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Abstract
This paper focuses on extensibility: the ability of a program-
mer to use a particular language to extend the functional-
ity and expressiveness of that language. This paper explores
how to provide a useful and expressive notion of extensi-
bility by virtualizing the interface between code and data.
Specifically, a virtual value is a special kind of value. When
a strict primitive operation expects a regular value but finds
a virtual value in its place, that operation invokes a trap on
the virtual value. Each virtual value contains a collection of
traps, each of which is a user-defined function that describes
how that operation should behave on that kind of value, and
so provides a very general form of behavioral intercession.

This paper formalizes the semantics of virtual values,
and shows how virtual values enable the definition of a
variety of language extensions, each under 50 lines of code.
These extensions include additional numeric types; delayed
evaluation; taint tracking; contracts; revokable membranes;
dynamic information flow; and symbolic execution.

Several of these topics are areas of active research. We
suggest that universal proxies may enable such research to
be performed by experimenting within a language with ex-
tensible virtual values, rather than by having to define new
programming languages and implementations.

1. Introduction
Programming language design is driven by multiple, of-
ten conflicting desiderata, such as: expressiveness, simplic-
ity, elegance, performance, correctness, and extensibility, to
name just a few. This paper focuses primarily on extensibil-
ity: the ability of a programmer using a particular language
to extend the functionality and expressiveness of that lan-
guage. Extensibility is desirable on its own merits; it also
helps control language complexity by allowing many as-
pects of functionality to be delegated to libraries, and it en-
ables grassroots innovation, where individual programmers
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can extend the language rather than being restricted to par-
ticular features chosen by the language design committee.

Our starting point for language extension is the obser-
vation that language semantics typically involve interaction
between code and data, where code performs various oper-
ations (allocation, assignment, addition, etc) on data values.
Typically, the behavior of each operation is fixed or hard-
wired by the language semantics. Thus, if a function wants
to perform addition on its argument, then it must be passed
a numeric value that can be understood by the built-in addi-
tion operation. Consequently, a user-defined complex type
will not interoperate with code that uses the built-in addition
operation.

This paper explores the benefits of “virtualizing” the in-
terface between code and data values. Computer science has
a strong and successful history in virtualizing other well-
defined interfaces. For example, virtualizing the interface be-
tween a processor and its memory subsystem enabled inno-
vations such as virtual memory, distributed shared memory,
and memory mapped files. Virtualizing the entire processor
enables multiple independent virtual machines to run on a
single hardware processor, or to be migrated between pro-
cessors.

We propose to enable language extension by virtualizing
the entire interface between code and data. Although virtu-
alization is often considered esoteric, with potentially com-
plex interactions between various meta-levels, we show that
the semantics of data virtualization can be elegantly captured
using traditional tools of operational semantics. Specifically,
we present a language that supports virtual values. When a
primitive operation expects a regular value but finds a vir-
tual value in its place, that operation invokes a trap on the
virtual value. Each virtual value is simply a collection of
traps, each of which is a user-defined function that describes
how that operation should behave on that virtual value. The
operational semantics of this language is fairly straightfor-
ward, with additional evaluation rules for invoking appropri-
ate traps for operations on virtual values.

Virtual values enable the programmer to define entirely
new kinds of values, and to have these values interoperate
in a transparent manner with existing code. As might be ex-
pected, virtual values enable a variety of interesting language
extensions, including:
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1. Additional numeric types, such as rationals, bignums,
complex numbers, or decimal floating points1, with tra-
ditional operator syntax.

2. Lazy or delayed evaluation, with implicit forcing when a
delayed value is passed to a strict operation.

3. Taint tracking.

4. Dynamic information flow analysis, which extends taint
analysis to handle implicit flows.

5. Symbolic execution, where code executes on symbolic
input values, thus providing increased test coverage by
avoiding the need to pre-commit to specific test in-
puts [19, 14].

6. Dynamically checked contracts [9], including contracts
on functions and data structures that are enforced lazily.

7. Revocable membranes, which allow two components to
interact until the membrane is revoked, at which point no
further interaction or communication is possible [22].

This work is inspired by Miller and Van Cutsem’s pro-
posal for Javascript Catch-All Proxies [23, 4], which pro-
vide traps for operations on functions and objects. These ob-
ject proxies virtualize the interface between code and ob-
jects (including function objects), but not between code and
other data values. Our work also extends prior work on re-
flection [20] and behavioral intercession in SmallTalk [15],
in the CLOS metaobject protocol system [18], or via mir-
rors [2] and mirages [25]. In general, this prior work focuses
on virtualizing the interface between code and objects, but
not between code and other data values. (Section 12 contains
a more detailed comparison to related work.)

Virtual values generalizes these prior ideas to virtualize
the interface between code and all data values. This gen-
eralization provides significant benefits. In particular, it en-
ables a number of additional interesting applications, most
notably (1)–(5) from the list above. Moreover, it is particu-
larly helpful for mainstream languages, which typically in-
clude a large collection of non-object values. Finally, vir-
tual values generalize these prior ideas to languages, such as
Scheme, that are not object oriented.

We formalize the semantics of virtual values in context of
a particular dynamically typed language; however, our ideas
should be generally extensible to other languages, particu-
larly to other dynamically-typed languages that already per-
form tag checks.

Validating a language design feature is always difficult.
Certain quantifiable aspects of language design, such as per-
formance, are more easily validated, but are often less im-
portant than aspects such as expressiveness, consistency, el-
egance, and extensibility. In this paper, we aim to validate

1 Decimal floating point numbers (IEEE 754-2008) avoids the unintuitive
rounding errors of binary floating point. Our work is partly motivated by
discussions within the ECMA TC39 Javascript standardization committee
regarding the desire for a decimal floating point library that could support
convenient operator syntax.

the expressiveness and extensibility benefits of virtual val-
ues by presenting a series of progressively more interesting
language extensions, including: (1) delayed evaluation; (2)
contracts; (3) taint analysis; (4) complex numbers; (5) re-
vokable membranes; (6) symbolic execution; and (7) infor-
mation flow analysis. Each language extension is small, un-
der 50 lines of code, yet fairly powerful, thus validating that
virtual values offer an elegant and expressive mechanism for
language extension.

These extensions are nicely composable. For example,
we extend the language with dynamically-checked contracts,
and can use that contract extension to document interfaces
in the implementation of other extensions. Our taint exten-
sion automatically tracks taint information through all code,
including through the complex numbers extension or the de-
layed evaluation extension. Similarly, the symbolic execu-
tion extension automatically performs symbolic analysis of
complex numbers or delayed thunks.

To emphasize the modularity benefits of virtual values,
we briefly consider the consequences of an alternative archi-
tecture in which these extensions are implemented as part of
the language itself. This approach radically complicates the
language, since each extension cross-cuts all of the features
and evaluation rules of the language. For example, the in-
formation flow and complex number extension interact in a
non-trivial fashion, since we need to track how information
flows through operations on complex numbers.

In contrast, virtual values enable a clear separation of
concerns between the various extension modules, and pro-
vides a more coherent and extensible architecture. Com-
posed virtual values are an instance of the Decorator Pat-
tern [13] applied to the interface between code and data.

Virtual values are motivated by the rich proliferation of
research on various kinds of wrappers and proxies, includ-
ing higher-order contracts [9, 8], language interoperation via
proxies [16], and hybrid and gradual typing [28, 10], and
space-efficient gradual typing [29]. Virtual values may al-
low some of this research to be performed simply by exper-
imenting within a language with virtual values, rather than
by designing new languages and implementations.

Contributions The main contributions of this paper are as
follows:

• it virtualizes the entire interface between code and data
values, thus generalizing prior methods for behavioral
intercession in metaobject protocols;
• it demonstrates that behavioral intercession is not re-

stricted to objects, or to object-oriented languages;
• it presents a formal yet accessible operational semantics

for virtual values;
• and it demonstrates the extensibility benefits of virtual

values by implementing seven substantial language ex-
tensions: (1) delayed evaluation; (2) contracts; (3) taint
analysis; (4) complex numbers; (5) revokable mem-
branes; (6) symbolic execution; and (7) information flow.
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Figure 1: λproxy Syntax
e ::= Expressions

x variable
c constants
λx. e abstraction
e e application
if e e e conditional
uop e unary operators
e bop e binary operators
{ e : e } record creation
e[e] record lookup
e[e] := e record update
proxy e proxy creation
isProxy e proxy predicate

c ::= n | s | false | true | unit Constants
uop ::= − | ! | isNum | isBool Unary operators

isFunction | isRecord | tostring | . . .
bop ::= + | = | ! = | . . . Binary operators

Syntactic Sugar

e.x
def= e["x"]

e.x := e′ def= e["x"] := e′

x : e def= "x" : e
let x = e1; e2

def= (λx. e2) e1
e1; e2

def= (λx. e2) e1 x 6∈ FV (e2)
letrec x = e1; e2

def= let y = {}; y.x := θe1; θe2
where θ = [x := y.x]

e1 || e2
def= let x = e1; if x x e2

e1 && e2
def= let x = e1; if x e2 x

λ. e
def= λd. e d 6∈ FV (e)

f() def= f unit

assert e
def= if e unit (unit unit)

private x = e; y = e′

def=
let p = {}; let q = {}; p.x := θe; q.y := θe′; q

where θ = [x := p.x, y := q.y]

2. A Language With Virtual Values
We formalize the semantics of virtual values in the context
of an idealized language that extends the dynamically typed
λ-calculus with virtual values, as well as with mutable, ex-
tensible records (as in Javascript). For brevity, we use proxy
as a synonym for virtual values, and so refer to the language
as λproxy.

2.1 Syntax
The syntax of λproxy is summarized in figure 1. In addition
to the usual abstractions (λx. e), applications (e e), and vari-
ables (x) of the λ-calculus, the language also has constants
(c), conditionals (if e e e), and unary and binary operators

(uop e and e bop e, respectively). Constants include numbers
(n) and strings (s), as well as unit and boolean constants.

A record is mutable finite map from values to val-
ues. The language includes constructs to create ({ e : e }),
lookup (e[e]), and update (e[e] := e) this map. The do-
main of a record is often strings, and so following Javascript
we include syntactic sugar to facilitate this common case,
whereby e.x abbreviates e["x"], etc. A record access returns
false by default (similar to undefined in Javascript) if an
accessed field is not defined in a record.

A proxy value p is created by the expression proxy e,
where e should evaluate to a handler record that defines
a collection of trap functions with the following informal
meanings:

call :: argument→ result
getr :: index→ contents
geti :: record→ contents
setr :: index→ newcontents→ Unit
seti :: record→ newcontents→ Unit
unary :: uop→ result
left :: bop→ rightarg→ result
right :: bop→ leftarg→ result
test :: Unit→ Any

The call trap defines how the proxy p should behave when
it is used as a function and applied to a particular argument,
as in (p arg). The getr and setr traps define the proxy’s
behavior when used as a record, as in p[w] and p[w] := v,
respectively. The geti and seti traps are called when the
proxy p is used as a record index, as in a[p] and a[p] := v.

The unary trap is invoked when a unary operator is
applied to the proxy (e.g., !p). The specific unary operator
is passed as a string argument (e.g., "!"), which facilitates
handling all unary operations in a consistent and compact
manner. (Strings play the role of enum types.)

For binary operators, the proxy could occur on the left or
the right side of the operator, and each case invokes a cor-
responding trap (left or right), with the binary operator
string and the other operand being passed as arguments. If
both operands are proxies we give precedence to the left ar-
gument, and so the right trap is invoked only when the left
operand is not a proxy. Finally, if a proxy is used in a con-
ditional test, then the proxy’s test trap is invoked, which
should return a value to be used in that test.

Figure 1 includes the usual abbreviations for let and
letrec, for the short-circuiting operators || and &&, and
for defining and invoking thunks. A failing assert is mod-
eled by getting stuck. To facilitate defining each language
extension, we introduce a lightweight syntax for modules

private x = e; y = e′

with private variables x, public variables y, and where all
definitions can be mutually recursive. In the desugared form
of this construct, the records p and q hold the private and
public bindings respectively, and only the public bindings in
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Figure 2: λproxy Semantics

Runtime Syntax:
r ::= c | a | λx. e Raw values

v, w ::= r | proxy a Values
e ::= . . . | a Expressions with addresses
H ::= Address →p (Value →p Value) Heaps
E ::= • e | v • | if • e e | uop • | • bop e | v bop • | proxy • | isProxy • | Evaluation context frames

•[e] | v[•] | • [e] := e | v[•] := e | v[w] := • | { v : v, • : e, e : e } | { v : v, v : •, e : e }

Evaluation Rules:
H, (λx. e) v → H, e[x := v] [CALL]
H, { s : v } → H[a := { s : v }], a a 6∈ dom(H) [ALLOC]

H, a[w] → H, v w ∈ dom(H(a)), v = H(a)(w) [GET]
H, a[w] → H, false w 6∈ dom(H(a)) [GETFALSE]

H, a[w] := v → H ′, v H ′ = H[a := H(a)[w := v]] [SET]
H, uop r → H, δ(uop, r) [UNARYOP]

H, r1 bop r2 → H, δ(bop, r1, r2) [BINARYOP]
H, if r e1 e2 → H, e1 r 6= false [IFTRUE]

H, if false e1 e2 → H, e2 [IFFALSE]
H, isProxy (proxy a) → H, true [ISPROXY]

H, isProxy r → H, false [ISNOTPROXY]

H, (proxy a) v → H, a.call v [CALLPROXY]
H, (proxy a)[w] → H, a.getr w [GETRPROXY]
H, r[proxy a] → H, a.geti r [GETIPROXY]

H, (proxy a)[w] := v → H, (a.setr w v); v [SETRPROXY]
H, r[proxy a] := v → H, (a.seti r v); v [SETIPROXY]
H, uop (proxy a) → H, a.unary "uop" [UNARYPROXY]

H, (proxy a) bop v → H, a.left "bop" v [LEFTPROXY]
H, r bop (proxy a) → H, a.right "bop" r [RIGHTPROXY]

H, if (proxy a) e1 e2 → H, if (a.test()) e1 e2 [TESTPROXY]

H,E[e] → H ′, E[e′] if H, e→ H ′, e′ [CONTEXT]

q are exposed to the rest of the program. The substitution θ
replaces references to the module-defined variables x and y
with accesses to corresponding fields of p and q respectively.

2.2 Formal Semantics
Figure 2 formalizes the informal semantics outlined above.
A heap H is a finite map from addresses (a) to records. A
raw value r is a value that is not a proxy. An evaluation state
H, e contains a heap and the expression being evaluated.

The rules for the evaluation relation H, e → H ′, e′ de-
fine how to evaluate the various constructs in the language.
The first collection of evaluation rules are mostly straight-
forward. The conditional test considers any raw value other
than false as being true. As usual, the partial function δ de-
fines the semantics of unary and binary operators (uop and
bop, respectively) on raw values. For example,

δ("=", v1, v2)
def=

{
true if v1 and v2 are identical
false otherwise

The second collection of rules defines how traps are
invoked for proxy values. For example, according to the
[CALLPROXY] rule, in a function application (fv), if the
function f is actually a proxy (proxy a), then the trap
a.call (or equivalently, a["call"]) is invoked on the ar-
gument v. Similarly, on a record access v[w] where v =
(proxy a), the trap a.getr is applied to the record index
w, via the [GETRPROXY] rule. Updating a field of a proxy
invokes its setr trap, and assignments always return the
assigned value. Using a proxy as a record index invokes
its geti and seti traps via the rules [GETIPROXY] and
[SETIPROXY].

For a unary operation on a proxy, the unary trap is in-
voked, with the specific unary operator being passed as a
string argument. For a binary operation, the semantics first
attempts to dispatch to the left proxy argument, if that is a
proxy, by calling its left trap via the rule [LEFTPROXY]. If
the left argument is a raw value but the right argument is a
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proxy, then that proxy’s right trap is invoked, passing the
binary operation string and the left (raw) argument.

2.3 Virtual Values and Security
Proxies allow the implementation of additional kinds of val-
ues, and so they increase the possible observable behaviors
of values. For example, in the presence of proxies, x * x
can return a negative number (e.g., when x is complex).
Moreover, (a.x = a.x) could evaluate to false, both be-
cause a is a proxy whose get trap returns different values,
or because a.x is a proxy that defines unusual behavior for
its “=” operation, which may not be an equivalence relation.

A larger space of value behaviors does make it harder to
write defensive or security-critical code. In particular, secu-
rity checks that are correct under the assumption that strings
are immutable may fail when passed a proxy representing
mutable strings.

There is therefore some tension on how to limit the pos-
sible observable behaviors of proxies. A value consumer
might want strict limits on the behavior of values (includ-
ing proxy values), while a proxy creator might want max-
imum flexibility to introduce novel kinds of proxy behav-
iors. Consequently, an important design choice is what re-
strictions should be placed on proxy behaviors. For exam-
ple, Javascript proxies cannot override the identity operator,
which therefore remains an equivalence operation [4].

In λproxy, we intentionally placed no restrictions. In par-
ticular, proxies can blur the distinction between the different
kinds of values (functions, constants, and records). For ex-
ample, a proxy could behave both like a function and like a
record, depending on how it is used. As an alternative de-
sign, proxies could be partitioned into function proxies and
record proxies, which might be required to implement differ-
ent kinds of traps. The special form isProxy allows value
consumers to defend against unwanted proxy behaviors.

2.4 Virtual Values and Performance
In dynamically-typed languages, the implementation of each
primitive operation typically needs to perform a tag check
that identifies the dynamic type of each argument value. For
example, Figure 3 contains a code snippet from the Spider-
Monkey Javascript interpreter for performing unary minus.
This code contains a fast path for handling integer values, a
second fast path for doubles, and then a slow path for han-
dling Javascript’s various implicit conversions, error han-
dling, etc. We expect that the slow path would be an ideal
place for incorporating proxy handling, without introducing
any additional overhead on the common fast paths. In partic-
ular, Andreas Gal has demonstrated that Javascript proxies
introduce minimal overheads [4, table 2]; we hope similar
results could be achieved for our more general value prox-
ies.

A proxy typically needs a handler record with nine traps,
each of which likely needs to close over the underlying
value. More efficient representations are possible. For ex-
ample, “proxy a v” could represent a proxy for the value v,

Figure 3: Tag Checks in SpiderMonkey’s Unary Minus

1 if (JSVAL IS INT( rval )&&(i=JSVAL TO INT(rval ))!=0) {
2 // FAST PATH
3 i = −i; regs . sp[−1] = INT TO JSVAL(i);
4 } else if (JSVAL IS DOUBLE(rval)) {
5 // SECOND FAST PATH
6 · · ·
7 } else {
8 // SLOW PATH
9 · · · // Implicit conversions

10 // IDEAL SPOT FOR HANDLING PROXIES
11 · · · // Error handling
12 }

where the handler a is common to many proxies, and each
trap is passed the specific underlying value v each time it
is invoked. This alternative representation would reduce the
space required for each proxy from tens of words to perhaps
three words: a header word plus slots for a and v.

In short, it appears that proxies can be implemented fairly
efficiently, particular in a dynamically typed language. Fur-
ther exploration of the performance implications of proxies
remains for future work.

2.5 Design Principles for Reflective APIs
Bracha and Ungar’s propose three design principles for re-
flective APIs [2], namely encapsulation, stratification, and
ontological correspondence. Proxies satisfy the principle of
encapsulation, since the proxy API is high-level and ab-
stract, and does not expose unnecessary details regarding a
particular underlying implementation of the language. Prox-
ies also satisfy the principle of stratification, since there is
a clear distinction between base level values (both raw val-
ues and proxies), and meta-level values, such as the handler
for a proxy value. In particular, there is no way for a user
of a proxy value to access the underlying handler. Evaluat-
ing (proxy a)["unary"] does not return the unary trap
function of the handler a; instead it invokes a’s get trap on
the argument "unary". Finally, proxies satisfy the principle
of ontological correspondence, since each trap handler cor-
responds directly to a particular operation being performed
by code on a (virtual) data value.

3. Identity Proxy
To illustrate the expressiveness and extensibility benefits of
universal proxies, we present a series of progressively more
interesting language extensions. Each extension is only a
small fragment of code, typically 10-50 lines, yet they add
significant expressive power to the language.

In each language extension, we often omit punctuation
such as commas or semicolons, and use indentation to clar-
ify nesting structure, as in Haskell. For brevity, we mostly
ignore error handling, and so some traps simply get stuck if
their proxy is used inappropriately. For documentation pur-
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Figure 4: Identity Proxy

1 identityProxy : : Any→ Proxy = λx . proxy {
2 ca l l : λy . x y
3 getr : λn . x[n]
4 get i : λ r . r [x]
5 se t r : λn ,y . x[n] := y
6 se t i : λr , y . r [x] := y
7 unary : λo . unaryOps[o] x
8 l e f t : λo , r . binaryOps[o] x r
9 r ight : λo , l . binaryOps[o] l x

10 t e s t : λ . x
11 }
12 unaryOps : : UnaryOp⇒Any→Any = {
13 "-" : λx . −x
14 "!" : λx . !x / / negation
15 isBool : λx . isBool x
16 / / etc for a l l unary ops
17 }
18 binaryOps : : BinaryOp⇒Any→Any→Any = {
19 "+" : λx ,y . x+y
20 "=" : λx ,y . x=y
21 / / etc for a l l binary ops
22 }

poses, each definition includes a contract, whose semantics
we formalize (via proxies, of course) in section 5 below.

As a starting point for our series of language extensions,
Figure 4 sketches a simple proxy that has no effect on pro-
gram evaluation. In particular, (identityProxy x) returns
a proxy in which each trap handler simply performs the ap-
propriate operation on the underlying argument x. For unary
operations, the unary trap dispatches to an auxiliary record
unaryOps, which maps each unary operator string to a func-
tion that performs the corresponding operation. The left
and right traps similarly dispatch to the binaryOps lookup
table.

In order for identityProxy to be entirely transpar-
ent, special care needs to be taken to hide the difference
between a proxy and its underlying value. In particular,
identityProxy overrides the equality operation, and so
"a"=(identityProxy "a") evaluates to true. Similarly,
{"a":3}[identityProxy "a"] evaluates to 3 via the
geti trap.

The identityProxy is apparently circular, since it de-
fines each unary operation in terms of that operation itself.
To illustrate how this circularity bottoms out, consider:

− (identityProxy (identityProxy 4))

This expression creates a proxy p1, in which x is bound to
a second proxy p2, in which x is in turn bound to the inte-
ger 4. The “−” operator therefore the trap p1.unary("−"),
which calls unaryOps["−"](p2), which calls a second trap
p2.unary("−"), which in turn calls unaryOps["−"](4),
which finally returns−4. Thus, any apparent circularity bot-
toms out at the end of the proxy chain, allowing proxies to
be chained together in a composable manner.

Figure 5: Lazy Evaluation Proxy

1 delay : : Thunk→ Proxy = λ f .
2 l e t rec z = (λ . l e t r=f ( ) ; z := λ . r ; r )
3 proxy {
4 ca l l : λy . z ( ) y
5 getr : λn . z ( ) [n]
6 get i : λ r . r [z ( ) ]
7 se t r : λn ,y . z ( ) [n] := y
8 se t i : λr , y . r [z ( ) ] := y
9 unary : λo . unaryOps[o] z ( )

10 l e f t : λo , r . binaryOps[o] z ( ) r
11 r ight : λo , l . binaryOps[o] l z ( )
12 t e s t : λ . z ( )
13 }

4. Lazy Evaluation Proxy
The identity proxy serves to illustrate the semantics of prox-
ies, but does not yet provide useful functionality. We next
consider a more useful proxy that extends the identity proxy
to provides lazy or delayed evaluation, as shown in Figure 5.
The function delay takes as an argument a thunk f (a func-
tion with no arguments), and returns a proxy that behaves
like the result of f, except that that result is computed lazily,
when some strict operation invokes a trap on that proxy.

The function delay creates a mutable variable2 z con-
taining a thunk that, when called, computes f() and stores
the resulting value, wrapped in a thunk, back into z. Thus,
z() returns the result of f while avoiding repeated compu-
tation. Each trap then calls z() to access the result of f. In
this manner, the resulting proxy causes delayed values to be
implicitly forced when needed; no explicit force operations
are required in the source program.

5. Contracts
A contract [9] is a function that mediates between two soft-
ware components: the function’s argument and the context
that observes the function’s result. As long as these two com-
ponents interact appropriately, the contract behaves like the
identity function;3 if either component engages in inappro-
priate interaction (for example, passing a string argument
when an integer is expected), the intermediating contract de-
tects the error and halts execution.

Figure 6 shows how to implement contracts using prox-
ies, and provides four contract constructors. By convention,
we use capitalized identifiers to denote contracts, and use the
subscript c to denote contract constructors.

A flat contract has the form (Flatc pred). When ap-
plied to an argument x, this contract requires that x sat-
isfy the predicate pred. A function contract (Functionc

Domain Range) requires that its argument should be a func-

2 According to the desugaring of Figure 1, letrec-bound variables are
actually record fields and so are mutable.
3 Contracts do have a small observable effect of breaking identity, since a
function and its wrapped version are not considered equal.
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Figure 6: Contracts

1 / / Four contract constructors
2 Flat c = λpred . λx . asser t ( pred x ) ; x
3

4 Functionc =
5 λDomain,Range .
6 λx . asser t ( isFunction x)
7 proxy {
8 ca l l : λy . Range (x (Domain y) )
9 · · · / / as in identityProxy

10 }
11

12 Recordc =
13 λcontracts .
14 λx . asser t ( isRecord x)
15 proxy {
16 getr : λn . contracts [n] (x[n] )
17 se t r : λn ,y . x[n] := ( contracts [n] y)
18 · · · / / as in identityProxy
19 }
20

21 Mapc =
22 λDomain,Range .
23 λx . asser t ( isRecord x)
24 proxy {
25 getr : λn . Range (x[Domain n] )
26 se t r : λn ,y . x[Domain n] := Range y
27 · · · / / as in identityProxy
28 }
29

30 / / some useful contracts
31 Bool = Flat c (λx . isBool x)
32 Num = Flat c (λx . isNum x)
33 NumOrBool = Flat c (λx . isNum x | | isBool x)
34 Any = Flat c (λx . true )
35 Unit = Flat c (λx . x = unit )
36 Thunk = Unit→Any
37 UnaryOp = Flat c (λx . {"-" : true , · · · }[x] )
38 BinaryOp = Flat c (λx . {"+" : true , · · · }[x] )
39 Proxy = Flat c (λx . isProxy x)

Syntactic Sugar

Domain → Range
def= Functionc Domain Range

Domain ⇒ Range
def= Mapc Domain Range

{{ s : Contract }} def= Recordc { s : Contract }
private x :: C = e; y :: C ′ = e′

def= let p = {}; let q = {};
p.x := θ(C e); q.y := θ(C ′ e′); q
(where θ = [x := p.x, y := q.y])

tion that is applied only to values satisfying the contract
Domain and that returns only values satisfying Range.

Record contracts are more interesting, both because their
implementation requires proxies, and because we provide
two kinds of contracts, for homogeneous and heterogeneous
records. Both kinds of record contracts are enforced in a
lazy manner, on each access and update of the resulting

Figure 7: Tainting Proxy

1 private unproxy
2 : : Proxy⇒{{ value : Untainted }} = {};
3

4 private proxify : : Untainted→ Tainted = λx .
5 l e t p = proxy {
6 ca l l : λy . t a in t (x y)
7 getr : λn . t a in t (x[n] )
8 get i : λ r . t a in t ( r [x] )
9 se t r : λn ,y . x[n] := ta in t (y)

10 se t i : λr , y . r [x] := ta in t (y)
11 unary : λo . t a in t ( unaryOps[o] x)
12 l e f t : λo , r . t a in t (binaryOps[o] x r )
13 r ight : λo , l . t a in t (binaryOps[o] l x)
14 t e s t : λ . x
15 }
16 unproxy[p] := {value :x}
17 p
18

19 t a in t : : Any→ Tainted = λx .
20 i f ( isTainted x) x ( proxify x)
21

22 isTainted : : Any→ Bool =
23 λx . i f (unproxy[x] ) true false
24

25 untaint : : Any→ Untainted =
26 λx . i f (unproxy[x] ) (unproxy[x ] . value ) x
27

28 Tainted = Flat c (λx . ( isTainted x)
29 Untainted = Flat c (λx . ! ( isTainted x) )

proxy. A homogeneous record contract has the form (Mapc

Domain Range); a record r satisfies this contract if each
index n in the domain of r satisfies the Domain contract,
and the corresponding value r[n] satisfies Range. A het-
erogeneous record contract or map has the form (Recordc

contracts), where contracts is a record mapping record
indices to contracts. A record r satisfies this contract if
for each index n of r, the value r[n] satisfies the contract
contracts[n].

We use the syntax Domain → Range and Domain ⇒
Range to abbreviate function and map contracts, respec-
tively, and {{ s : Contract }} for heterogeneous record
contracts, as shown in Figure 6. We adapt the module def-
inition syntax from Figure 1 to support contracts on module
bindings. In the remainder of this paper, we use this contract
syntax and definitions to document subsequent language ex-
tensions.

6. Tainting Proxy
We next apply proxies to implement taint tracking, as shown
in Figure 7. The function proxify takes an argument x and
returns a proxy that behaves much like x, in that all traps first
perform the corresponding operation on x (much like in the
identity proxy), but then taint the result.

We need to be able to untaint values, for example, af-
ter they have been appropriately sanitized. For this pur-
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pose, we maintain an unproxy record that maps each proxy
value back to the original raw value. Thus, unproxy[p] is
either false, if p is not a tainting proxy, or else is a record
{value:x}, if p is a tainting proxy whose underlying value
is x. A value is tainted if it is in the domain of this map and
is untainted otherwise. The function taint uses proxify to
taint any value that is not already tainted.

Based on these definitions, tainted values now propagate
through all the primitive operations of the language. For
example, 4 + (taint 5) evaluates to a tainted 9, that is,
a tainting proxy whose underlying raw value is 9.

The unproxy table may raise some concerns about po-
tential memory leaks, if unproxy[p] remains live even af-
ter p has been collected. The semantic of λproxydoes not
specify garbage collection behavior, however. In particular,
λproxyrecords could be implemented as ephemeron tables [],
where the entry for unproxy[p] is collected as soon as p
is garbage. Alternatively, the need for unproxy could be
avoided by instead using an appropriately-protected field in
each proxy p that is visible only to the module itself, and not
to client code.

Several languages, such as Perl, provide tainting as a
builtin feature of the language implementation, which in-
troduces additional complexity into the compiler/interpreter
and runtime data representations. Proxies allow this com-
plexity to be isolated into a small extension module.

7. Additional Numeric Types
An often-requested feature of a programming language is the
ability for the programmer to introduce additional numeric
types beyond what are provided in the underlying language
implementation, and to manipulate these additional types us-
ing traditional and intuitive operator syntax. As one exam-
ple, Java provides Bignums, but only as a library with awk-
ward method invocation syntax, and it does not provide ra-
tional numbers, complex numbers, or decimal floating point.

In addition, programmers often want to use operators
such as “+” to manipulate other “numeric-like” types such
as arrays or multidimensional arrays. Some statically typed
languages, such as C++, use static operator overloading to
provide this flexibility. Proxies provide similar functionality
for dynamically typed scripting languages.

Figure 8 illustrates how to extend λproxy with an ad-
ditional numeric type, namely complex numbers. The pri-
vate variable unproxy maintains a map from each com-
plex number proxy to a (real,imaginary) pair. The function
makeComplex takes as input the two components of a com-
plex number, and creates a proxy p that dispatches unary and
binary operations appropriately. Unary operations are dis-
patched using the complexUnaryOps lookup table, where
each entry takes real and imaginary arguments. For binary
operations, the left trap first decomposes the right argu-
ment y (which should be a ordinary number or a complex
number) into its real and imaginary parts, and then dis-
patches to the appropriate function in the complexBinOps

Figure 8: Complex Proxy

1 private unproxy : : Proxy⇒{{ real : Num, img: Num }}
2 = {}
3

4 private complexUnaryOps
5 : : UnaryOp⇒Num→Num→Any
6 = {
7 "-" : λr , i . makeComplex (−r ) (−i )
8 tos t r ing : λr , i . ( tos t r ing r )+"+"+( tos t r ing i )+"i"
9 · · ·

10 }
11

12 private complexBinOps
13 : : BinaryOp⇒Num→Num→Num→Num→Any
14 = {
15 "+" : λ r1 , i 1 , r2 , i 2 . makeComplex ( r1+r2 ) ( i 1+i 2 )
16 "=" : λ r1 , i 1 , r2 , i 2 . ( r1=r2 ) && ( i 1=i 2 )
17 · · ·
18 }
19

20 makeComplex : : Num→Num→ Complex
21 = λr , i .
22 l e t pair = {real : r , img: i}
23 p = proxy {
24 unary : λo . complexUnaryOps[o] r i
25 l e f t : λo ,y . l e t z = unproxy[y] | |
26 { real : y , img: 0 }
27 complexBinOps[o] r i z . real z . img
28 r ight : λo ,y . complexBinOps[o] y 0 r i
29 get i : λ r . r [ pair ]
30 se t i : λr , y . r [ pair ] := y
31 t e s t : λ . true / / a l l Complex are non−fa lse
32 }
33 unproxy[p] := pair
34 p
35

36 isComplex : : Any→ Bool
37 = λx . i f (unproxy[x] ) true false
38

39 i : : Complex = makeComplex 0 1
40

41 Complex = Flat c isComplex

table. Note that unproxy[y] returns false if y is not a com-
plex number proxy, and so the short circuit operator “||”
conveniently provides the desired functionality. The right
trap is simpler, since its left argument is never complex. Fi-
nally, when a complex number is used as a record index, its
geti and seti traps use pair as unique index.

Our example implementation exports the variable i, from
which client code can conveniently construct arbitrary com-
plex numbers, for example “1.0 + (1.0 * i)”.

Note that proxies are not a “silver bullet” for composi-
tionality. In particular, proxies use a double dispatch con-
vention for overloading binary operators. Consequently,
two independent proxy-based extensions, say Complex and
Rational, may not be composable, since neither implemen-
tation knows how to add a complex and a rational number.
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Generic functions, as in CLOS [18] and elsewhere, provide
more flexibility but with some additional complexity.

8. Dynamic Units of Measure
Type systems have been proposed to track units of mea-
sure, such as meters or seconds (for example, [?]). Figure 9
shows how to track units dynamically via proxies. The con-
tract UNum describes a number, possibly wrapped in a chain
of proxies, where each proxy includes a unit of measure (a
string, such as "second") and an integer index. This proxy
chain is kept in lexicographic ordering of units by the func-
tion makeUNum. Unary and binary operators on UNums prop-
agate down the proxy chain to the underlying numbers, pro-
vided the units are appropriately compatible. In particular,
"+" requires that its arguments have identical units by call-
ing the function (dropUnit u i r), which ensures that the
right argument r has the unit u with index i, and returns the
unwrapped version of r. The units module then exports a
single binding, makeUnit, which can then be used by client
code to create and use their desired units of measure, as in:

1 let meter = makeUnit "meter"
2 let second = makeUnit "second"
3 let g = 9.81 * meter / second / second

9. Revokable Membranes
Figure 10 describes how to implement revokable, identity-
preserving membranes, which provide unavoidable transi-
tive interposition between two software components [22].
The two components can communicate via the membrane in
a transparent manner, but cannot share true references, only
proxies to references. Consequently, once the membrane is
revoked, no further communication is possible between the
two components (unless of course there is a side channel for
communication, for example via a global mutable variable).

We refer to the components on each side of the membrane
as the true and false components, respectively. When an
object passes from the true component to the false com-
ponent, it is wrapped in a proxy. When that proxy gets
passed back to the true component, we wish to remove
that proxy wrapper in order to preserve object identity. For
this purpose, we maintains two maps, unproxy[true] and
unproxy[false], where unproxy[true] maps from refer-
ences known to the true component to corresponding refer-
ences in the false component, and unproxy[false] is the
corresponding inverse map.

The function switch passes a value s from the src
component to the other component (!src). Constants are
passed without being wrapped, as they cannot encode or
contain an object reference. Since proxies can masquerade
as constants, we also need to check that s is not a proxy. Note
that isProxy is a special form and not a unary operator, and
so it cannot be trapped; it always reveals the true nature of
a proxy, which is critical for reasoning about the security
guarantees provided by code such as membranes.

Figure 9: Dynamic Units of Measure

1 private unproxy
2 : : Proxy⇒{{ unit : String , index : Int , value : UNum }}
3 = {}
4

5 private makeUNum : : String → Int →UNum→UNum
6 = λu , i , n .
7 l e t p = unproxy[n ] ;
8 i f (p && u = p . unit ) / / avoid duplicates
9 makeUNum u ( i + p . index ) p . value

10 else i f (p && u < p . unit ) / / keep proxies ordered
11 makeUNum p.u p . index (makeUNum u i p . value )
12 else / / add th is unit to proxy chain
13 l e t p = proxy {
14 / / no call , getr , geti , setr , s e t i traps
15 unary : λo . unitUnaryOps[o] u i n
16 l e f t : λo , r . unitLeftOps [o] u i n r
17 r ight : λo , l . unitRightOps [o] u i n l
18 t e s t : λ . n / / ignore units in t e s t
19 }
20 unproxy[p] := { unit : u , index : i , value : n }
21 p
22

23 private unitUnaryOps
24 : : UnaryOp⇒ Strng→ Int →UNum→Any = {
25 "-" : λu , i , n . makeUNum u i (−n)
26 tos t r ing : λu , i , n . ( tos t r ing n)+" "+u+"^"+i
27 · · ·
28 }
29

30 private unitLeftOps
31 : : BinaryOp⇒ String → Int →UNum→Any→Any = {
32 "*" : λu , i , n , r . makeUNum u i (n ∗ r )
33 "/" : λu , i , n , r . makeUNum u i (n / r )
34 "+" : λu , i , n , r . makeUNum u i (n + ( dropUnit u i r ) )
35 "-" : λu , i , n , r . makeUNum u i (n − ( dropUnit u i r ) )
36 "=" : λu , i , n , r . hasUnit u i r && n = ( dropUnit u i r )
37 }
38

39 private unitRightOps / / l e f t arg never a proxy
40 : : BinaryOp⇒ String → Int →UNum→Any→Any = {
41 "*" : λu , i , n , l . makeUNum u i ( l ∗ n)
42 "/" : λu , i , n , l . makeUNum u (−i ) ( l / n)
43 "+" : λu , i , n , l . asser t fa lse / / unit mismatch
44 "-" : λu , i , n , l . asser t fa lse / / unit mismatch
45 "=" : λu , i , n , l . fa lse / / unit mismatch
46 }
47

48 private hasUnit : : String → Int →UNum→ Bool
49 = λu , i , n .
50 l e t p = unproxy[n]
51 p != false && u = p . unit && i = p . index
52

53 private dropUnit : : String → Int →UNum→UNum
54 = λu , i , n .
55 asser t ( hasUnit u i n)
56 unproxy[n ] . value
57

58 makeUnit : : String →UNum = λu . makeUNum u 1 1
59

60 UNum = Flat c (λx . unproxy[x] | | isNum x)
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Figure 10: Revokable Identity-Preserving Membranes

1 private unproxy : : Bool⇒Any⇒Any
2 = { true : {} , fa lse : {} }
3

4 private revoked : : Bool = false
5

6 private isConstant : : Any→ Bool
7 = λx . (isNum x) | | ( isBool x) | | ( isStr ing x)
8

9 private switch : : Bool→Any→ ConstantOrProxy
10 = λsrc , s .
11 i f ( revoked) ( asser t fa lse ) unit
12 i f ( ( isConstant s ) && !( isProxy s ) )
13 s
14 (unproxy[ src ] [ s ] | |
15 l e t send = switch src
16 l e t rcv = switch ( ! src )
17 l e t p = proxy {
18 ca l l : λy . send ( s ( rcv y) )
19 getr : λn . send ( s [ rcv n] )
20 get i : λ r . send ( ( rcv r ) [ s ] )
21 se t r : λn ,y . s [ rcv n] := rcv y
22 se t i : λr , y . ( rcv r ) [ s ] := rcv y
23 unary : λo . send (unaryOps[o] s )
24 l e f t : λo , r . send (binaryOps[o] s ( rcv r ) )
25 r ight : λo , l . send (binaryOps[o] ( rcv l ) s )
26 t e s t : λ . i f ( s ) true false
27 }
28 unproxy[ src ] [ s ] := p
29 unproxy [ ! src ] [p] := s
30 p)
31

32 membrane : : Any→Any = switch true
33

34 revoke = λ . ( revoked := true )
35

36 ConstantOrProxy = Flat c (λx . isConstant x | | isProxy x)

In the case where s is not a constant, if unproxy[src]
already contains an entry for s, then that is returned. Oth-
erwise, we introduce the functions send and rcv for send-
ing and receiving values from the component src, and cre-
ate a new proxy p that transitively performs the appropri-
ate wrapping in its various traps. Finally, the two maps
unproxy[true] and unproxy[false] are updated to record
the relation between s and p, and then p is returned.

Note that we implement all traps, and not just the get,
set, and call traps, to support situations where, for exam-
ple, smight be a complex number proxy. That complex num-
ber proxy would get wrapped in an additional membrane
proxy; both kinds of language extension are compatible and
compositional.

10. Symbolic Execution
Traditional testing requires first precommiting to a specific
(or concrete) test input, and then observing the behavior of
the system under test (SUT) on that input. In general, it can

Figure 11: Symbolic Execution

1 / / Assume a symbolic library implements th i s interface
2 SymExp = Flat c is SE
3 is SE : : Any→ Bool
4 SE var : : Unit→ SymExp
5 SE constant : : NumOrBool→ SymExp
6 SE unary : : UnaryOp → SymExp→ SymExp
7 SE binary : : BinaryOp→ SymExp→ SymExp→ SymExp
8 SE constrain : : SymExp→ Bool→ Unit
9 SE sat : : SymExp→ Bool

10

11 private unproxy : : Proxy⇒{{ symexp: SymExp }} = {}
12

13 private toSymExp : : Any→ SymExp = λx .
14 i f unproxy[x]
15 unproxy[x ] . symexp
16 ( asser t (isNum x | | isBool x ) ; SE constant x)
17

18 private toSymProxy : : SymExp→ SymProxy = λse .
19 l e t p = proxy {
20 unary : λo . toSymProxy(SE unary o se )
21 l e f t : λo , r . toSymProxy(SE binary o se (toSymExp r ) )
22 r ight : λo , l . toSymProxy(SE binary o (toSymExp l ) se )
23 t e s t : λ .
24 l e t trueOk = SE sat (SE binary "!=" se false ) ;
25 l e t falseOk = SE sat (SE binary "=" se false ) ;
26 l e t choice = i f ( trueOk && falseOk )
27 heuristicallyPickBranch ( )
28 trueOk
29 SE constrain
30 (SE binary ( i f choice "!=" "=") se false ) ;
31 choice
32 }
33 unproxy[p] := { symexp: se }
34 p
35

36 private heuristicallyPickBranch : : Unit→ Bool = · · ·
37

38 symbolicValue : : Unit→ SymProxy = λ . toSymProxy(SE var ( ) )
39

40 SymProxy = Flat c (λx . i f (unproxy[x] ) true false )

be quite difficult to choose the appropriate test inputs to gen-
erate good branch coverage. Symbolic execution provides a
method for achieving greater test coverage by exploring the
behavior of the SUT on an initially undetermined symbolic
input instead [19, 14]

Typically, symbolic execution is performed via a special-
ized symbolic interpreter, or by appropriately instrument-
ing the program via source or bytecode level rewriting. Fig-
ure 11 shows how, in a language with universal proxies, a
standard execution engine (an interpreter, compiler, or JIT)
can be adapted to also perform symbolic execution, simply
by designing proxies that appropriately capture the behavior
of symbolic input values, and which record program opera-
tions on those symbolic values.

The first nine lines of that figure describe an interface to
a library for performing symbolic reasoning about numeric
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and boolean variables and operations. (This library might
be implemented on top of a standard SMT solver such as
Simplify [6] or Z3 [5].) A symbolic expression (SymExp)
is either a symbolic variable (SE var), a symbolic constant
(SE constant), or is generated by performing unary or bi-
nary operations on symbolic expressions (SE unary and
SE binary). Thus, a symbolic expression is essentially a
tree with operators on internal nodes and symbolic vari-
ables and constants at the leafs. The symbolic library also
maintains a collection of constraints, where the function call
(SE constrain se) adds an additional constraint that the
symbolic expression se must hold. Finally, the function call
(SE sat se) checks if symbolic expression se is satisfiable
in the context of the current constraints, that is, if the current
constraint set plus the additional constraint se is satisfiable.

Using this symbolic expression library, we then generate
symbolic proxies that can be passed to the software under
test. The variable unproxy maps from symbolic proxies to
the underlying symbolic expression. The function toSymExp
map program values to a corresponding symbolic expres-
sion, either by looking up the unproxy table (for sym-
bolic proxies) or by calling SE constant (for numeric and
boolean constants).

The function toSymProxy converts a symbolic expres-
sion se to a symbolic proxy p, where the unary, left, and
right traps of p perform the appropriate operations on se
to yield a new symbolic expression that is then recursively
wrapped in a symbolic proxy. Thus, for example, if X is an
SE var, then the expression (1 + (2 * toSymProxy(X)))
evaluates to a symbolic proxy containing a symbolic expres-
sion representing “1 + (2 * X)”.

The interesting case is in the test trap, at which point
execution can no longer be entirely symbolic, since it must
commit to executing one of the two possible branches. The
trap first determines the possible values for the test expres-
sion se. If both paths are possible, then one path is chosen
via the function heuristicallyPickBranch in a heuris-
tic manner (for example, to maximize branch or path cov-
erage). Once the branch choice is chosen, the trap handler
calls SE constrain to record the new constraint on se, and
then returns choice to the [TESTPROXY] rule.

The symbolic execution module then exports a single
thunk, symbolicValue, which can be used to generate sym-
bolic inputs for testing the target software.

For brevity, this symbolic evaluation proxy is rather sim-
plified: it omits error checking and does not support sym-
bolic record indices (no geti or seti traps). Nevertheless,
this simple implementation illustrates the key ideas and pro-
vides useful benefits over concrete execution.

As an example, suppose we wanted to test a function
sort that takes as input an array, and we have a function
checkSorted for checking that the resulting array is indeed
sorted. (As in Javascript, an array is represented as a record
whose indices are consecutive integers.) We could test sort
by applying it to sample inputs, as in

1 checkSorted (sort { 0:15, 1:10, 2:20 });
2 checkSorted (sort { 0:14, 1:11, 2:30 });

Unfortunately, this particular test suite is rather ill-chosen.
Assuming sort is implemented by repeated comparisons
(rather than by bucket sorting), then both test inputs will
execute the same code path through sort. In general, it is
quite difficult to manually choose sufficient test inputs to
exercise all code paths.

Symbolic values allow us to avoid pre-committing to spe-
cific test inputs, and instead to heuristically refine the chosen
symbolic inputs on-the-fly to execute desired code paths. In
particular, we can instead test sort by evaluating:

1 checkSorted (sort ({ 0: symbolicValue(),
2 1: symbolicValue(),
3 2: symbolicValue() })

By evaluating the above expression repeatedly and configur-
ing heuristicallyPickBranch to execute a different path
on each iteration, we can exhaustively test sort on all pos-
sible arrays of length 3. For most sort implementations, this
approach terminates after just six iterations.

Symbolic execution is compatible with other proxy ex-
tensions: for example, we can generate symbolic complex
numbers by evaluating:

symbolicValue() + (symbolicValue() * i)

11. Dynamic Information Flow Analysis
We next consider how to implement a dynamic information
flow analysis via proxies. Whereas taint analysis only tracks
explicit flows via assignments, information flow analysis ex-
tends taint analysis to also track implicit flows that commu-
nicate information via the program counter.

To facilitate tracking implicit flows, we extend the seman-
tics of proxy. Specifically, we replace the [TESTPROXY] rule
so that it passes thunks for the then and else branches to
the appropriate trap (in a manner reminiscent of SmallTalk’s
if: method [15]). To avoid confusion, we refer to the new
trap as branch, which now replaces test:

H, if (proxy a) e1 e2 → H, a.branch (λ. e1) (λ. e2)

Even with this semantic extension for proxies, tracking
implicit flows is still rather tricky. In particular, code whose
execution is conditional on a private value could assign to
a public variable x. Unfortunately, the naive approach of
upgrading x to private when such an assignment occurs
is not sufficient, since the value of x also reflects private
information even when the conditional assignment is not
executed. Prior work introduced the No-Sensitive-Upgrade
check [30, 1], which forbids assigning to a public variable
from within code conditional on private information.

The No-Sensitive-Upgrade check may be rather restric-
tive. A recently proposed split-process alternative is to exe-
cute two copies of the program simultaneously [7], one on
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Figure 12: Information Flow Proxy

1 private LOW = 0; private HIGH = 1; private BOTH = 2;
2 private pc : : Int = BOTH
3

4 private unproxy
5 : : Proxy⇒{{ low: SingleValue , high : SingleValue }} = {}
6

7 new : : Record→ Proxy = λx .
8 proxy {
9 se t r : λn ,y .

10 switch pc
11 case BOTH: x[n] := y
12 case LOW : x[n] := splitValue y x[n]
13 case HIGH: x[n] := splitValue x[n] y
14 · · · / / as in identityProxy
15 }
16

17 splitValue : : Any→Any→ MultiValue = λ lo , hi .
18 l e t lo = ( i f (unproxy[ lo ] ) (unproxy[ lo ] . low) lo )
19 l e t hi = ( i f (unproxy[ hi ] ) (unproxy[ hi ] . high ) hi )
20 i f ( lo = hi )
21 hi
22 ( l e t combine = λ f .
23 switch pc
24 case LOW : ( f lo )
25 case HIGH: ( f hi )
26 case BOTH:
27 splitValue ( fluid−l e t pc := LOW in ( f lo ) )
28 ( fluid−l e t pc := HIGH in ( f hi ) )
29 l e t p = proxy {
30 ca l l : λy . combine (λx . x y)
31 getr : λn . combine (λx . x[n] )
32 get i : λ r . combine (λx . r [x] )
33 se t r : λn ,y . combine (λx . x[n] := y)
34 se t i : λr , y . combine (λx . r [x] := y)
35 unary : λo . combine (λx . unaryOps [o] x)
36 l e f t : λo , r . combine (λx . binaryOps[o] x r )
37 r ight : λo , l . combine (λx . binaryOps[o] l x)
38 branch : λ t , e . combine (λx . i f (x) t ( ) e ( ) )
39 }
40 unproxy[p] := { low: lo , high : hi }
41 p)
42

43 MultiValue = Flat c (λx . i f (unproxy[x] ) true false )
44 SingleValue = Flat c (λx . i f (unproxy[x] ) fa lse true )

fluid-let x := e1 in e2
def= let y = x; x := e1; let r = e2; x := y; r

switch x case e : e′

def= (if (x = e1) e′
1 (if (x = e2) e′

2 . . . unit))

the real private inputs, and one on dummy public inputs.
Multiple processes do introduce performance overheads and
other complexities, and computation that is independent of
the private data is redundantly performed by both processes.

To overcome this redundancy, we propose a split-value
semantics that conceptually performs two evaluations, but
which splits evaluations in a controlled, lazy manner: see

Figure 12. Pottier and Simonet [27] used a similar semantics
as a proof technique for their static information flow type
system. We adapt their ideas as a dynamic analysis.

Specifically, the value of (splitvalue lo hi) con-
tains both a public and private value. The variable pc ∈
{LOW, HIGH, BOTH} tracks whether the current computation
is on low or high confidentiality data, or on both simultane-
ously. If pc=LOW, then any operation on (splitvalue lo hi)
actually manipulates lo instead (line 28). If pc=BOTH, then
any use of this split value will fork separate computations on
lo and hi (lines 30–32). In more detail, (splitvalue lo hi)
returns a proxy p with the behavior outlined above, where
each trap calls combine passing an argument function f that
performs the operation for that trap. The function combine
then decides whether to invoke f once or twice, and which
arguments (lo or hi) to pass to f, depending on pc.

Handling assignment statements is still rather subtle,
since an assignment in a private context should only update
the private portion of the assigned variable. To trap assign-
ments, we require that newly-allocated records be passed to
the function new (via the prefix “new {. . .}”), and the client
code should use the resulting proxy instead of the original
record, to ensure that all assignments go through the proxy.
(This process can be enforced by load-time rewriting.)

The new proxy then makes sure that each assignment then
updates the appropriate component of the assigned location
x[n], depending on pc. If pc=BOTH, then the entire location
is assigned; if pc=LOW, then a new split value is created, with
the assigned value y in its low component and the previous
high value of x[n] in its high component.

12. Related Work
As discussed in the introduction, this work is inspired by
Miller and Van Cutsem’s proposal for Javascript Catch-All
Proxies [23, 4], which provide traps for operations on func-
tions and objects. Catch-all proxies essentially provide our
get, set, and call traps, plus additional traps for other
Javascript-specific functionality. Our work extends these
catch-all proxies with the unary, left, right, test, geti
and seti traps, which enables interesting new applications
such as symbolic execution and information flow. Our pre-
sentation re-uses Miller and Van Cutsem’s terminology of
proxy, handler, and trap.

SmallTalk [15] demonstrated the benefits of pure object
oriented programming, in which all data values (including
numbers) are objects, and all operations are via method
calls. This pure object architecture provides a high degree
of flexibility, potentially with some performance overhead.
Smalltalk supports the definition of proxy objects that im-
plement the doesNotUnderstand: method and that dele-
gate to an underlying object, a technique called intercession.
Mirages [25] provide a robust interface for intercession in
AmbientTalk, a related language. The language E also sup-
ports similar proxies [24]. These languages are pure in the
sense that all values are objects, and so many of the exten-
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sions that we propose could also be implemented in these
languages. This paper clarifies that this degree of extensibil-
ity is not restricted to pure object languages; it can also be
achieved in mainstream languages that include many non-
object values, and in languages that are not object oriented.4

The Scheme dialect Racket [11] provides chaperones,
which provide user-defined wrappers or proxies for proce-
dures, structures, hash tables, vectors, and boxes, and are
primarily intended to support contracts. Racket intentionally
does not provide chaperones for primitive types, because of
the concern that these would limit optimizations, although
trace-based compilation [12] may ameliorate this concern.

CLOS provides a very flexible metaobject protocol [18],
which provides the ability to inspect and modify the be-
havior of parts of the object runtime system. From a MOP
perspective, universal proxies make primitives such as “+”
into generic functions, where the language implementation
“knows” the behavior of primitives such as addition on con-
stants, but where primitive operations are dispatched to trap
handlers for proxy objects. Unlike CLOS, virtual values do
not require that the source language be class oriented.

We observe that a handler record is a metaobject repre-
senting the behavior of a proxy object. By limiting this con-
struct to proxy objects, we sacrifice some expressiveness.
Conversely, however, we gain more control over access to
the handler record, since the proxy encapsulates its handler,
satisfying Bracha and Ungar’s principle of encapsulation [2].
In contrast, many MOP designs are more open to tampering
with the object’s behavior.

Aspect-oriented programming (AOP) [17] is closely re-
lated to MOP research. AOP research focuses on cross-
cutting concerns that span multiple components of a system.
As one example, aspects have been used to enforce fine-
grained security policies in browsers [21]. Like AOP lan-
guages, proxies enable the developer to insert code at differ-
ent pointcuts. These pointcuts are limited to proxy objects,
which somewhat limits the power, but we feel that it may
also improve the readability of the code.

In a language with a rich static type system, the “trap
dispatch” operations could be resolved statically, for exam-
ple via Haskell’s [26] type classes. This static type based
approach provides stronger correctness guarantees and im-
proved performance over dynamically dispatched proxies,
but at a cost of more conceptual complexity and some de-
crease in flexibility. Overall, proxies seem best suited to
providing extensibility in languages whose static type sys-
tems that are less rich than Haskell, or in dynamically typed
scripting languages. Also, type classes such as Haskell’s
Num class virtualize some language operations; virtual val-
ues generalize this idea to all language operations.

4 From another perspective, proxies can be considered a form of object,
since they carry their own behavior, even though there is no this binding.
In this sense, a language with non-object values can be extended, by intro-
ducing proxies, into a pure object language in which all operations can be
dynamically dispatched to a proxy.

13. Discussion and Future Work
The language extension examples of Sections 3–10 suggest
that virtual values provide an flexible language extension
mechanism, and raises several topics for future work.

An important next step is getting more experience on
the implementation of virtual values in a real programming
language, and in the implementation of proxy extensions
themselves. A larger language may require a broader proxy
API than in the λproxy calculus, and we believe the λproxy
calculus may facilitate the design of such larger proxy APIs.

Virtual values may benefit from different compilation
techniques. For example, there is no guarantee that the result
of an addition operation is a number, since it instead may
be a proxy. Trace-based compilation may provide separate
highly optimized code paths for the number and proxy cases.

Finally, the introduction of virtual values significantly
changes the denotational semantics of the language, since
values now admit additional user-defined behavior, and sug-
gests that further study of the resulting denotational struc-
ture is required. In particular, a full abstraction result [3] for
λproxy might prove particularly helpful in deciding how to
restrict our proxy API for security and program verification,
while still providing flexibility for language extensions.
Acknowledgements We thank David Herman, Tom Van
Cutsem, and Mark Miller for valuable comments on an ear-
lier draft of this paper.
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