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Abstract

We consider parsimonious representations of non-homogeneous spatial random fields.
We focus on processes that can be represented as linear combinations of basis func-
tions. As the basis functions are allowed to depend on unknown parameters, we identify
such models with conditionally linear processes. We present a detailed description of
an approach that uses discrete process convolutions with spatially varying, compactly
supported kernels. We discuss the similarities and differences between this approach
and the predictive Gaussian process approach. We also discuss the problem of obtain-
ing decompositions of a spatial random field, as well as spatio-temporal extensions of
our spatial models.

Key Words: Spatial Random Fields; Spatial Interpolation; Bayesian

Inference.

1 Introduction

Following the seminal work of Matheron (Matheron, 1963), the field of geostatistics has
seen an impressive development and has found successful applications in a large number of
fields. With the advancement and increasing availability of geographical information systems
as well as observations from remote sensors, large datasets of spatially referenced scientific
data have become very common. In addition, computer models for the simulation, analysis
and forecast of spatio-temporal phenomena, like weather, climate, dispersion of pollutants,
dynamics of oceans’ characteristics, among others, produce massive output that often need to
be summarized or compared and combined with observations. Gelfand et al. (2010) provide
a collection of state of the art statistical methods for spatial data.

Geostatistical methods consider random fields that are indexed in space, usually 2D or
3D, and more generally space and time. Intuitively, proximity between observations should
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provide information for inference about unobserved values of the field. This is formalized
by the use of covariance structures that depend on location. Covariance functions play a
fundamental role in the traditional kriging methods, as explained, for example, in Cressie
(1993). Unfortunately, the need to consider increasingly large data sets requires computa-
tions involving very large covariance matrices. These computations may not be feasible, even
with the use of clever computational tricks. An application for observations at, say, 10,000
locations will produce a covariance matrix with 50,005,000 possibly different values. Such
a large data structure would need to be stored, decomposed and operated with, possibly
within an iterative procedure.

The problem of fitting a spatial random field for a large number of locations has been
considered by a number of authors. For regularly spaced data, and under the assumption
that the covariance matrix has strong symmetric properties like isotropy, it is possible to
perform very fast computations with the help the Fast Fourier Transform (Rue and Held,
2005, Section 2.6). Fast computations can also be performed taking advantage of sparsity
induced by compactly supported covariance functions (Gneiting, 2002). Sparsity of the
inverse of the covariance matrix, or precision matrix, can be used for fast computations for
Gaussian Markov random fields (Rue and Held, 2005). Suitably chosen bases of orthogonal
functions, such as wavelets or Fourier expansions, have been used in Nychka et al. (2002)
and Paciorek (2007). Careful use of multiresolution properties for random fields at different
levels of aggregation are exploited in Tzeng et al. (2005), to obtain very fast prediction
methods for fields on a grid. Spectral methods for the approximation of the likelihood,
known as Whittle’s approximation, have been used for several decades (Whittle, 1954). A
recent extension to irregularly spaced data in presented in Fuentes (2007).

The traditional geostatistical approach to spatial data assumes that the field is isotropic.
This implies very strong symmetries of the corresponding covariance function. Such an
assumption is convenient from the inferential point of view, as it reduces the formulation of
the covariance to just a handful of parameters. While isotropy results in surprisingly flexible
predictive surfaces, it can be a very unrealistic assumption in may cases. An alternative
is to assume isotropy on a non-linearly transformed space, as proposed in Sampson and
Guttorp (1992). This approach uses cross-validation and has been extended to likelihood-
based methods (Damian et al., 2001; Schmidt and O’Hagan, 2003). Brown et al. (1995) use
multivariate normal models to estimate general covariance matrices. Yet another approach
to achieve anisotropy is to consider locally isotropic models convolved with kernels. Fuentes
(2002) proposes processes with spatially varying covariance parameters and Higdon et al.
(1999) proposes location dependent convolving kernels. This is the approach used in Lemos
and Sansó (2009), which will be illustrated and expanded in this paper. A related technique
is proposed in Paciorek and Schervish (2006) where large classes of non-stationary covariance
functions are created using convolutions. Piecewise isotropic process are used in conjunction
with tree structures (Gramacy and Lee, 2008) or partitions obtained from tesselations (Kim
et al., 2005), to obtain processes that are globally anisotropic.

The focus of this paper is on conditionally linear spatial processes (CLP). That is, pro-
cesses that can be represented as linear combinations of basis functions. As such bases may
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depend on unknown parameters, we denote the representation as conditionally linear. Fixed
rank kriging processes (Cressie and Johannesson, 2008), predictive processes (Banerjee et al.,
2008) and process convolution (Higdon, 2007) are all examples of CLPs. Here we consider
hierarchical extensions to allow for spatially varying kernels, as presented in the next section.
CLPs allow for effective reduction of the dimension of the parameter space without imposing
unrealistic properties on the resulting covariance of the process. In Section 2.1 we discuss the
ability of CLP to capture the main modes of spatial variability of a random field. In Section
2.3 we discuss the Monte Carlo based methods to fit the proposed models. In Section 2.2
we discuss extensions to space-time models. In Section 3 we present an example as well as
comparisons with previously published results for some testbed data. In the last section we
present our conclusions and discussion.

2 Conditionally linear spatial processes

A typical setting for the analysis of a spatial random field is given by the model

y(s) = x(s)Tβ + ω(s) + ε(s) (1)

where ε(s) ∼ N(0, 1/τ) is random uncorrelated noise, with τ denoting measurement pre-
cision; x(s) are location dependent covariates, linearly related to the response via a set of
q-dimensional parameters β, and ω(s) is a Gaussian process with mean 0 and covariance
function v(·, ·). Here s ∈ S, which is a subset of R

d, for d typically equal to 2 or 3. If
we assume that y(s) is observed at locations s1, . . . , sn for a large n, then likelihood based
inference for y(s) requires the factorization of the n × n matrix V , where Vi,j = v(si, sj).
These computations could be unfeasible, in particular when Equation (1) is embedded in a
hierarchical structure and iterative methods are used.

An interesting proposal for the reduction of the dimensionality of the problem is pre-
sented in Banerjee et al. (2008). There, a set of knots s∗1, . . . , s

∗
m is chosen. Letting

ω∗ = (ω(s∗1), . . . , ω(s∗m)) and V ∗ be the corresponding covariance matrix, a new process is de-
fined by E(ω(s)|ω∗) = v(s)T (V ∗)−1ω∗ where v(s) = (v(s, s∗1), . . . , v(s, s

∗
m)). The reduction

in the dimension is achieved by substituting E(ω(s)|ω∗) for ω in Equation (1). The former
approach is closely related to the one proposed in Cressie and Johannesson (2008) that con-
sists on assuming that the covariance function v is given as v(s, s′) = B(s)TKB(s′). HereK
is a r× r positive definite matrix and B(s) = (B1(s), . . . , Br(s))

T is a set of basis functions,
not necessarily orthogonal. Clearly, for r = m, Kij = v(s∗i , s

∗
j) and Bj(s) = [v(s)T (V ∗)−1]j

we obtain the covariance induced by the approach in Banerjee et al. (2008). Furthermore,
in both cases we have an equivalent linear representation of the process. In fact, following
Stroud et al. (2001), we can write

ω(s) =
m
∑

j=1

Bj(s)γj = B(s)Tγ , γ = (γ1, . . . , γm)T ∼ Nm(0,K) , (2)

which implies that cov(ω(s), ω(s′)) = B(s)TKB(s′). Note that this corresponds to a non-
isotropic covariance function, even if K is obtained by evaluating an isotropic covariance.
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Writing Bj(s) = b(s − s∗j) and γj = γ(s∗j) we have a process convolution (Higdon, 2007).
Equation (2) can be extended by letting Bj(s) depend on some unknown parameters, say
φ. Furthermore, we can let those parameters depend on location and denote them as φ(s).
In this case it is natural to assume that the parameters correspond to random fields defined
on S. The term conditionally linear spatial processes refers to the fact that, conditional on
φ(s), Equation (2) corresponds to a linear combination of basis functions.

CLPs provide relatively parsimonious yet flexible spatial models and can be naturally ex-
tended to spatio-temporal settings. Lemos and Sansó (2009) considered sea surface temper-
ature data for the North Atlantic over a span of 30 years, and estimated location-dependent
means, long-term trends and time-varying cycles. The kernel of choice in this case is the
(circular) Bézier kernel with range r, given as

bc(s;φ1) =

(

1 −

(

||s||

r

)2
)Lp+φ1(Up−Lp)

× 1l||s||<r, φ1 ∈ (0, 1) .

Lp and Up define the pre-set lower and upper bounds of the power. This kernel has compact
support, which induces a sparse structure in B(s) and allows for fast computations of the
model’s linear structure. Additionally, the parameter φ1 controls the smoothness of the
resulting random field. In fact, the convolution of the kernel with itself produces a covariance
that is ⌊2(Lp + φ1(Up − Lp))⌋ times differentiable (Brenning, 2001).

Bézier kernels avoid the need of tapering covariance matrices (Gneiting, 2002; Kaufman
et al., 2008) to obtain families of Gaussian processes with varying degrees of smoothness
and compactly supported correlation functions. Non-isotropic kernels can be obtained by
varying spatially the shape of the support. As an example, for d = 2, a non-circular kernel
can be written as

bn(s− s∗j ;φ) =
(

1 − ||s− s∗j ||
2
Σ

)Lp+φ1(Up−Lp)
× 1l||s−s

∗

j
||Σ<1

where the latter three components of φ = (φ1, φ2, φ3, φ4) define a distance given as

||s− s∗j ||Σ ≡

√

(

s− s∗j
)T

Σ−1
(

s− s∗j
)

.

The ellipsoidal shape is controlled by the parameters in

Σ−1 ≡

(

Ψ1 + Ψ2 cos(2πφ4) Ψ2 sin(2πφ4)
Ψ2 sin(2πφ4) Ψ1 − Ψ2 cos(2πφ4)

)

defined as

Ψ =
1

2

(

1

a2
+

1

A2
,

1

a2
−

1

A2

)

, a = Ls + φ2(Us − Ls), A = a+ φ3(Us − a).

So, for φ2, φ3, φ4 ∈ (0, 1), the semi-minor and semi-major axes a and A, respectively, belong
to (Ls, Us), and a ≤ A. Ls and Us are the pre-set limits for the support of the kernel.
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By varying φ spatially one obtains a random field whose smoothness depends on location,
and is defined by ellipsoidal kernels whose elongations and support also depend on location.
The spatial variation of φ is obtained using a normalized Bézier kernel, say b∗n, as

φk(s) =
m
∑

j=1

b∗n(s− s∗j ;u)ρk(s
∗
j) , k = 1, . . . , 4,

where u = (u, 1, 0, 0), implying spherical kernels with radii Us and some pre-set smoothness
parameter u. Normalization implies that φk(s) is a convex combination of ρk(s

∗
j) and thus,

if ρk(s
∗
j) ∈ (0, 1)∀j, then φk(s) ∈ (0, 1), ∀s ∈ S, so that we have defined a bounded spatial

process for each k.
In summary, the main random quantities in this analysis are the regression coefficients

βi, i = 1, . . . , q, and the latent point processes γj and ρj,k, j = 1, . . . ,m, k = 1, . . . , 4.
The other unknown parameters may be derived from these. Measurement precision τ is
usually considered known or subject to substantial prior information. Regarding the prior
distributions, in the absence of information aboutK, in our applications we use independent
improper priors, p(γj) ∝ 1. An alternative choice that will induce some spatial dependence
is the use of a Markov random field, as considered in Higdon (2007). Also, each ρj,k, receives
an independent standard uniform prior, ρj,k ∼ U(0, 1).

2.1 Uncorrelated expansions

The well known Kahunen-Loève (KL) expansion (see, for example, Yaglom, 1986) provides
a linear representation of a random field ω(·), with covariance function v(·, ·). It is given by
ω(s) =

∑∞
j=1

√

λjξj(s)αj, for a set of orthogonal functions ξ1, ξ2, . . ., uncorrelated random

variables αj, and non-negative λj that satisfy the integral equation
∫

v(s, s′)ξj(s
′)ds′ =

λjξj(s
′).

The CLP defined as in Equation (2) does not provide a full KL expansion of the random
field, but it does provide a representation based on independent coefficients that correspond
to the main modes of spatial variability. Take the spectral decomposition of K, say K =
PΛP T , where P is orthogonal and Λ is diagonal with elements λj. Let α ∼ Nm(0,Λ), then
we have that γ = Pα. Thus,

ω(s) = B(s)Tγ =
(

B(s)TP
)

α = ψ(s)Tα =
m
∑

j=1

ψj(s)αj . (3)

As Λ is a diagonal matrix, we have that the coefficients of the representation in (3) are
independent. Furthermore, if we order the elements of Λ to have λ1 > λ2 > . . . λm, then
ψ1(s) corresponds to the factor with the largest variability, ψ2(s) to the factor with the
second largest, and so on. This provides a spatial factor analysis of the original random
field.
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2.2 Extensions to spatio-temporal models

CLPs can be easily extended to spatio-temporal models by making the vector of coefficients
dependent on time, say γt. So we write

yt(s) = xT
t β +BTγt + εt(s) (4)

for the time series of observations at location s. The evolution of γt can be defined in a
Markovian fashion by a linear equation like

γt = Gtγt−1 + vt (5)

for some matrices Gt and a serially uncorrelated sequence of random vectors vt. Stroud
et al. (2001) use dynamic linear models (West and Harrison, 1997) to perform inference for
the model defined by Equations (4) and (5). Cressie et al. (2010) develop the so called
fixed rank filtering using similar models. Sansó et al. (2008) study a number of families of
spatio-temporal model that fit within the framework of CLPs.

To gain more insight on the properties of some simple CLPs, consider the spatio-temporal
extension of the model in Equation (2), ωt(s) =

∑m

j=1Bj(s)γt,j = B(s)Tγt, with evolution
equation given by γt = γt−1 + vt. Collapsing the two expressions we have

ωt(s) =
m
∑

j=1

Bj(s)γt−1,j +
m
∑

j=1

Bj(s)vt,j . (6)

In words, the process of interest at time t and location s is a weigthed average of the values of
a latent process at the previous time step, for locations that are in a neighborhood of s, plus
a spatially correlated, but serially uncorrelated noise. Kernels with spatially varying shapes
and support, like the ones proposed in Section 2, capture the interactions between time and
space. They provide parsimonious descriptions of potentially complicated dynamics. Xu
et al. (2005) model the spatio-temporal dynamics of a process of interest by a discrete time,
continuous space, linear integro-difference equation (IDE). An IDE is given by

ωt(s) =

∫

S

Bs(s;φ)ωt−1(s)ds .

Bs(s;φ) is the “redistribution” kernel, responsible for describing the interactions between
time and space in the evolution of the process. Clearly there are similarities between an IDE
and the model in Equation (6). A word of caution is due, though, as only in the case of
kernels with a very tight support can γt be interpreted as the restriction of ωt(s) to a grid.

2.3 Model fitting

Model fitting can use standard Markov chain Monte Carlo (MCMC) methods, which may
be improved if we take advantage of conditional linearity and sparseness. More specifically,
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when the parameters of the basis functions are fixed, CLPs become linear models with given
design matrices (X). Thus, the full conditional distribution of γ results in

(γ|β,Φ,Y ) ∼ N
(

τ
(

K−1 + τ(XTX)−1
)−1

XTY ,
(

K−1 + τ(XTX)−1
)−1
)

with Φ = φ(s1), . . . ,φ(sn), Y = y(s1), . . . , y(sn) and X(i, j) = Bj(si).
Due to the compact support of the kernels in our proposed model, most of the entries of

X are zero. This can be used to speed up computations of the mean and covariance matrix of
the above distribution. Of particular interest is the case where γ receives an improper prior.
Here, the full conditional variance is a symmetric band matrix, under suitable indexing of
grid points. The bandwidth is controlled prior to model fitting, through the ratio between the
upper support for the kernel (Us) and the grid spacing. For example, in a one-dimensional
problem the relationship between bandwidth (w) and ratio (z) is w = 4z − 1. Therefore, it
is possible to adapt the MCMC algorithm beforehand, and even to sample (conditionally)
independent γs with parallel computing processes. The resulting reduction in computation
time is important for large m and especially relevant for spatio-temporal problems, where
we have γt,j instead of γj.

3 Examples

For this example, we use a classical data set containing 148 sea scallop (Placopecten magel-

lanicus) abundance measurements, based on a 1990 survey cruise in the Atlantic continental
shelf off Long Island, New York, USA (Ecker and Heltshe, 1994). A recent analysis of this
data set is provided by Banerjee et al. (2004).

As shown in the upper left panel in Figure 1, scallop abundance varies widely across the
domain. Greater density occurs in the central region and along the southern border, which
has SW-NE orientation. To interpolate this data set, using the methods proposed in this
paper, we begin by setting up a grid, with 0.5◦ resolution, which envelops the data (Figure
1, upper left panel). Then, we define the bounds for the convolution kernel: Lp = 2, Up = 4,
so that the resulting surface will be fairly smooth. We set Ls = 0.5◦, Us = 2◦, so that the
support is allowed to vary from one to four units of the grid. Finally we set u = 2, to obtain a
reasonably smooth surface for the processes of kernel parameters. For a matter of simplicity,
we do not consider predictor variables (q = 0). We specify an improper flat prior for γ and
uniform (0, 1) priors for each of the ρk. We fit our model using purposely built Fortran code.

For comparison purposes, we also fit a predictive Gaussian process model, using the
function spLM from the R package spBayes (Banerjee et al., 2008). We opt for the Matèrn
covariance function, and let the range parameter have a Uniform(0.1, 3) prior, while the
smoothness parameter ν receives a Uniform(0.5, 3.5) prior. This configuration yields suffi-
ciently good mixing for all model parameters. For both models we obtain a sample of size
1,000 of γ, after 1:10 thinning and a burn-in stage of 1,000 iterations.

The upper right panel in Figure 1 presents the interpolated surface that results from
fitting the model with the Bézier kernel. Two regions with peak abundance are identified in
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the central part of the domain. Steep slopes are found in the south, as well as between the
peaks. The lower right panel displays the result using the spLM function. Here, there is a
fairly leveled SW-NE ridge, which seems to misfit the data in several locations. Gradients
are more spatially homogeneous, and predicted peak abundance falls short of the observed
values. To investigate if lack of fit could be due to grid coarseness, we repeat the spLM

procedure, but this time with twice the grid resolution (0.25◦). The outcome, shown in the
lower right panel of Figure 1, now has roughly the same features as that of the Bézier kernel
method.

The conclusion we take from this example is that anisotropic features present in spatial
data can be captured using either a coarse grid and Bézier kernels, or a fine enough grid and
circular kernels. Each has different costs: the former has several kernel parameters, the later
requires more point processes.

An advantage of the Bézier kernel method is that we may study how anisotropy and
differentiability depend on location, by looking at the mean posterior shape of the convolution
kernels (Figure 2). Along the southern border of the domain, kernels are strongly elliptical,
with the major axis being aligned with the SW-NE direction. Kernels are also elliptical in
the center of the domain, but now oriented along the NW-SE direction. In northern regions,
kernels are almost spherical. The spatial variability in posterior mean kernel eccentricity
(ǫ =

√

1 − (a/A)2) confirms that kernels are elliptical in the southern, central part of the
domain, and that they radiate into more spherical kernels from there. Finally, there is a small
SW-NE gradient in the posterior mean of the smoothness parameter φ1, which indicates a
change in differentiability.

Figure 3 depicts the spectral decomposition of the covariance matrix K, as estimated
from MCMC samples of γ. In the Bézier kernel model, the sorted eigenvalues decay ex-
ponentially; in the predictive process approach, using either the 0.5◦ or the 0.25◦ grid, the
largest eigenvalue stands out from the others, which decay slowly, in exponential fashion.

From Equation (3), we obtainm components of spatial variability, {ψj(s)}
m

j=1, and display
the first two (Figure 3, mid panels). Clearly, the two methods diverge in decomposing data
variability.

The representation of the cumulative sum of the ten leading components of spatial vari-
ability also reveals different patterns. In the predictive process approach, the overall SW-NE
orientation of contour lines is well captured; on the other hand, gradients are weak and
the maxima are misplaced. In the Bézier kernel model, a single strong mode appears at
73◦W; however, the secondary peak at 72.6◦W is not depicted, and abundance in the NW
corner is overestimated. An interesting and expectable feature of these two plots (given the
distribution of the eigenvalues) is that the former resembles ψ1(s), while the latter does not.

4 Discussion and Conclusions

We have presented a general framework for modeling spatial process that encompasses several
popular methods for dimension reduction. Representation of a spatial process as a linear
combination of a reduced number of basis functions has strong computational advantages.
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Figure 1: Fitting spatial models to the scallops data set. Upper left panel: original data and
0.5◦ convolution grid. Upper right: posterior mean of the convolution surface obtained with the
Bézier kernel and the 0.5◦ grid. Lower panels: posterior means obtained with a predictive Gaussian
process model using a 0.5◦ grid (left) and a 0.25◦ grid. Bubble and dot sizes are proportional to
scallop log-abundance.
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Figure 2: Spatially variable anisotropy and differentiability in scallops abundance. Left panel: pos-
terior mean of the 0.995 contour and semi-major axis of kernels centered at the grid points. Central
panel: posterior mean kernel eccentricity. Right panel: posterior mean smoothness parameter φ1.

While providing enough flexibility to accommodate spatially varying features of the process,
it is based on parsimonious inference. Additionally, it can be used to decompose the spatial
variability in components with independent coefficients. Also, it can be generalized to spatio-
temporal models that, in spite of their simplicity, are sophisticated enough to capture realistic
space-time dynamics.

Regarding the comparison between predictive processes and DPCs, we observe that pre-
dictive processes require only the choice of a covariance function, while DPCs require the
choice of a convolution and of a covariance matrix for the latent process. So DPCs are by
construction more flexible, but require more inputs. Another property of predictive processes
is that, by definition, they interpolate the gridded process ω∗. So, for example, if ω(s) is
used to model scallop abundance, then γj are scallop abundances, restricted to a grid. Such
correspondence can be used to elicit priors and build probabilistic structures for γj based
on the biological and ecological traits of scallops. A similar property is only valid for DCPs
that have very tight support, like the ones considered in Lemos and Sansó (2009). Unfortu-
nately for predictive processes, if var(γj) = Kii = σ2, then var(ω(s)) = var(B(s)Tγ) ≤ σ2

implying that maximum variance is achieved at the grid points. In other words, intra-grid
points are subject to structural underestimation. Finley et al. (2009) propose a correction to
compensate for this, based on adding independent random shocks. By allowing for kernels
with support wider than the grid spacing, the DCPs proposed in this paper avoid the type
of structural underestimation typical of predictive processes.

A frequent criticism of the methods proposed in this paper is that they are based on
an arbitrarily defined grid. Lemos and Sansó (2009) considered the problem of estimating
the grid size from a model comparison perspective. That is, for a set possible grid sizes,
one can fit the model and then use some model selection criteria to determine the optimum
grid size. A more comprehensive approach would be to include the grid size as one of the
model parameters. This has the drawback of requiring inferential methods that can handle
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Figure 3: Spatial factor analysis. Top row of panels: sorted eigenvalues of the covariance matrix
K for the Predictive Process approach (PP; left) and the Discrete Process Convolution approach
(DPC; right), using the 0.5◦ grid. Stippled and dashed lines denote exponential fits, with the latter
not using the leading eigenvalue. Mid rows: first two components of spatial variability, provided
by ψj(s). Bottom row: sum of the first ten components, ω∗(s) =

∑10
j=1 ψj(s)αj .
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parameter spaces of variable dimension, as the number of components in γ depends on the
grid size. Of course estimation of the grid size is tied to the use of a regular grid. This can
be a strong limitation, as the grid density should be a function of the spatial variability of
the process of interest. We are aware of ongoing efforts to develop models that place the
grid according to a spatial point process. On the other hand, the approach proposed in this
paper puts the emphasis on the kernel shape and support, which are strongly associated
with the location and density of grid points. By being able to vary the kernel the model
can compensate for the grid regularity and coarseness, as shown in Figure 1. Naturally,
any additional sophistication has a computational prize, which is important to bear in mind
when dealing with large datasets. Our experience with dense satellite data shows that a high
resolution grid and spherical kernels with fixed compact support provide reasonable results
and this may be ultimately the most cost effective approach. Still, information on anisotropy
and smoothness (as in Figure 2) may prove invaluable for the understanding of underlying
dynamic processes.
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