
Cases for the nugget in modeling computer experiments

Robert B. Gramacy∗

Booth School of Business
University of Chicago

rbgramacy@chicagobooth.edu

Herbert K. H. Lee
Applied Math & Statistics

University of California, Santa Cruz
herbie@ams.ucsc.edu

Abstract

Most surrogate models for computer experiments are interpolators, and the most

common interpolator is a Gaussian process (GP) that deliberately omits a small-scale

(measurement) error term called the nugget. The explanation is that computer exper-

iments are, by definition, “deterministic”, and so there is no measurement error. We

think this is too narrow a focus for a computer experiment and a statistically inefficient

way to model them. We show that estimating a (non-zero) nugget can lead to surrogate

models with better statistical properties, such as predictive accuracy and coverage, in

a variety of common situations.

Key words: computer simulator, surrogate model, Gaussian process, interpolation,

smoothing

1 Introduction

To some, interpolation is the defining feature that distinguishes surrogate models (or em-

ulators) for computer experiments from models for ordinary experiments. We think this

is old-fashioned at best and misguided at worst. It is certainly true that a large swath of

computer experiments are “deterministic”, in the sense that once y(x) is known there can

∗Part of this work was done while RBG was at the Statistical Laboratory, University of Cambridge

1

be no uncertainty in the output Y (x′) if x′ = x, because the simulator does not behave

stochastically. Interpolation would seem natural in this case, and this is typically facilitated

by a zero nugget in a Gaussian process (GP) prior for Y (x). Our first observation is that

many of the more recent computer experiments are indeed stochastic. A typical formula-

tion is as an agent based model or finite element simulation where the purpose is to study

cohort/community effects in independent organisms/agents whose behavior is governed by

simple stochastic rules which cannot be understood analytically. It is in this sense that

the defining feature of zero-nugget GPs for computer experiments is old-fashioned. Many

computer experiments these days are not deterministic, so in those cases you would include

a nugget without hesitation. The definition of surrogate model for a computer experiment

needs to be updated.

But that is not what this paper is really about. We shall concentrate on those computer

experiments that really are “deterministic”—in a sense similar to its usage above but whose

decomposition of meaning in modern experiments is one of the main foci of this paper—and

argue that you should use a nugget anyway. Our arguments for this are not computational,

although the numerical instabilities of zero-nugget models are well-documented (Ababou

et al., 1994; Neal, 1997). Another established criticism of zero-nugget models, upon which

we will not focus, involves theoretical aspects of smoothness and derivatives. Stein (1999,

pp. 96) proves that the smoother the spatial process, the smaller any error or variability

needs to be in order for it to have negligible effect. Since the standard assumption in the

computer modeling literature is a Gaussian correlation function, this assumption of infinite

differentiability means that the results are highly sensitive to any possible deviations and

thus Stein strongly cautions against omitting a nugget term.

As larger nugget values can impact the fitted values of other parameters (Gramacy and

Lee, 2008b; Pepelyshev, 2010), some authors go to great lengths to reconcile numerical stabil-

ity and zero-nugget-like interpolation, usually by using as small a nugget as possible (Ranjan

2

et al., 2010). Instead, we argue that issues of numerical stability, while they are strong argu-

ments in favor of a nugget, are a bit of a red herring in the face of more serious conceptual

issues. We aim to separate the ideology of forcing interpolation from some important (and

undesirable) consequences of the zero-nugget model. We shall argue that when the data

are sparse or when model assumptions are violated (e.g., stationarity)—and they typically

are—the nugget is crucial for maintaining good statistical properties for the emulator (e.g.,

coverage). Essentially, when modeling computer experiments, we must be pragmatic about

how assumptions map to conclusions (surrogate model fits), and this leads us to conclude

that the most sensible default is to estimate a (nonzero) nugget.

The remainder of the paper is outlined as follows. We conclude this section with a

brief review of GP basics, with further reference to their application as surrogate models

for computer experiments. In Section 2 we elaborate on several conceptual problems with

the zero-nugget approach. Section 3 provides numerical examples, showing how sparseness

of the sample (Section 3.1) or violations of standard (and uncheckable) assumptions (Sec-

tion 3.2) can lead to inferior predictive surfaces with the zero-nugget approach. The issue of

“determinism” is explored in Section 3.3 to similar effect. And in Section 4 we revisit these

points on a real-world computer experiment involving CFD simulations of a rocket booster

re-entering the atmosphere. Finally, we conclude with a discussion.

1.1 GP basics

The canonical choice of surrogate model for computer experiments is the stationary Gaussian

process (Sacks et al., 1989; O’Hagan et al., 1999; Santner et al., 2003), which defines a random

process whose evaluation at any finite collection of locations has a multivariate Gaussian

distribution with a specified mean and covariance function that depend only on the relative

positions of the locations. A typical specification of the covariance function is the Gaussian

correlation (used in all the references above), so that the covariance between any two points

3

is

C(xj,xk) = σ2K(xj,xk) = σ2 exp

{
−

m∑
i=1

|xij − xik|2

di

}
,

where m is the dimension of the space and d is a vector (the range parameter) which scales

the correlation length in each dimension. This model will interpolate the data, fitting a

smooth curve between observed outputs of the computer simulator. When all elements of d

are equal, the process is called isotropic.

An extension of this model is to include a nugget term in the model, specifying the

covariance function as

C(xj,xk) = σ2K(xj,xk) = σ2

[
exp

{
−

m∑
i=1

|xij − xik|2

di

}
+ gδj,k

]
,

where δ·,· is the Kronecker delta function and g is the nugget term. Originally introduced

to model small-scale variation in geostatistical models, it is also mathematically equivalent

to the inclusion of a random noise term in the likelihood. Thus with g > 0, this model

no longer interpolates the data, and returns us to a situation analogous to fitting a mean

function with noisy data.

In this paper we happen to take a Bayesian approach, but all of our arguments hold true

under the frequentist paradigm as well. The implementation of our GP models is in R using

the GP code from the tgp library from CRAN (Gramacy, 2007).

2 Examining the model assumptions

Most papers in the literature obsess on the zero-nugget model. When a nugget is needed

for computational reasons, one aims to make it as small as possible while still maintaining

numerical stability. The argument is that the closer the nugget is to zero, the more accurate

the surrogate model approximation is to the computer code output. This may be true if

4

there is sufficient data, but is it even the right thing to be worried about? The measurement

error captured by the nugget (which is presumed to be zero for deterministic computer

simulations) is but one of many possible sources of error. Here we discuss four such sources

of uncertainty which are likely to be of greater importance, so it is boggling why so much

attention is paid to the nugget.

Simulator bias

No computer simulator is a perfect representation of the real world. All simulators are

mathematical models and thus only approximate the real world, so they have some “bias”.

How we deal with this discrepancy depends on whether or not real world data are available.

We take those two cases in turn.

When real data are available, it is well-established that the simulator can be calibrated

using the data, that is, the discrepancy between the simulator and reality can be modeled

using an additional Gaussian process (Kennedy and O’Hagan, 2001; Santner et al., 2003).

While this addresses the simulator bias, it introduces a source of noise—that of the real

data. Because all real world data are noisy, and because the data are being used to calibrate

the simulator, it is no longer necessary for the model to interpolate the simulator exactly.

A measurement error term in the likelihood can be shown to be a re-parameterization of

a nugget term in the covariance function (Gramacy, 2005, Appendix B). If our model is

equivalent to using a nugget, then we might as well embrace the nugget while fitting the

model.

If real data are not available, then the bias cannot be estimated, and that term is typically

ignored and swept under the rug. Yet pretending that the simulator is perfect, even though

we know it is not is clearly ignoring a major source of error. Rather than insist that the

statistical model interpolate the simulator, why not allow the model to smooth the simulator

output? Just because the simulator errors cannot be quantified does not mean they should

5

be ignored completely.

The stationarity assumption

Nearly every analysis in the computer modeling literature makes an assumption of station-

arity, second-order stationarity, or at least piece-wise stationarity. Typically there is not

enough data available to fit a fully nonstationary model, and if there is enough data, then

the model becomes too difficult to fit efficiently. While stationarity is often a reasonable

assumption because it is a close approximation to the truth, in most cases it will not be

exactly correct. Like the bias case, when there is unknown error, a general statistical princi-

ple is that smoothing (or shrinking) can give better results. Thus a nugget can help protect

us in the case of moderate deviations from stationarity, which would be hard to detect in

practice. In Section 3.2 we show that even minor violations in the stationarity assumption

lead to emulators with poor statistical properties.

Correlation assumptions

There is an underlying assumption that the specified (typically Gaussian) correlation struc-

ture is correct. While this is a nice modeling assumption, it is yet another convenient

approximation to reality. Parameters for the form of the correlation function can be difficult

to fit in practice, and so it is often necessary to simply specify a reasonable guess. Since it

is only an approximation, this is a further reason for allowing smoothing in the model.

The assumption of a deterministic simulator

The modeling assumptions addressed above may indeed be reasonable for a particular true

physical process, but the implementation of the computer simulation may still behave in un-

predictable ways. The assumption of a deterministic simulator may itself be a problem. Here

we discuss two related possible issues, nonmodelable determinism and theoretical but not

6

numerical determinism, among other possible problems with the assumption of deterministic

behavior in practice.

Some deterministic functions really are better treated as nondeterministic. As a simple

example, consider a pseudo-random number generator where, for any given seed, a result is

returned deterministically (if not also unpredictably unless you know a lot about numerical

analysis). A version of a computer simulator approximating a function g(x) numerically

might effectively behave as follows (coded in R):

f <- function(x) {

set.seed(x)

return(g(x) + rnorm(1))

}

This function is theoretically deterministic, but knowing the true function, it would be

irrational to interpolate it. Clearly one would want to smooth out the pseudo-random

noise and just fit the underlying g(x). In such a case, a nugget is needed even for this

“deterministic” simulator. Two related examples would be a function with chaotic behavior,

which can happen in complex systems of differential equations, or the Perlin noise function

(Perlin, 2002), which is a deterministic method of generating random-looking smooth surfaces

in computer graphics. Alternatively, the rnorm(1) term may stand in for the amount by

which an iterative approximation algorithm steps over the convergence threshold, but usually

we assume that this amount can be made to be arbitrarily small.

Now, this may seem pathological, but in Sections 3.3 & 4 we give a synthetic and real

example, respectively, which are essentially the following adaptation:

f2 <- function(x) {

set.seed(x)

y <- runif(1)

if(y < 0.9) return(g(x))

else return(h(x))

}

7

for some new h(x). The pseudo-random (but deterministic) y is intended to represent the

chance that the computer code was (poorly) initialized such that it may end up converging

to a sub-optimal (but locally converged) solution h(x) 10% of the time rather than the true

globally converged approximation to g(x). This is not an uncommon feature of a modern

computer simulator, i.e., where the final output depends upon an initial “solution” for which

there are defaults that usually work, but sometimes lead to a converged solution which is

different from the one intended. It is clearly sub-optimal to use a zero-nugget model in this

case, because some of the outputs are not the correct values. Despite their deterministic

nature, we show in Section 3.3 that the uncertainty about the true function is best modeled

with a random process that smooths rather than interpolates.

3 Statistically better fits with the nugget

3.1 Protecting against misfits with sparse data

Many computer experiments are expensive to run and the number of datapoints is limited. As

many experiments have higher dimensional input spaces, the curse of dimensionality implies

that the data will be sparse in the input region. When the data are sparse, interpolation can

have unpleasant results (Taddy et al., 2008, Sec. 2.2). We present here a simulated example

where the data are sparse in one dimension, but this represents the concept of sparseness in

higher dimensions with a simpler function or with more data.

Consider the function

Z =
sin(10πX)

2X
+ (X − 1)4 .

Suppose we only have 20 datapoints available (in practice, we would have more points but

more dimensions). We randomly generated 10000 such datasets (with X generated from a

uniform distribution each time) and fit models with both a nugget and without a nugget.

8

The table in Figure 1 gives the distribution of the mean square errors of fits under each

model, and the model that includes a nugget does better on average (a paired t-test gives a

p-value of less than 2.2 × 10−16). The plots in Figure 1 show one of the runs. The data are

too sparse to get a good fit of the function for smaller input values. While the nugget model

smooths and produces reasonable confidence bands, in order to interpolate smoothly the no-

nugget model ends up making predictions well outside the range of the actual data in that

region, and its confidence bands are all over the place. Using a nugget gives a much more

sensible fit. This sort of problem can be quite difficult to diagnose in higher dimensions, and

the nugget provides good protection against the strange fits that interpolation can produce.

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

1.0 1.5 2.0

−
1

0
1

2
3

4

estimated nugget, z mean

x

z

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

1.0 1.5 2.0

−
1

0
1

2
3

4

no nugget, z mean

x

z

MSE nug nonug
Min. 0.0250 0.0057
1st Qu. 0.0999 0.0851
Median 0.1262 0.1399
Mean 0.1847 0.1929
3rd Qu. 0.1906 0.2290
Max. 1.2990 1.3510

Figure 1: Plots of one example of a fit (dark solid line), confidence bands (red), and true
function (light grey). The left plot shows the fit using a nugget, the right plot without a
nugget. The table on the right is the summary of the mean square errors under both models
for 10,000 repeated uniform designs.

3.2 Poor coverage

In fact, the nugget offers protection from a slew of problematic scenarios. Here we shall

illustrate the that no-nugget model under-covers the true computer simulator response when

the stationarity assumption is not satisfied. We use three examples.

9

●

●

●

●

●

●

●

●
●

●

1.0 1.5 2.0

0.
7

0.
8

0.
9

1.
0

estimated nugget, z mean

x

z

●

●

●

●

●

●

●

●
●

●

1.0 1.5 2.0
0.

7
0.

8
0.

9
1.

0

no nugget, z mean

x

z

●

●

●

●

●

●

●

●

●

●

1.0 1.5 2.0

0.
7

0.
8

0.
9

1.
0

estimated nugget, z mean

x

z

●

●

●

●

●

●

●

●

●

●

1.0 1.5 2.0

0.
7

0.
8

0.
9

1.
0

no nugget, z mean

x

z

coverage nug nonug
Min. 0.3210 0.0650
1st Qu. 0.8028 0.5108
Median 0.8915 0.7230
Mean 0.8517 0.6531
3rd Qu. 0.9570 0.8068
Max. 1.0000 0.9960

Figure 2: The plots on the left are examples of fits under under two uniform designs in nugget
(left column) and no-nugget (right column) models. The table on the right is the summary
of the coverages under both models for 100 repeated uniform designs.

The first example is a 1-d function which is clearly nonstationary, but otherwise mim-

ics typical features of a computer code. The response is given by y(x) = sin(x) − 0.02 ·

t1(x, 1.57, 0.05) where t1(·, µ, σ) is a Cauchy density with mean µ and spread σ. The two

rows of Figure 2 show fits for two typical random uniform designs of size ten. The difference

between smoothing (estimated nugget; left panels) and interpolation (no nugget; right pan-

els) is clear. We see that the no-nugget model under-covers the truth (in gray) and can have

wildly different (i.e., narrow or wide) 90% predictive credible intervals. This experiment was

repeated 100 times and the percentage of the area of the input space where y(x) was covered

10

by the 90% interval was recorded. A table showing the results is on the right in the figure.

We see from these results that the under-coverage of the no-nugget model is drastic. For one

of the random designs it only covered 6.5% of y(x) and 3/4 of the trials under-covered by

more than 10%. By contrast, the model which estimates a nugget has good coverage prop-

erties. Its median and mean coverages are close to 90% and the central 50% region tightly

brackets the truth. Clearly, connecting the dots comes at the expense of other, arguably

more important, statistical measures of goodness of fit.

exp data
coverage nug nonug
Min. 0.5479 0.3965
1st Qu. 0.8623 0.8242
Median 0.9185 0.8936
Mean 0.8962 0.8691
3rd Qu. 0.9492 0.9395
Max. 1.0000 1.0000

fried data
coverage nug nonug
Min. 0.5480 0.4580
1st Qu. 0.8930 0.8350
Median 0.9320 0.8890
Mean 0.9205 0.8762
3rd Qu. 0.9580 0.9310
Max. 0.9990 1.0000

Table 1: Left is coverage for the 2-d exponential data; right for the 5-d Friedman data.

We performed similar experiments on two higher-dimensional data sets. The first is a 2-d

exponential function y(x) = x1 exp{−x2
1 − x2

2}, which less clearly violates the stationarity

assumption. From the left side of Table 1 we see a similar under-coverage of the no-nugget

model with repeated uniform designs of size 20. Our second experiment involved the first

Friedman data function (Friedman, 1991) with five inputs where the response is y(x) =

10 sin(πx1x2)+ 20(x3 − 0.5)2 +10x4 +5x5. This function is better behaved (i.e., stationarity

may be a reasonable assumption). However, it is apparent that correlation in the response

would decay at different rates along the five coordinates—clear anisotropy. To illustrate

how the effect of an inappropriate choice of correlation function is felt more strongly in the

no-nugget model we used an isotropic Gaussian correlation function and uniform designs of

size 25. The results are shown in the right in the table.

It is worth pointing out that as the size of the designs are increased, and/or as the

11

data less obviously violate assumptions, both models (nugget and no-nugget) will tend to

over cover in practice. This is because we are fitting a model (GP) which always yields

positive posterior predictive error away from the (discrete set of) design points, i.e., over

an uncountably large region. Since the function we are modeling is deterministic, we know

that as the size of the design tends to (countable) infinity we should be able to obtain a

“perfect” fit with a high degree polynomial. So a GP is the wrong model in this case. Since

over-coverage is inevitable, under-coverage should be our primary concern, and to avoid

under-covering we can see that a nugget is needed.

3.3 Challenging determinism in computer simulation

Some computer experiments are deterministic in a technical sense, but not necessarily in

a way that translates into sensible assumptions for the building of a surrogate model. We

may reasonably presume that codes implementing the algorithms and calculations behind

the experiment are nontrivial. They are expensive to program and expensive to execute,

requiring long iterations to convergence and the (sometimes arbitrary) specification of tuning

parameters and grid/mesh sizes. As a rule more than an exception, the resulting apparatus

works better for some choices of inputs than for others. The most important issue is in

detecting global convergence of the code, whose properties usually depend crucially on other

implementation choices. It is essentially impossible to guarantee good global convergence

properties, and so this the main target of our attack on the modeling of such “deterministic”

computer simulations without a nugget.

Consider the following computer simulator coded in R below.

2-d function

f2d <- function(x1, x2) {

w <- function(y) {

return(exp(-(y-1)^2) + exp(-0.8*(y+1)^2) - 0.05*sin(8*(y+0.1)))

}

12

return(-w(x2)*w(x1))

}

find the minimum of a projection of the 2-d function

f <- function(x) {

return(optim(par=x, fn=f2d, x2=x)$value)

}

The true underlying function f(x), evaluated by f(x) in R, is arg minx1 f(x1, x) where

f(x1, x2) = −w(x1)w(x2), where

w(y) = exp
(
−(y − 1)2

)
+ exp

(
−0.8(y + 1)2

)
− 0.05 sin (8(y + 0.1)) .

The optimization method used by the code above is the optim function in R initialized at

x1 = x.

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●

●
●
●

●

●

●

●
●
●
●
●●●

●●●●●●●●●
●
●
●
●
●

●

●

●

●
●
●●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●
●
●●●●●●●●●

●●●●●●
●
●
●●●●●

●
●
●

●

●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

1
−

1.
0

−
0.

9
−

0.
8

deterministic [estimated nugget], z mean

x

z

true f(x)
simulated f(x)
posterior mean
posterior CI

Figure 3: GP fit (with an estimated nugget) to a deterministic function which is the result
of an iterative procedure.

Figure 3 shows the true f(x) (dashed-green) and the output of the simulator f(x) (gray)

13

for x ∈ [−1.5, 1.5]. We can see that result of numerically finding the optimal value of

the objective function (initialized somewhat arbitrarily, but not pathologically) is that the

simulations f(x) are biased, and behave badly/unpredictably in some parts of the input

space. It is worth noting that both behaviors persist with a different static initialization

scheme; the f(x1, x2) surface has about a dozen local minima. Also, the implementation

f(x) is completely deterministic in a technical sense. However, f(x) is exhibiting “random”

behavior of the sort alluded to in Section 2 as the initialization scheme causes the algorithm

to converge to different local minima in a way that is not (easily) predictable. There are

three places where the initialization causes it to have discontinuities (even though the true

f(x) is smooth everywhere), and it is particularly unstable near x = 0 since (0, 0) is more or

less equidistant from the many local minima of f(x1, x2) in the 2-d space.

The figure also shows a fit to the computer simulator (f(x)) output obtained from a

gridded design of 100 input output pairs using a GP with an estimated nugget. The fit

is sensible given the discontinuities and otherwise “noisy” behavior of the simulator. It is

not possible to fit this data without a nugget, or even with a small one, due to numerical

instabilities. However, it is possible to do so with a reduced design of about 20 points or so.

To connect with the coverage results in the last section (where stationarity was the issue) we

coverage nug nonug
Min. 0.433 0.2280
1st Qu. 0.787 0.6665
Median 0.875 0.7345
Mean 0.846 0.7276
3rd Qu. 0.938 0.8362
Max. 0.993 0.9760

Table 2: Coverage of f(x) for the “deterministic” data.

calculated the coverage of f(x) with 100 repeated uniform random designs of size 20 under

the estimated nugget and no-nugget models, and the story is much the same as before. The

results are shown in Table 2. Therefore, when “determinism” is challenged as an assumption

14

on the nature of the data-generating mechanism, a nugget for smoothing is clearly preferred

to interpolation in the surrogate model.

4 A modern computer experiment

The Langley Glide-Back Booster (LGBB) is a rocket booster that underwent design phases

at NASA primarily through the use of computational fluid dynamics simulators that numeri-

cally solve the relevant inviscid Euler equations over a mesh of 1.4 million cells (Rogers et al.,

2003). The simulator models the forces felt by the rocket at the moment it is re-entering

the atmosphere as a function of three inputs describing its state: speed (measured by Mach

number), angle of attack (the alpha angle), and sideslip angle (the beta angle). As a free

body in space, there are six degrees of freedom, so the six relevant forces/outputs are lift,

drag, pitch, side-force, yaw, and roll. While theoretically deterministic, the simulator can fail

to converge. Some nonconvergent runs are caught by an automated checker, and re-run with

a new schedule of initial conditions, but some are erroneously accepted even after converging

to a clearly inferior local mode. Input configurations arbitrarily close to one another can fail

to achieve the same estimated convergence, even after satisfying the same stopping criterion.

Here we focus on the roll force output on a data set comprised of simulator runs at 3041

locations. See Figure 4 for a 2-d slice of this response. Previous work has focused on the lift

force (Gramacy and Lee, 2008a) which exhibited many similar features, and on a sequential

design task taking account of all outputs simultaneously (Gramacy and Lee, 2009). The

experimental design is a combination of an initial grid followed by two hand-designed finer

grids focused around Mach one, as the initial run showed that the most interesting part of

the input space was generally around the sound barrier, where the physics in the simulator

changes abruptly from a subsonic regime to a supersonic regime. What happens close to and

along the boundary is the most difficult part of the simulation. The regime changes across this

15

Mach (speed)

al
ph

a
(a

ng
le

 o
f a

tta
ck

)

roll

roll=f(mach,alpha,beta=2)
roll=f(mach,alpha,beta=2)

Mach (speed)

al
ph

a
(a

ng
le

 o
f a

tta
ck

)

30
25

20
15

10
5

0
−

5

5 4 3 2 1

 −
0.006

 −0.005

 −0.004

 −
0.003

 −0.003

 −0.002

 −0.002

 −
0.

00
2

 −0.001

 −0.001

 −0.0
01

 0

 0

 0

 0
.0

01

Figure 4: Linearly interpolated slice of the roll response plotted in perspective (left) and
image/contour (right) as a function of speed (Mach) and angle of attach (alpha), with the
slide slip angle (beta) fixed to 2. In the image plot, dark/red values are lower and light/yellow
values higher in the image plot; the perspective plot is rotated for visualization purposes so
that the closest corner corresponds to low speed and high angle of attack.

boundary cause the stationarity assumption to be violated. Also note the string of anomalies

around Mach four, which appear to converge to local, rather than global, solutions. So this

experiment comprises two challenging aspects—impractical determinism due to convergence

issues and failed assumptions of stationarity due to physical regime changes—and we aim

to show that the nugget is important in mitigating their effects when building a surrogate

model.

Towards this end we calculated the coverages of predictive surfaces obtained with and

without the nugget on a 20-fold partition of the 3041 input/output pairs. We iterated over

the folds, training on 1/20th of the data, about 159 pairs, and predicting at the remaining

3009-odd locations in an (inverse) cross-validation fashion. The results of this experiment,

repeated 100 times for 2000 total coverages for each predictor, are shown on the left in

Table 3. Note that this is not a uniform coverage rate (over the input area), since the design

16

GP
coverage nug nonug
Min. 0.7547 0.5726
1st Qu. 0.9022 0.8427
Median 0.9239 0.8793
Mean 0.9187 0.8703
3rd Qu. 0.9396 0.9059
Max. 0.9777 0.9741

TGP
coverage nug nonug
Min. 0.7627 0.5180
1st Qu. 0.8757 0.7195
Median 0.8978 0.7670
Mean 0.8954 0.7606
3rd Qu. 0.9186 0.8051
Max. 0.9771 0.9305

Table 3: Coverage of the roll response for the LGBB computer experiment data using a
Gaussian process (left) and a treed Gaussian process (right).

is more heavily concentrated around Mach one. However, the results here are as expected.

The no-nugget model can severely under-cover in certain examples (with coverage as low

as 57%) and, gives the target coverage of 90% less than 1/4 of the time. The model using

an estimated nugget is much better behaved. However, it does seem to slightly over-cover.

Although less of a concern, we think that the main cause of this is the nonuniformity of the

design and our choice of priors for both the range and nugget parameters in the face of both

nonstationarity and nonconvergence issues.

The treed Gaussian process (TGP, Gramacy and Lee, 2008a) model was designed to

handle the axis-aligned nonstationarity that arises due to regime changes—exactly the sort

exhibited by this data. In essence, the TGP model learns an axis-aligned partition of the data

wherein the process is well-fit by separate stationary GP models. We performed an identical

experiment using TGP and the results are summarized on the right in Table 3. We can see

that the coverage of the version of TGP which estimates the nugget is improved (with better

centering around 90%), but the no-nugget version is not (showing a more consistent tendency

to undercover). We are left with the impression that the nugget is even more important when

a nonstationary model is used, especially in the case of nonconvergent computer experiments

where the assumption of “determinism”, while technically valid, may be challenged from a

practical standpoint.

17

5 Discussion

Several authors have previously argued in favor of a nugget term for reasons of numerical

stability even when fitting a deterministic model. We go well beyond numerical convenience,

raising fundamental issues of a variety of modeling assumptions and argue that the use of a

nugget helps protect against many violations of assumptions. The focus on the assumption

of determinism can be too single-minded. Ignoring the impacts of the many other modeling

assumptions can lead to poor statistical properties of the surrogate model, that can be

ameliorated with the use of a nugget.

Acknowledgments

We thank Tim Gustafson for introducing us to the Perlin function. This work was par-

tially supported by National Science Foundation grant DMS-0906720 and EPSRC grant

EP/D065704/1.

References

Ababou, R., Bagtzoglou, A. C., and Wood, E. F. (1994). “On the Condition Number of

Covariance Matrices in Kriging, Estimation, and Simulation of Random Fields.” Mathe-

matical Geology , 26, 1, 99–133.

Friedman, J. H. (1991). “Multivariate Adaptive Regression Splines.” Annals of Statistics ,

19, No. 1, 1–67.

Gramacy, R. B. (2005). “Bayesian Treed Gaussian Process Models.” Ph.D. thesis, University

of California, Santa Cruz.

— (2007). “tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear

18

Regression and Design by Treed Gaussian Process Models.” Journal of Statistical Software,

19, 9.

Gramacy, R. B. and Lee, H. K. H. (2008a). “Bayesian treed Gaussian process models with

an application to computer modeling.” Journal of the American Statistical Association,

103, 1119–1130.

— (2008b). “Gaussian Processes and Limiting Linear Models.” Computational Statistics

and Data Analysis , 53, 123–136.

— (2009). “Adaptive Design and Analysis of Supercomputer Experiment.” Technometrics ,

51, 2, 130–145.

Kennedy, M. and O’Hagan, A. (2001). “Bayesian Calibration of Computer Models (with

discussion).” Journal of the Royal Statistical Society, Series B , 63, 425–464.

Neal, R. M. (1997). “Monte Carlo implementation of Gaussian process models for Bayesian

regression and classification.” Tech. Rep. 9702, Deptartment of Statistics, University of

Toronto.

O’Hagan, A., Kennedy, M. C., and Oakley, J. E. (1999). “Uncertainty Analysis and Other

Inference Tools for Complex Computer Codes.” In Bayesian Statistics 6 , eds. J. M.

Bernardo, J. O. Berger, A. Dawid, and A. Smith, 503–524. Oxford University Press.

Pepelyshev, A. (2010). “The Role of the Nugget Term in the Gaussian Process Method.” In

MODA 9 – Advances in Model-Oriented Design and Analysis , 149–156. Berlin: Springer-

Verlag.

Perlin, K. (2002). “Improving Noise.” ACM Transactions on Graphics , 21, 681–682.

19

Ranjan, P., Haynes, R., and Karsten, R. (2010). “Gaussian Process Models and Interpola-

tors for Deterministic Computer Simulators.” Department of Mathematics and Statistics,

Acadia University.

Rogers, S. E., Aftosmis, M. J., Pandya, S. A., N. M. Chaderjian, E. T. T., and Ahmad, J. U.

(2003). “Automated CFD Parameter Studies on Distributed Parallel Computers.” In 16th

AIAA Computational Fluid Dynamics Conference. AIAA Paper 2003-4229.

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). “Design and Analysis of

Computer Experiments.” Statistical Science, 4, 409–435.

Santner, T. J., Williams, B. J., and Notz, W. I. (2003). The Design and Analysis of Computer

Experiments . New York, NY: Springer-Verlag.

Stein, M. L. (1999). Interpolation of Spatial Data. New York, NY: Springer.

Taddy, M., Lee, H. K. H., Gray, G. A., and Griffin, J. D. (2008). “Bayesian Guided Pattern

Search for Robust Local Optimization.” Tech. Rep. ams2008-02, University of California,

Santa Cruz, Department of Applied Mathematics and Statistics.

20

