∼ N

({
K(K + 1)

2
+ τ 2

1

}−1
{

K∑
k=1

K∑
k′=k

θ∗k,k′

}
,

{
K(K + 1)

2τ 2
1

+ 1

}−1
)

τ1| · · · ∼ IGam

(
2 +

K(K + 1)

4
, 1 +

1

2

K∑
k=1

K∑
k′=k

(θ∗k,k′ − %1)2

)

and similarly

%2| · · · ∼ N

({
K(K + 1)

2
+ τ 2

2

}−1
{

K∑
k=1

K∑
k′=k

φ∗k,k′

}
,

{
K(K + 1)

2τ 2
2

+ 1

}−1
)

τ2| · · · ∼ IGam

(
2 +

K(K + 1)

4
, 1 +

1

2

K∑
k=1

K∑
k′=k

(φ∗k,k′ − %2)2

)

Following Escobar & West (1995), the concentration parameter in the CRP is sampled
by introducing another indicator variable χ such that

χ|b, · · · ∼ Beta(b+ 1, n)

b|χ, · · · ∼ K

n(1− log{χ}) +K
Gam(K + 1, 1− log{χ})

+
n(1− log{χ})

n(1− log{χ}) +K
Gam(K, 1− log{χ})

Finally, the full conditional distributions for the latent variables in Z1 and Z2 are inde-
pendent from each other and given by

zi,j,1| · · · ∼

{
N(θ∗ζi,ζj , 1)1[0,∞) yij = −1

N(θ∗ζi,ζj , 1)1(−∞,0) yij 6= −1

and

zi,j,2| · · · ∼


N(φ∗ζi,ζj , 1) yij = −1

N(φ∗ζi,ζj , 1)1[0,∞) yij = 0

N(φ∗ζi,ζj , 1)1(−∞,0) yij 6= 1

where N(%, τ 2)1A denotes the normal distribution truncated to the set A.
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B Computation in the dynamic-network model using

Markov chain Monte Carlo algorithms

As before, we introduce auxiliary variables zijt ∼ N(θijt, 1) such that

yijt|zijt ∼

{
1 zijt ≥ 0

0 zijt < 0

so that the posterior distribution is given by:

p(Z1, . . . ,ZT , {Θ∗l }, {ζl}, {bl},γ, {%l}, {τ 2
l },η, d, e, |Y1, . . . ,YT )

As argued in Teh et al. (2006) and van Gael et al. (2008), the full conditional distribution
for γt is given by

Pr(γt = l| · · · ) ∝



(
s−tγt−1,l

+ dηl

)
s−tl,γt+1

+dηγt+1

s−tl,· +d
∆−tl l ≤ L−t, l 6= γt−1,(

s−tγt−1,l
+ dηl

)
s−tl,γt+1

+dηγt+1+1

s−tl,· +d+1
∆−tl l = γt−1 = γt+1,(

s−tγt−1,l
+ dηl

)
s−tl,γt+1

+dηγt+1

s−tl,· +d+1
∆−tl l = γt−1 6= γt+1,

dηlηγt+1∆−tl l = L−t + 1.

where

∆−tl =

Kl∏
k=1

Kl∏
k′=k

Υ
(
wtk,k′,l + w−tk,k′,l,

∑
(j,j′,t′)∈Λt

k,k′,l∪Λ−t
k,k′,l

zj,j′,t′ ,
∑

(j,j′,t′)∈Λt
k,k′,l∪Λ−t

k,k′,l
z2
j,j′,t′ , %l, τ

2
l

)
Υ
(
w−tk,k′,l,

∑
(j,j′,t′)∈Λ−t

k,k′,l
zj,j′,t′ ,

∑
(j,j′,t′)∈Λ−t

k,k′,l
z2
j,j′,t′ , %l, τ

2
l

)
for l ≤ L−t and

∆−tl =

Kl∏
k=1

Kl∏
k′=k

Υ

wtk,k′,l, ∑
(j,j′,t′)∈Λt

k,k′,l

zj,j′,t′ ,
∑

(j,j′,t′)∈Λt
k,k′,l

z2
j,j′,t′ , %l, τ

2
l


for l = L−t + 1. The vector of indicators ζL−t+1 is generated by first sampling %L−t+1 ∼
N(0, 1), τ 2

l ∼ IGam(2, 1) and bl ∼ Gam(1, 1), setting ζ1,l = 1 and sequentially sampling
ζi,l|bl, ζi−1,l . . . , ζ1,l following the CRP prior in (3).

In the previous expression, Λt
k,k′,l = {(j, j′, t′) : t′ = t, ζj,l = k, ζj′,l = k′}, Λ−tk,k′,l =

{(j, j′, t′) : γt = l, t′ 6= t, ζj,l = k, ζj′,l = k′}, wtk,k′,l =
∑

(j,j′,t′)∈Λt
k,k′,l

1, w−tk,k′,l =
∑

(j,j′,t′)∈Λ−t
k,k′,l

1,

s−tl,l′ denotes the number of transitions from state l to state l′ excluding those involving the
γt, and L−t is the number of states excluding the t-th time point. If a new empty state
needs to be created, we increase the number of states by one and the vector η is updated
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by exploiting its stick-breaking structure and setting ηnewL+1 = vγL+1, ηnewL+2 = (1− v)γL+1 were
v ∼ Beta(α0, 1). Also,

Υ(n, a, b, %, τ 2) =

(
1

2π

)n/2(
1

1 + nτ 2

)1/2

exp

{
−1

2

(
b+

%

τ 2
− (a+ %/τ 2)2

n+ 1/τ 2

)}
The vector η can be resampled by introducing independent auxiliary variables {ql,l′} for

l, l′ ∈ {1, . . . , L} such that

Pr(ql,l′ = q) ∝ S(sl,l′ , q)(dγl′)
q, q ∈ {1, . . . , sl,l′},

where S(·, ·) denotes the Stirling number of the first kind. Conditional on these auxiliary
variables we can update η by sampling

(η1, . . . , ηL+1) ∼ Dir(q·,1, . . . , q·,L, e),

where q·l′ =
∑L

l=1 ql,l′ .
To sample d, we additionally introduce auxiliary variables ι1, . . . , ιL and u1, . . . , uL such

that ιl|d ∼ Beta(d + 1, sl,·) and ul|d ∼ Ber(sl,·/(d + sl,·)), where sl,· =
∑L

l′=1 sl,l′ . Then, d is
sampled from its full conditional distribution,

d|{ul}, {ιl} ∼ Gam

(
1 + q·· −

L∑
l=1

ul, 1−
L∑
l=1

log ιl

)

where q·· =
∑L

l=1

∑L
l′=1 ql,l′ . To sample e, we introduce an auxiliary variable υ such that

υ|e ∼ Beta(e+ 1, q·,·). Conditional on υ, e follows a mixture distribution

e|υ, · · · ∼ L

q··(1− log{υ}) + L
Gam(L+ 1, 1− log{υ})

+
q··(1− log{υ})

q··(1− log{υ}) + L
Gam(L, 1− log{υ}).

Conditional on the states γ1, . . . , γT we can sample the state-specific parameters. In
particular, the faction membership indicators ζ1, . . . , ζL are sampled from:

Pr(ζil = k| · · · ) ∝
m−ik,l

∏K−il
k′=1

Υ

 
m−i
k′,l+r

−i
k,k′,l,

P
(j,j′,t)∈Ωi

k′,l
∪Ω−i

k,k′,l
zj,j′,t,

P
(j,j′,t)∈Ωi

k′,l
∪Ω−i

k,k′,l
z2
j,j′,t,%l,τ

2
l

!

Υ

 
r−i
k,k′,l,

P
(j,j′,t)∈Ω−i

k,k′,l
zj,j′,t,

P
(j,j′,t)∈Ω−i

k,k′,l
z2
j,j′,t,%l,τ

2
l

! k ≤ K−il

bl
∏K−il

k′=1 Υ
(
m−ik′,l,

∑
(j,j′,t)∈Ωi

k′,l
zj,j′,t,

∑
(j,j′,t)∈Ωi

k′,l
z2
j,j′,t, %l, τ

2
l

)
k = K−il + 1

where m−ik,l =
∑

j 6=i 1{ζj,l=k}, K
−i
l = maxj 6=i{ζj,l}, Ωi

k′,l = {(j, j′) : γt = l, ζj′,l = k′, j = i, j′ 6=
i}, Ω−ik,k′,l = {(j, j′, t) : γt = l, ζj,l = k, ζj′,l = k′, j 6= i, j′ 6= i}, r−ik,k′,l =

∑
(j,j′,t)∈Ω−i

k,k′,l
1{ζj,l=k,ζj′,l=k′}.
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The precision parameters for each state are sampled from

χl|bl, · · · ∼ Beta(bl + 1, n)

bl|χl, · · · ∼
Kl

n(1− log{χl}) +Kl

Gam(Kl + 1, 1− log{χl})

+
n(1− log{χl})

n(1− log{χl}) +Kl

Gam(Kl, 1− log{χl})

The state-specific interaction terms are sampled from

θ∗k,k′,l| · · · ∼ N

{rk,k′,l +
1

τ 2
1

}−1

 ∑
(i,j,t)∈Ωk,k′,l

zi,j,t +
%1

τ 2
1

 ,

{
rk,k′,l +

1

τ 2
1

}−1


where Ωk,k′,l = {(j, j′, t) : ζj,l = k, ζj′,l = k′, j′ > j}, rk,k′,l =
∑

(j,j′,t)∈Ωk,k′,l
1{ζj=k,ζj′=k′}.

The baseline parameters for the l-th class are given by

%l| · · · ∼ N

({
Kl(Kl + 1)

2
+ τ 2

1

}−1
{

Kl∑
k=1

Kl∑
k′=k

θ∗k,k′,l

}
,

{
Kl(Kl + 1)

2τ 2
1

+ 1

}−1
)

τl| · · · ∼ IGam

(
2 +

Kl(Kl + 1)

4
, 1 +

1

2

Kl∑
k=1

Kl∑
k′=k

(θ∗k,k′,l − %1)2

)

The auxiliary variables are sampled as

zi,j,t| · · · ∼

{
N(θ∗ζi,ζj ,γt , 1)1[0,∞) yij = 1

N(θ∗ζi,ζj ,γt , 1)1(−∞,0) yij = 0
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