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ABSTRACT

We develop a sequential Monte Carlo algorithm for the infinite hidden Markov model (iHMM)

that allows us to perform on-line inferences on both system states and structural (static) param-

eters. The algorithm described here provides a natural alternative to Markov chain Monte Carlo

samplers previously developed for the iHMM, and is particularly helpful in applications where

data is collected sequentially and model parameters need to be continuously updated. We illustrate

our approach in the context of both a simulation study and a financial application.

1. INTRODUCTION

Hidden Markov models (HMMs) (Cappé et al., 2005) are an extremely popular class of mod-

els in statistics and machine learning, with applications in fields as diverse as language modeling,

genomics and finance. HMMs are characterized by a sequence of unobserved states ξ1, . . . , ξT

where ξt ∈ {1, . . . , L}, which are related through a Markov chain with transition probabilities

Pr(ξt = j|ξt−1 = i) = πij , i.e., ξt|ξt−1 ∼ Multinom(πξt−1) with ξ0 ∼ Multinom(π0). Condi-

tional on the states, the observations y1, . . . ,yT are assumed to be independent and identically

distributed, yt|ξt ∼ ψ(yt|ϑξt), where ψ(·|ϑξt) is the emission distribution, and ϑl is the value of

the emission parameter when the system is in state l.

One of the main challenges in the application of HMMs is selecting the right number of states;
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models with too few states lack flexibility, while too many states might lead to overfitting and poor

predictive performance. Infinite hidden Markov models (iHMMS) (Beal et al., 2001; Teh et al.,

2006) solve this problem by allowing for an infinite number of states and treating the number of

active states (those which have generated observations) as a random parameter to be estimated

from the data. The iHMM we discuss in this paper was introduced by Teh et al. (2006), and is

constructed as a hierarchical extension of the Dirichlet process mixture (DPM) model (Ferguson,

1973; Lo, 1984; Sethuraman, 1994; Escobar & West, 1995), which is one of the most popular

approaches to nonparametric modeling in Bayesian statistics.

Bayesian learning algorithms for the iHMM based on Markov chain Monte Carlo samplers

have been developed in Teh et al. (2006) and van Gael et al. (2008). However, MCMC algorithms,

which iteratively sample blocks of model parameters conditional on the rest, are not well adapted to

problems in which data is collected sequentially and parameters need to be continuously updated.

In this context, sequential Monte Carlo (SMC) algorithms (Cappe et al., 2007) represent a faster

and more efficient alternative. In their simpler form, SMC algorithms reduce to a sequential appli-

cation of importance sampling. In importance sampling, samples simulated under an instrumental

distribution are reweighed to obtain an approximation to the posterior distribution of interest. In

particular, the algorithm we discuss in this paper is an extension of the particle learning (PL) ap-

proach discussed in Carvalho et al. (2008) and Carvalho et al. (2009). Although this is by no means

the only class of SMC algorithms that allows for simultaneous learning on both the system states

and the structural parameters controlling the evolution of the system, we focus on PL algorithms

because they greatly simplifies the estimation of unknown static parameters.

The remaining of the paper is organized as follows: Sections 2 and 3 provide brief self-

contained reviews of the Dirichlet process and the infinite Hidden Markov model, including a

description of the two MCMC algorithms available for the iHMM: the collapsed Gibbs sampler

Teh et al. (2006) and the beam sampler van Gael et al. (2008). Section 4 reviews the general parti-

cle learning approach introduced in Carvalho et al. (2008) and Carvalho et al. (2009), and Section

5 describes in detail its application to the iHMM. Section 6 presents two illustrations of the al-
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gorithm, a simulation study where the performance of the PL algorithm is compared against the

performance of existing MCMC algorithms, and a stochastic volatility model for financial data.

Finally, Section 7 presents a short discussion and future research directions.

2. DIRICHLET PROCESSES: BASICS AND NOTATION

A random distribution G is said to follow a Dirichlet process (DP) prior (Ferguson, 1973;

Sethuraman, 1994) with baseline measure H and precision α, denoted G ∼ DP(α,H), if it can be

represented as:

G(·) =
∞∑
l=1

ωlδϑl(·)

where δa(·) denotes the degenerate measure at a, ϑl ∼ H independently for every l, and ωl =

ul
∏

k<l(1− uk) with ul ∼ Beta(1, α). Note that
∑∞

l=1 ωl = 1 almost surely; in the sequel, we say

that the vector ω = (ω1, ω2, . . .) follows a stick breaking distribution with parameter α, denoted

SB(α).

The Dirichlet process is most commonly used in the context of hierarchical models as a prior

on the distribution of the model parameters, which leads to the Dirichlet process mixture model

(Lo, 1984; Escobar, 1994; Escobar & West, 1995). In this case, the model for the observables

y1, . . . ,yT becomes

yt|θt ∼ ψ(yt|θt) θt|G ∼ G G ∼ DP(α,H) (1)

where, as before, ψ(·|θ) is a parametric kernel indexed by θ. The Dirichlet process mixture model

can also be obtained as the limit of a finite mixture model (Neal, 2000); consider the finite mixture

yt|ξt ∼ ψ(yt|ϑξt) ξt ∼ Multinom(α/L, . . . , α/L) (2)

with ϑl ∼ H . As L → ∞, the marginal distribution of yt induced by (2) converges to the one

induced by (1).

A sample θ1, . . . ,θT where θt|G ∼ G and G ∼ DP(α,H) can be characterized using a Pólya

urn scheme (Blackwell & MacQueen, 1973). After integrating out the unknown distributionG, the
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joint distribution for θ1, . . . ,θT can be described by a sequence of predictive distributions where

θ1 ∼ H and

θt+1|θt, . . . ,θ1 ∼
t∑
l=1

1

α + t
δθl +

α

α + t
H 1 ≤ t ≤ T

This Pólya urn can be rewritten in terms of a collection of independent and identically dis-

tributed random variables ϑ1,ϑ2, . . . and a sequence of indicators ξ1, . . . , ξT such that ξ1 = 1

and

ξt+1|ξt, . . . , ξ1 ∼
Lt∑
l=1

nlt
α + t

δl +
α

α + t
δLt+1 1 ≤ t ≤ T,

where nlt =
∑t

i=1 1(ξi = l) is the number of observations assigned to group l among the first t of

them, and Lt is the number of unique values among the first t observations. The original sample

θ1, . . . ,θT is then obtained by setting θt = ϑξt .

Due to exchangeability, this Pólya urn also describes the prior full conditional distribution for

any θt, which is the basis to implement Gibbs sampling schemes for the Dirichlet process mixture

model. From the Pólya urn it is clear that, although the DP has infinite capacity (i.e., an infinite

number of components), for any finite sample of size T , at most T of them will be active (i.e., have

observations assigned to them).

3. INFINITE HIDDEN MARKOV MODELS

Infinite hidden Markov models (iHMMs) (Beal et al., 2001; Teh et al., 2006) generalize HMMs

to include an infinite number of states, in the same way the Dirichlet process model generalizes

finite mixtures. This increases flexibility by providing a straightforward procedure to treat the

number of active states L as a random variable, which is to be estimated from the data rather than

fixed in advanced. Following Teh et al. (2006), we consider a model of the form

yt|ξt ∼ ψ(yt|ϑξt) ξt|ξt−1 ∼ Multinom(πξt−1) πl|β ∼ DP(α,β) β ∼ SB(γ)

where ϑl ∼ H . Therefore, πl is the vector transition probabilities out of state l and β corre-

sponds to the average of these transition probabilities. As with DP mixutres, the iHMM includes
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in principle an infinite number of states; in practice, at most T (and usually much smaller number)

are active, i.e., generate observations. The concentration parameters α and γ control E(L|T ) the

number of expected active states in the chain.

In the sequel, we assume that the emission distribution ψ(y|ϑ) belongs to the exponential

family and is indexed by the natural parameter ϑ ∈ Θ, i.e, ψ can be written as

ψ(y|ϑ) = exp {ϑ′s(y) + c(ϑ) + q(y)} ϑ ∈ Θ y ∈ Y

where the spaces Θ and Y are independent of y andϑ respectively, s(y) is a (possibly multivariate-

valued) function of y alone (the sufficient statistic associated with the likelihood ψ), and c(ϑ) and

q(y) are real valued functions of, respectively, ϑ and y alone. We also assume that H is the

conjugate distribution for ϑ, i.e., H has density h (or probability mass function h, if Θ is a discrete

space) given by:

h(ϑ|η, ν) = exp {ϑ′η + νc(ϑ) + b(ν,η)}

where η and ν are the hyperparameters of the baseline measure, c(ϑ) is defined as above and

b(ν,η) is a real valued function of ν and η alone. This setup encompasses a large number of

broadly used emission distributions including the Gaussian, multinomial, Poisson and Gamma. To

increase flexibility, we also incorporate priors for α and γ, so that α ∼ Gam(aα, bα) and γ ∼

Gam(aγ, bγ).

A marginal Gibbs sampler for the iHMM that avoids explicitly representing the transition prob-

abilities {πl} and the component-specific parameters {ϑl} is discussed in Teh et al. (2006). Note

that, after marginalization, the state parameters ξ1, . . . , ξn can updated by sampling from their full

conditional distribution, ξt| · · · ∼ Multinom(q−t1 , . . . , q−tL+1), where

q−tl ∝



(n−tξt−1,l
+αβl)(n

−t
l,ξt+1

+αβξt+1
)

n−tl· +α
d−tl l ≤ L, l 6= ξt−1

(n−tξt−1,l
+αβl)(n

−t
l,ξt+1

+αβξt+1
+1)

n−tl· +α+1
d−tl l = ξt−1 = ξt+1

(n−tξt−1,l
+αβl)(n

−t
l,ξt+1

+αβξt+1
)

n−tl· +α+1
d−tl l = ξt−1 6= ξt+1

αβlβξt+1d
−t
L+1 l = L+ 1
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n−tij denotes the number of transitions form state i to state j (excluding that those that involve

time t), n−ti· =
∑

j n
−t
ij is the number of transitions out of state i, n−t·j =

∑
i n
−t
ij is the number of

transitions into state j, and

d−tl = p(yt|{yj : j 6= t, ξj = l}) =
exp

{
b(ν + nl·, z

−t
l + η)

}
exp

{
b(ν + nl· + 1, s(yt) + z−tl + η)

}
for l ≤ L and

d−tL+1 = p(yt) =
exp {q(yt) + b(ν,η)}

exp {b(ν + 1, s(yt) + η)}

In the above expressions z−tl =
∑
{j:j 6=t,ξj=l} s(yj) is the (conditional) sufficient statistic for ϑl

excluding yt.

Given the states, the prior mean for the transition probabilities, β = (β1, . . . , βL, βL+1), can be

sampled by introducing independent auxiliary variables {mij} for i, j ∈ {1, . . . , L} such that

Pr(mij = m| · · · ) ∝ S(nij,m)(αβj)
m m = 0, . . . , nij

where S(·, ·) denotes the Stirling number of the first kind. Now, conditional on these auxiliary

variables we can update β by sampling

β| · · · ∼ Dir(m·1, . . . ,m·L, γ)

wherem·j =
∑L

i=1mij . Auxiliary variables also facilitate sampling for the shape parameters α and

γ. To sample α we introduce auxiliary variables ςi ∼ Beta(α+ 1, ni·) and ui ∼ Ber(ni·/(α+ ni·))

for i = 1, . . . , L. Conditional on these latent variables, and assuming α ∼ Gam(aα, bα) a priori,

we can update α from

α| · · · ∼ Gam

(
aα +m·· − u·, bα −

L∑
i=1

log ςi

)
.

Finally, for γ, we introduce another auxiliary variable φ ∼ Beta(γ+1,m··). Under the gamma

prior, the full conditional distribution for γ given φ corresponds to a mixture of two gamma distri-

butions,

γ| · · · ∼εGam(aγ + L, bγ − log(φ)) + (1− ε)Gam(aγ + L− 1, bγ − log(φ)).
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where ε/(1 − ε) = (aγ + L − 1)/{m··(bγ − log(φ))}. Since this algorithm updates each ξt sepa-

rately from its full conditional distribution, it leads to highly correlated posterior samples. As an

alternative, van Gael et al. (2008) propose a slice sampler for the iHMM based on the algorithm

of Walker (2007). By explicilty representing the transition probabilities {πl} and introducing

auxiliary variables that adaptively truncate the number states in the model, they are able to use a

Forward-Backward algorithm to jointly sample the state variables, therefore reducing correlation

in the Markov chain.

The two algorithms we just described are ideally suited for off-line problems where data is to

be analyzed in batch. However, they have serious drawbacks in on-line applications where data

needs to be processed sequentially. In that type of setting, a new run of the MCMC algorithm is

necessary for each new observation, which might be prohibitively time consuming. Even in off-

line problems, MCMC algorithms can be extremely inefficient if autocorrelations in the chain are

very high. Since an iHMM defines a state space model, sequential Monte Carlo algorithms are a

natural alternative to MCMC that can overcome their drawbacks.

4. SEQUENTIAL MONTE CARLO AND PARTICLE LEARNING: BASICS AND NOTATION

A state-space model is defined through a hierarchical specification

yt|ξt, ζ ∼ ψ(yt|ξt, ζ) ξt|ξt−1, ζ ∼ p(ξt|ξt−1, ζ) ξ0|ζ, ∼ p(ξ0|ζ) ζ ∼ p(ζ),

where p(ξt|ξt−1, ζ) is a transition distribution describing the evolution of the unobserved state,

p(ξ0|ζ) describes the distribution of the initial state and p(ζ) is the prior distribution on the vector

of structural parameters ζ that control the evolution and emission processes.

Two typical problems associated with learning in state space models are filtering and smooth-

ing. In filtering problems we are interested in sequentially updating p(ξt, ζ|y1, . . . ,yt) to obtain

p(ξt+1, ζ|y1, . . . ,yt+1), while in smoothing problems the goal is to obtain p(ξ1, . . . , ξT , ζ|y1, . . . ,yT ).

The classical example of recursive filtering and smoothing is the Kalman filter (Kalman, 1960),

which gives a close form solution for linear Gaussian systems with known structural parameters.

In more general settings, where closed form expressions are not available for the filtering and
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smoothing distributions, simulation algorithms that use discrete approximations based on a ran-

dom cloud of particles have gained popularity in the last few years.

More concretely, sequential Monte Carlo (SMC) samplers use particle approximations of the

form

p̂N(ξt, ζ|y1, . . . ,yt) =
N∑
i=1

w
(i)
t δ(ξ̂(i)t ,ζ

(i)
t )

(ξt, ζ)

to represent p(ξt, ζ|y1, . . . ,yt), and use importance sampling to sequentially update the distribu-

tion once a new observation is collected. The algorithms are constructed to ensure, convergence is

distribution, i.e., p̂N(ξt, ζ|y1, . . . ,yt)
D−→ p(ξt, ζ|y1, . . . ,yt) as N →∞

The literature on sequential Monte Carlo methods is extensive, an excellent review can be found

in Cappe et al. (2007). In this paper we will focus on the particle learning (PL) approach described

in Carvalho et al. (2008) and Carvalho et al. (2009) because it simplifies the simultaneous estima-

tion of states and structural parameters. The application of the PL framework assumes that, at any

time t, the posterior distribution for ζ depends on the states and observations through a low di-

mensional vector of sufficient statistics rt, which can be sequentially updated using a deterministic

recursion R such that rt+1 = R(rt,yt+1, ξt+1), so that p(ζ|ξ1, . . . , ξt,y1, . . . ,yt) = p(ζ|rt). PL

also reqires that the predictive distribution p(yt+1|xt, ζ) =
∫
p(yt+1|xt+1, ζ)p(xt+1|xt, ζ)dxt+1,

with xt = (rt, ξt), can be computed in closed form. If these two conditions are satisfied, we can

treat the sufficient statistics rt as deterministically updated states and write:

p(xt, ζ|y1, . . . ,yt+1) ∝ p(yt+1|xt, ζ)p(xt, ζ|y1, . . . ,yt)

and from there

p(xt+1, ζ|y1, . . . ,yt+1) =

∫
p(ζ|rt+1)p(xt+1|xt, ζ∗,yt+1)p(xt, ζ

∗|y1, . . . ,yt+1)dζ
∗dxt

where

p(xt+1|xt, ζ,yt+1) = p(rt+1|rt, ξt+1,yt+1)p(ξt+1|ξt, ζ,yt+1)

and p(rt+1|rt, ξt+1,yt+1) a point mass concentrated inR(rt,yt+1, ξt+1). These expressions lead to

the following iterative algorithm to update the filtering distributions:
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Algorithm 1 Particle learning filtering.

1. Sample ζ̂
(i)

0 ∼ p(ζ) and ξ̂(i)
0 ∼ p(ξ0|ζ̂

(i)

0 ), and initialize r̂
(i)
0 .

for t = 0 to T − 1 do

2. Set v(i)
t = p(yt+1|ξ̂(i)

t , r̂
(i)
t , ζ̂

(i)

t ).

3. Set w(i)
t =

v
(i)
tPN

s=1 v
(s)
t

and sample (ξ̃
(i)
t , r̃

(i)
t , ζ̃

(i)

t ) ∼
∑N

s=1w
(s)
t δ

(ξ̂
(s)
t ,r̂

(s)
t ,ζ̂

(s)
t )

.

4. Sample ξ̂(i)
t+1 ∼ p(ξt+1|ξ̃(i)

t , r̃
(i)
t , ζ̃

(i)

t ,yt).

5. Update r̂
(i)
t+1 = R(r̃

(i)
t ,yt, ξ̂

(i)
t+1).

6. Sample ζ̂
(i)

t+1 ∼ p(ζ|r̂(i)
t+1).

end for

Note that, when referring to sampled particles, we slightly abuse notation by writing ζ̂t to

denote a particle for ζ drawn conditional of the information available up to time t. Also, note that

step 6 is not formally necessary, since the particles ζ̃
(1)

t , . . . , ζ̃
(N)

t were resampled conditionally on

all the information available up to time t+ 1. Instead, step 6 can be seen as an instance of MCMC

adaptation that improves the performance of the SMC sampler by increasing particle diversity.

Once the filtering algorithm has been run for t = 1, . . . , T , the stored particles representations

for the marginal distributions {p(xt, ζt|yt, . . . ,y1)}Tt=1 can be used to generated sample paths from

the joint distribution p(xT , . . . ,x1, ζt|yt, . . . ,y1) by using the smoothing algorithm described in

Godsill et al. (2004). The algorithm is repeated for b = 1, . . . , B to generate B sample paths. In

the specific case of PL, the aforementioned algorithm takes the following form:

Algorithm 2 Particle learning smoothing.

1. Sample (ξ
(b)
T , r

(b)
T , ζ

(b)) ∼ p(ξT , rT , ζ|y1, . . . ,yT ) =
∑N

i=1
1
N
δ
(ξ̂

(i)
T ,r̂

(i)
T ,ζ̂

(i)
T )

for t = T − 1 to 1 do

2. Set q(i)
t = p(ξ

(b)
t+1, r

(b)
t+1|ξ̂

(i)
t , r̂

(i)
t , ζ

(b)).

3. Set $(i)
t =

q
(i)
tPN

s=1 q
(s)
t

and sample (ξ
(b)
t , r

(b)
t ) ∼

∑N
s=1$

(i)
t δ(ξ̂(s)t ,r̂

(s)
t )

.

end for
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5. PARTICLE LEARNING FOR THE INFINITE HIDDEN MARKOV MODEL

We proceed now to apply the PL framework in the context of the iHMM. As Teh et al. (2006),

we explicitly integrate out the transition probabilities {πl} and the state-specific parameters {ϑl}.

Our approach relies on the fact that, once the transition probabilities {πl} has been integrated out

of the model, the transition distribution can be written as:

p(ξt+1|ξt, . . . , ξ1,β, α) =
Lt∑
l=1

nξtlt + αβl
nξt·t + α

δk +
αβLt+1

nξt·t + α
δLt+1 (3)

where Lt = max{ξ1, . . . , ξt} is the number of distinct states visited by the process up to time t, nijt

is the number of transitions between states i and j up to time t, and ni·t is the number of transitions

out of state i up to time t. As a consequence, the one step ahead predictive distribution reduces to

p(yt+1|ξt, rt,β, α) =
αβLt+1

nξt·t + α
exp {q(yt) + b(ν,η)− b(ν + 1, s(yt+1) + η)}

+
Lt∑
l=1

(nξtlt + αβl) exp {q(yt) + b(ν + n·lt, zlt + η)}
(nξt·t + α) exp {b(ν + n·lt + 1, s(yt+1) + zlt + η)}

(4)

where zlt =
∑
{j:j≤t,ξj=l} s(yj) is the sufficient statistic associated with the emission parameters

of component l at time t, and rt = (Lt, {nijt}, {zlt}) is the vector of sufficient statistics for the

problem. In order to be able to update the structural parameters β, α and γ, we augment the particle

system by explicitly sampling the structural parameters and the auxiliary variables we described in

the context of MCMC algorithms for the iHMM in Section 3. Therefore, for the iHMM

(x̂
(i)
t , ζ̂

(i)

t ) = (ξ̂
(i)
t , L̂

(i)
t , {n̂

(i)
ljt}, {ẑ

(i)
lt }, α̂

(i)
t , {β̂

(i)
lt }, γ̂

(i)
t , {m̂

(i)
ijt}, φ̂

(i)
t , {û

(i)
it }, {ς̂

(i)
it })

and Algorithm 1 becomes:

1. Compute weights w(i)
t = v

(i)
t /
∑N

j=1 v
(j)
t , where v(i)

t =
∑L̂

(i)
t +1

l=1 q
(i)
l (x̂

(i)
t , ζ̂

(i)

t ,yt+1) and

q
(i)
l (x̂

(i)
t , ζ̂

(i)

t ,yt+1) =
(n̂

(i)

ξ̂
(i)
t lt

+ α̂
(i)
t β̂

(i)
l ) exp

{
b(ν + n̂

(i)
·lt , z

(i)
lt + η)

}
(n̂

(i)

ξ̂
(i)
t ·t

+ α̂
(i)
t ) exp

{
b(ν + n̂

(i)
·lt + 1, s(yt+1) + z

(i)
lt + η)

}
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for l ≤ L̂
(i)
t and

q
(i)

L̂
(i)
t +1

(x̂
(i)
t , ζ̂

(i)

t ,yt+1) =
α̂

(i)
t β̂

(i)

L̂
(i)
t +1

exp {b(ν,η)}

(n̂
(i)

ξ̂
(i)
t ·t

+ α̃
(i)
t ) exp {b(ν + 1, s(yt+1) + η)}

2. Sample (x̃
(1)
t , ζ̃

(1)

t ), . . . , (x̃
(N)
t , ζ̃

(N)

t ) from

p̃(xt, ζ|y1, . . . ,yt+1) =
N∑
i=1

w
(i)
t δ(x̂(i)

t ,ζ̂
(i)
t )

(xt, ζ)

3. Propagate the particles to generate (x̂
(i)
t+1, ζ

(i)
t+1) by:

(a) Sampling ξ̂(i)
t+1 from p(ξ̂

(i)
t+1|ξ̃

(i)
t , ζ̃

(i)

t ,yt+1), where

p(ξ̂
(i)
t+1|ξ̃

(i)
t , ζ̃

(i)

t ,yt+1) ∝
L̂

(i)
t +1∑
l=1

q
(i)
l (x̃

(i)
t , ζ̃

(i)

t ,yt+1)∑L̂
(i)
t +1

j=1 q
(j)
l (x̃

(j)
t , ζ̃

(j)

t ,yt+1)
δl(ξ̂

(i)
t+1)

(b) Updating the number of states by setting

L̂
(i)
t+1 =

L̃
(i)
t + 1 ξ̂

(i)
t+1 = L̃

(i)
t + 1

L̂
(i)
t+1 = L̃

(i)
t otherwise

(c) Updating the sufficient statistics by setting

n̂
(i)

ξ̃t,ξ̂t+1,t+1
= ñ

(i)

ξ̃t,ξ̂t+1,t
+ 1 ẑ

(i)

ξ̂t+1,t+1
= z̃

(i)

ξ̂t+1,t
+ s(yt)

(d) If ξ̂(i)
t+1 ≤ L̃

(i)
t set β̂

(i)

t+1 = β̃
(i)

t . Otherwise, update the transition probability vector by

setting

β̂
(i)
l,t+1 =


β̃

(i)
lt l < L̂

(i)
t+1

ϕβ̃
(i)

L̃
(i)
t +1,t

l = L̂
(i)
t+1

(1− ϕ)β̃
(i)

L̃
(i)
t +1,t

l = L̂
(i)
t+1 + 1

where ϕ ∼ Beta(1, γ̃
(i)
t ).
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4. Resample the structural parameters and auxiliary variables by:

(a) Sampling m̂(i)
l,j,t+1 ∈ {0, . . . , n̂

(i)
l,j,t+1} with

Pr(m̂
(i)
l,j,t+1 = m) ∝ S(n̂

(i)
l,j,t+1,m)(α̃

(i)
t β̂

(i)
j,t+1)

m

(b) Sampling γ̂(i)
t+1 by first sampling φ̂(i)

t+1 ∼ Beta(γ̃
(i)
t + 1, m̂

(i)
··t+1) and then sampling γ̂(i)

t+1

from

γ̂
(i)
t+1 ∼ ε

(i)
t+1Gam(aγ + L̂

(i)
t+1, bγ − log(φ̂

(i)
t+1))+

(1− ε(i)t+1)Gam(aγ + L̂
(i)
t+1 − 1, bγ − log(φ̂

(i)
t+1)

where
ε
(i)
t+1

1− ε(i)t+1

=
aγ + L̂

(i)
t+1 − 1

m̂
(i)
··t+1(bγ − log(φ̂

(i)
t+1))

.

(c) Sampling α̂(i)
t+1 by first generating (for l = 1, . . . , L̂

(i)
t+1)

ς̂
(i)
l,t+1 ∼ Beta(α̃

(i)
t + 1, n̂

(i)
l·t+1)

and

û
(i)
l,t+1 ∼ Ber(n̂

(i)
l·t+1/(α̃

(i)
t + n̂

(i)
l·t+1))

and then

α̂
(i)
t+1 ∼ Gam

aα + m̂
(i)
··t+1 − û

(i)
·t+1, bα −

L̂
(i)
t+1∑
l=1

log ς̂
(i)
l,t+1


(d) Resampling

β̂
(i)

t+1 ∼ Dir(m̂·,1,t+1, . . . , m̂·,L̂(i)
t+1,t+1

, γ̂
(i)
t+1)

The algorithm is initialized by sampling γ̂(i)
0 ∼ Gam(aγ, bγ) and α̂(i)

0 ∼ Gam(aα, bα), setting

L̂
(i)
0 = 0 (which implies w(i)

0 ∝ 1, L̂(i)
1 = 1, n̂(i)

111 = 1, z
(i)
11 = s(y1) and m̂(i)

111 = 1 for all particles),

and applying steps 4(b) to 4(d) above.
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If only on-line inference is required, the filtering procedure described above produces the re-

quired sequence of filtered distributions. As observations are collected, the particles can be updated

at a computational cost o(N), which is much smaller than the cost of rerunning an MCMC for the

same number of iterations (which would be o(NT )). If a sample from the smoothed distribution

p(ξ1, . . . , ξT |y1, . . . ,yT ) is required, Algorithm 2 can be applied through the following steps:

1. Sample (ξ
(b)
T , L

(b)
T , {n

(b)
ljT}, α(b), {β(b)

l }) ∼
∑N

s=1
1
N
δ
(ξ̂

(i)
T ,L̂

(i)
T ,{n̂(i)

ljT },α̂
(i)
T ,{β̂(i)

lT })
.

2. Sequentially sample ξ(b)
t by

(a) Setting q(i)
t =

∑L̂t
l=1

n̂
ξ̂
(i)
t lt

+α(b)β
(b)
l

n̂
ξ̂
(i)
t ·t

+α(b) δk(ξ
(b)
t+1) +

α(b)β
(b)
Lt+1

n̂
ξ̂
(i)
t ·t

+α(b) δL̂t+1(ξ
(b)
t+1).

(b) Setting $(i)
t =

q
(i)
tPN

s=1 q
(s)
t

and sample

(ξ
(b)
t , L

(b)
t , {n

(b)
ljt}, α

(b), {β(b)
l }) ∼

N∑
s=1

$
(i)
t δ(ξ̂(i)t ,L̂

(i)
t ,{n̂(i)

ljt},α̂
(i)
t ,{β̂(i)

lt })
.

This procedure is repeated B times to generate B independent sample paths. However, a

drawback of the algorithm described above is that paths for ξ1, . . . , ξT are restricted to the histories

of the particles surviving up to time T , i.e., q(i)
t > 0 only if ξ̂(i)

t+1 originated by propagating ξ̂(i)
t in

the filtering step.

To improve the diversity of the particles, we can decouple the paths from the histories by

explicitly sampling the transition probabilities {πl} and emission parameters {ϑl} conditionally

on the sufficient statistics of the problem at time T . Indeed, conditionally on LT , the iHMM

becomes a regular HMM; the transition probabilities satisfy

πl|y1, . . . ,yT ∼ Dir(α + n̂l·T , (β1 + n̂l1T , . . . , βLT + n̂lLTT ))

and the emission parameters can be sampled independently from its posterior distribution,

p(ϑl|y1, . . . ,yT ) = exp {ϑ′(zlT + η) + (n·lT + ν)c(ϑ) + b(n·lT + ν, zlT + η)}
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Given the transition and emission probabilities of a finite HMM, sampling of the states can now

proceed using a standard Forward-Backward algorithm. The resulting algorithm follows through

the following steps:

1. Sample (ξ
(b)
T , L

(b)
T , {n

(b)
ljT}, {z

(b)
lT }, α(b), {β(b)

l }) ∼
∑N

s=1
1
N
δ
(ξ̂

(i)
T ,L̂

(i)
T ,{n̂(i)

ljT },{ẑ
(i)
lT },α̂

(i)
T ,{β̂(i)

lT })
.

2. Sample {π(b)
l } from

π
(b)
l ∼ Dir(α(b) + n̂

(b)
l·T , (β

(b)
1 + n̂

(b)
l1T , . . . , β

(b)

L
(b)
T

+ n̂
(b)

lL
(b)
T T

)) l = 1, . . . , L
(b)
T

(Note that π(b)
l is of length L(b)

t .)

3. Sample {ϑ(b)
l } from

p(ϑl|y1, . . . ,yT ) = exp
{
ϑ′(z

(b)
lT + η) + (n

(b)
·lT + ν)c(ϑ) + b(n

(b)
·lT + ν, z

(b)
lT + η)

}
4. Sample ξ(b)

1 , . . . , ξ
(b)
T using a single Forward-Backward iteration that uses {π(b)

l } and {ϑ(b)
l }

as the parameters for the transitions and emission distributions.

It is worth emphasizing that, although by sampling {πl}, {ϑl} we increase the execution time of

the algorithm and the Monte Carlo error of the estimates, we also increases particle diversity and

minimize the risk of particle degeneracy in the smoothing step.

The algorithms described above can be easily generalized to accommodate uncertainty in the

hyperparameters η and ν, as well as non-conjugate prior distributions. Given a prior p(η, ν), the

hyperparameters of the baseline measure can be sampled by augmenting the state vector with sam-

ples from {ϑl}, which in turn can be used to sample η and ν form their full conditional distribution.

Similarly, augmenting the state vector with {ϑl} allows us to avoid an intractable integral when

computing the filtering weights {q(i)
l } for a non-conjugate baseline measure H .

6. ILLUSTRATIONS

First, we concentrate on a simulation study similar to the one discussed in Teh et al. (2006) and

van Gael et al. (2008). Data was generated form a negatively autocorrelated HMM with 4 states
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and a multinomial emission distribution with 8 possible categories. The transition and emission

matrices T and E are given by:

T =


0 1/2 1/2 0

0 0 1/2 1/2

1/2 0 0 1/2

1/2 1/2 0 0

 E =


1/3 0 0 0 0 0 1/3 1/3

1/3 1/3 1/3 0 0 0 0 0

0 0 1/3 1/3 1/3 0 0 0

0 0 0 0 1/3 1/3 1/3 0


Twenty sequences of 500 characters were generated, and iHMMs fitted to each one of them

using the collapsed Gibbs sampler of Teh et al. (2006) (GIBBS), the slice sampler of van Gael et al.

(2008) (SLICE), and our particle learning algorithm (PL). Hyperpriors were set to α ∼ Gam(4, 2)

γ ∼ Gam(3, 6) for all models. Performance of the samplers was investigated by computing one-

step-ahead predictive densities,

p(yt+1|y1, . . . ,yt) =

∫
p(yt+1|ξt,β, α)p(ξt,β, α|y1, . . . ,yt)dξtdβdα

for t = 451, . . . , 500. One-step ahead predictive densities provide a measure of the quality of the

models explored by the samplers that incorporate information about the prior distributions. The

log predictives for PL were computed based on N = 5, 000 particles, while for both GIBSS and

SLICE they were computed using 5,000 iterations of the algorithm obtained after a burn-in period

of 2,000 iterations. Our simulations suggest that the predictive performance of PL is comparable to

that of SLICE, and that both of them explore better models than GIBBS. Overall computation time

for PL was roughly two orders of magnitude smaller than the time for GIBBS or SLICE because

both algorithm had to be re-run at each time t. When inference is performed only for the whole

sequence, execution time for PL is about 30% longer than for for GIBBS, and about 15% longer

than SLICE.

Our second illustration involves a data set of weekly returns for the S&P500 index covering

the ten-year period between April 21, 1997 and April 9, 2007, for a total of 520 observations. We

have previously analyzed the same data set in Rodriguez et al. (2010). The top panel in Figure 1

shows the evolution of these returns. The series does not exhibit any long term trend, but different
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levels of volatility can be clearly seen. In particular, two slightly different regimes are apparent;

before May 2003, periods of high-volatility are relatively frequent, while after May 2003, we can

appreciate longer low-volatility periods.

We model this data using an iHHM where the observations (weekly log returns) follow a nor-

mal distribution with zero mean and unknown variance (we denote this model iHMM-SV). The

baseline measure H is an inverse-Gamma distribution with mean 0.000492 (which implies that the

annualized mean volatility is around 16%, a historically reasonable value), and 2 degrees of free-

dom. The precision parameters for the iHMM α and γ are both given independent Gamma priors,

α ∼ Gam(1, 1) and γ ∼ Gam(1, 1). The particle learning algorithm described in this paper was

used to fit the model, with the posterior mean of the filtered volatilities plotted in the bottom panel

of Figure 1. In order to provide a comparison, we also fitted a first-order autoregressive stochastic

volatility model, as described in Jacquier et al. (1994) (we denote this model as AR1-SV) using the

auxiliary particle filter with structural learning developed in Liu & West (2001). Hyperparameter

for the AR1-SV were chosen consistently with the choice for the iHMM-SV. The corresponding

posterior means of the filtered volatilities are also shown in the bottom panel of Figure 1.

The iHMM detects between 6 and 9 volatility states, with the mode being six states (posterior

probability 0.47). In terms of the volatility estimates, the results from both models are qualitatively

similar; both detect the presence of volatility spikes in mid 2000, late 2001 and late 2002, as well

as the low volatility regime arising after 2004. However, the results are quantitatively different.

Most of the time, the estimates from the iHMM-SV are more stable (in the sense that, most of

the time, they show lower short-term volatility of volatility). However, when a spike is detected,

the volatility estimates for the iHMM-SV are much larger than those from the AR1-SV. This is

consistent with our experience with stochastic volatility models: when compared with continuous

mixtures, countable mixtures tend to generate smoother estimates for high probability states and

less smooth estimates for low probability estates.

7. DISCUSSION

The particle learning algorithm described in this paper is particularly appealing for applications
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where efficient on-line Bayesian learning in iHHM models is necessary. For this type of applica-

tions, it provides a much faster and efficient alternative to existing MCMC algorithms. However,

even in off-line applications, the PL approach is competitive with MCMC algorithms and provides

some important advantages. For example, PL algorithms provide a straightforward approximation

to the marginal likelihood of the iHMM model, allowing us to perform model selection. This angle

will be explored in more detail elsewhere.

Although we focused our attention on the simplest version of the iHMMs where the baseline

measure H is conjugate to the emission distribution ψ, this is not a key feature of the algorithm.

Extensions to models with non-conjugate baseline measures where already discussed at the end

of Section 5. Similarly, state-persistent iHMMs as the ones discussed in Fox et al. (2008) can be

easily analyzed.

Matlab code implementing the algorithms used for the illustrations in this paper can be ob-

tained from the author. Besides releasing this code as Matlab and R libraries, our short term

research plans include exploring the application of particle learning algorithms to other hierarchi-

cal nonparametric models such as the nested Dirichlet process Rodriguez et al. (2008), where a

Pólya urn is available but is not helpful in constructing Gibbs sampling algorithms.
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Figure 1: Raw data (left panel) and filtered volatilities (right panel) for the S&P500 data set.
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