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ABSTRACT
Many recommender systems might be part of an e-commerce
or multi functional system (or portal) where various infor-
mation about users, products/documents, social networks,
and different types of user feedback about products/documents
are available. This paper exploits the heterogeneous infor-
mation a recommender system might collect to make the
most appropriate recommendations. We propose a new Prob-
abilistic Latent Relational Modeling (PLRM) approach to
jointly model user, product, social network, and different
types of implicit and explicit user feedback. A system can
make different types of recommendations, such as who you
may want to trust or what product you may want to buy,
based on a single probabilistic model. Different types of
user feedback collected can be utilized to improve the perfor-
mance of recommendations. We also propose a hybrid vari-
ational Bayesian and Max A Posteriori method to estimate
the parameters from various types of user feedback. The
experimental results on two Epinion.com data sets demon-
strate the effectiveness of the proposed modeling approach.
Categories and Subject Descriptors:
B.3.3 [Information Search and Retrieval]: Information filter-
ing
General Terms:
Algorithms
Keywords:
recommender systems, information filtering, personalization,
machine learning, relational models

1. INTRODUCTION
Recommender systems have achieved great success in indus-
try applications. For example, online stores, such as Amazon
and Netflix, provide customized recommendations for addi-
tional products or services based on a user’s history. The
latest offerings such as My MSN, My Yahoo!, iGoogle and
Facebook’s “like” button have attracted much attention due
to their potential ability to infer users’ interests from their

behavior instead of requiring users to define their interest
explicitly.

The major focus of recommender systems is to tailor the
recommendation to each individual user. Many techniques
have been proposed do so. For example, Content-based
adaptive filtering studies the scenario where a recommen-
dation system monitors a document stream and pushes doc-
uments that match a user profile to the corresponding user.
The user may read the delivered documents and provide
explicit relevance feedback, which the filtering system then
uses to update the user’s profile using relevance feedback
retrieval models (e.g. Boolean models, vector space mod-
els, traditional probabilistic models, inference networks and
language models) or machine learning algorithms (e.g. Sup-
port Vector Machines (SVM), K nearest neighbors (K-NN)
clustering and logistic regressions. Collaborative filter-
ing (CF) goes beyond merely using document content by
leveraging information from other users with similar tastes
and preferences to recommend items to a user . Memory-
based heuristics and model based approaches have been used
in collaborative filtering task [16, 3, 14, 13, 12, 26]. The top
ranking algorithms in Netflix prize competition show that
factorization based on models are very effective for CF [24,
20, 19, 25]. Social network analysis explores a user’s social
network to make recommendations [15, 21, 17, 8, 11]. For
example, Kautz et. al. suggests combining social networks
and collaborative filtering techniques for recommendation
[15]. Golbeck shows that trust network is very useful for
film recommendation [8]. Massa & Bhattacharjee showed
the potential power of trust networks, and argued for a way
of propagating trust over all users [22]. Konstas, Stathopou-
los & Jose adopt the generic framework of Random Walk on
social networks and found it further improves recommenda-
tion performance [17].

Over the last several years, research in standard recom-
mender algorithms based on user-item rating matrix has
been improved significantly. One current research focus is
to go beyond the standard user-item rating matrix. How
to use the rich and heterogeneous personal and contextual
information to better model user preferences, describe items
to be recommended, and make recommendation becomes an
important problem. One can conclude from the literature
that the following properties are desirable for a good system:



Using product meta data (product content): Product
descriptions, such as the price of a product, the brand
of a product, are used [1].

Using user meta data (user content): User features, such
as the gender of a user, the location of the user, are
used. Marketing researchers have developed various
features, such as the Guadagni Little index [9], to char-
acterize individual customers’ purchasing preference.

Collaborative filtering (learning from others): Since we
are learning a rich user model for each user, it may take
a while before the system can gather enough data from
the user and learn reliable model parameters. How-
ever, a good initial performance can be incentive for
a new user to continue using the system. Borrowing
information from other users can help alleviate this
problem.

Using social networks: The social context of a user maybe
helpful for inferring about the preferences of this user.
For example, the 1,4046,851 “friends” of Barack Obama
on Facebook [27] may be interested in news about the
president’s recent activities.

Learning from other feedback from the user: Besides
explicitly rating an item, the system may collect other
types of feedback from the user. For example, although
many Amazon.com users do not provide much explicit
feedback about products, they provide implicit feed-
back by purchasing a product, or clicking a page de-
scribing the product.

However, most of the existing literatures study each aspect
individually. Some researchers have tried to combine two
techniques together. For example, researchers have tried
to combine contents of products with collaborative filtering
and achieved performance better than each individual com-
ponent[23, 2, 28, 1, 10]. Hao et al.[21] introduced a frame-
work to combine social networks and collaborative filtering
techniques, and they shown social network information helps
recommender systems. Each aspect is addressing a specific
part of the recommendation problem, and thus combining all
of them may give the best possible performance. However,
we are not aware of much prior work on providing a single
unified solution that addresses all of the desired properties.

Building a personalized recommendation/search system that
can integrate heterogeneous information and thus have all
desirable property is the goal of this paper. Although im-
proving each individual technique or desirable aspect is im-
portant, we believe the recommendation performance is lim-
ited by the information that particular technique or aspect
could provide. This paper tries to provide a unified modeling
framework to solve the problem. We propose to use a single
probabilistic modeling approach to integrate different types
of user feedback, user features, product contents, and social
networks. We call the modeling framework Probabilistic La-
tent Relational model.

The general idea of our framework is to view users, docu-
ments, and items as objects. Each object may have meta
data descriptions associated with it. Objects interact with
(or relate to) each other, and the interactions correspond to

various types of feedback in a recommender system. 1 Sim-
ilar to factorization based collaborative filtering algorithms
[20][19], each object has a hidden representation (vector)
to be learned from the data. We model the a type of in-
teraction/relation/feedback as a relationship function, and
the inputs of the relationship function are the hidden vec-
tor representing the first object (such as the user who gives
the feedback) and the vector representing the second object
(the user/product that receives the feedback). The output
of each relationship function is the value of the feedback.
The vector representation of a user is decomposed into two
parts. The first part is a hidden/latent representation of the
user to be learned, and the second part is the feature vector
derived from the user’s meta data. Similarly, the hidden
representation of an item is also decomposed into two parts.

We implement the proposed solution and evaluate it on an
epinion.com data set we collected, where user meta data,
user ratings, and social network information are available.
The controlled experiments show that the proposed solu-
tions works well in this scenario. We also evaluate it on a
different epinion.com data set collected by other researchers,
where only rating (or rating + trust network) information is
available. We find our approach achieves better performance
than those reported by other researchers on the same data
set.

The organization of the remaining parts of this paper is as
follows. Section 2 defines the problem space this paper tries
to model. Section 3 describes the PLRM we proposed and
an efficiently method to learn the model parameters. The
experimental setting and results used to validate the pro-
posed learning technique are reported in Sections 4 and 4.3.
Section 5 summarizes and offers concluding remarks.

2. PROBLEM DEFINITION
The major goal of a recommender system is to recommend
documents/item that are relevant to a user. As the system
interacts with the user, it learns about the user from user
feedback. The users can provide different types of feedback
to the system. For examples, the user can rate an item
(explicit feedback), purchase an item (implicit feedback), or
identify a user as “trustable” (explicit feedback). Each piece
of feedback provides the value of a relationship between two
objects, where each object can either be a user or a product,
depending on the feedback/relationship type.

The major research problem is how to make recommenda-
tion based on a variety of feedback, as well as meta data
about products and users. To provide a unified solution, we
first generalize the problem setting as follows. In this frame-
work, we view everything involved (users, vendors, prod-
ucts, etc.) as objects. We represent each piece of feed-
back collected by the system as an asymmetric relational
quadruplet (r, i, j, y), where r represents the type of relation-
ship/feedback, i is the index of the first object, j is the index
of second object of this relationship, and y is the value of the
relationship/feedback. Without lose of generality, the rest of
this paper uses r = 1, 2, 3 to represent the rating, purchas-
ing and trust relationship/feedback respectively. (1, i, j, 5)

1Without lose of generality, we assume each relationship is
between 2 objects. The approach can also be extended to
handle relationships involving more than 2 objects.



means user i rates product j as 5. (2, i, j, 0) means user
i does not purchase product j, and (3, i, j, 1) means user i
trusts user j.

Besides the different types of feedback/relationships, the
system also considers the features of the objects, e.g. the
brand of a product, the loyalty index of a user for a brand,
and the gender of a user. In the rest of this paper, we will
use the following notation to represent the data the system
deal with.

• N : the total number of unique objects

• i: the index of an object. 1 ≤ i ≤ N .

• T : the total number of different types of objects (T = 2
in our experiments: user, product)

• R: the number of different relations (R=3 in our ex-
periments: purchasing, rating, trust)

• r: the index of a relation type. 1 ≤ r ≤ R.

• t(i): the type of object i. 1 ≤ t(i) ≤ T

• fi: the observed feature vector for object i.

• D = {(r, i, j, y)}: the training/labeled data set.

• D′ = {(r, i, j)}: the testing data set.

The task is to predict the missing relationship value y for
each triple in the testing data.

3. PROBABILISTIC LATENT RELATIONAL
MODELS

Prior research has proposed different techniques to learn a
user model from one or two particular feedback types. To
make the most appropriate recommendation to the user, we
propose to integrate all of the different types of feedback,
including feedback on social networks, for recommendation.
In particular, now we introduce the Probabilistic Latent Re-
lational Modeling (PLRM) approach to achieve this goal. In
PLRM, we introduce a hidden representation hi for each ob-
ject. For each relationship r, we introduce a hidden feature
interaction matrix (Ar) and two observable feature transfor-
mation matrices (Wr,1,Wr,w) to capture how the feedback
depends on the objects involved. The prediction for a rela-
tionship between two objects is given by a Gaussian distribu-
tion based on the corresponding representations, matrices,
and features.

3.1 Model Definition
PLRM is a probabilistic graphical model. A special example
of PLRM in the context of recommendation based on three
different types of feedback (trust network, rating, and pur-
chasing) is shown in Figure 1. The notations of the random
variables in the model are described as follows:

• Hidden representation for object i: hi (vector). H =
{hi}

• Hidden feature transformation/interaction matrices for
relation r: Ar (a matrix). A = {Ar} = {ar,∗,∗}.

• Feature transformation/interaction matrices for rela-
tion r: Wr,1 (a matrix), Wr,2 (a matrix).
W = {Wr,1,Wr,2} = {wr,l,∗,∗}, l = {1, 2}. Matrix
Wr,∗ transforms the observed feature vector (fi) for
object i to a lower dimensional vector Wr,∗fi.

We assume the feedback value yr,i,j follows a Gaussian dis-
tribution:

yr,i,j ∼ N(ur,i,j , 1/λ
(y)
r )

ur,i,j = hT
i Arhj + (Wr,1fi)

TWr,2fj

= [hT
i , f

T
i ][

Ar 0
0 WT

r,1Wr,2
][

hj

fj
]

where ur,i,j is the expected value of yr,i,j , and 1/λ
(y)
r is

the variance for the data of relation r. The center of the
Gaussian, ur,i,j , depends on the hidden representation of
the objects involved (hi, hj), and the features (meta data)
about the objects (fi, fj). When r is the rating relationship,
the first part hT

i Arhj is the estimation based on users’ long
rating preferences, where Ar is a matrix modeling the rat-
ing interaction between user hidden representation and item
hidden representation. The second term (Wr,1fi)

TWr,2fj
captures the interaction between observable features.

{hi, Ar,Wr,1,Wr,2} are the parameters of the model to be
estimated from the training data set D. We assume the prior
distribution of the parameters follow the Gaussian Distribu-
tions centered on 0:

hi ∼ N(0, 1/λ(h)I)

ar,∗,∗ ∼ N(0, 1/λ(A))

wr,l,∗,∗ ∼ N(0, 1/λ(w))

λ(h), λ(A) and λ(w) are the variance of the above Gaussian
distributions. They are the hyper parameters that charac-
terize the shape of the prior distributions. The effect of the
prior distribution is similar to the ridge regression (norm-2
regularizer) commonly used in machine learning algorithms
for controlling model complexity and avoiding over fitting.

The proposed model is motivated by well performing rec-
ommendation models in the literature. It generalizes several
existing models. If we model only one relationship, and set
Ar to the zero matrix and Wr,1 to identify matrix, the model
is similar to the bilinear model that works well on the Yahoo
news recommendation task [6]. If we only model one rating
relationship, and set Ar to the identify matrix and W∗ to
zero matrices, the model is similar to the well known norm-
2 regularized singular value decomposition, which performs
well on the Netflix competition [20][25].

Based on the above model assumptions, the joint likelihood
of all random variables (H, A, W and D) in the system is:

P (H,A,W,D) =
∏

(r,i,j,y)∈D

P (yr,i,j |hi,hj , fi, fj , Ar,Wr,1,Wr,w, λ
(y))

∏
i

P (hi|λ(h))
∏
r

P (Ar|λ(A))P (Wr,1|λ(w))P (Wr,2|λ(w))(1)



Figure 1: A Probabilistic Latent Relational model. For simplicity, some random variables (Ar, Wr,∗ λ
(∗) etc.)

are not shown in this figure.

3.2 Parameter Estimation
“Over fitting” is a major challenge while estimating such a
detailed user model, especially for users with limited data.
Prior research has demonstrated that the Bayesian model-
ing approach helps alleviate the problem [20, 29]. A major
principal of Bayesian method is to keep the distribution of
parameters and average over the possible values of parame-
ters (integral) while making a prediction. This is in contrast
to the commonly used max a posterior (MAP) estimation
or maximum likelihood (ML) estimation, where the most
likely parameter (a point estimator) is selected and used
in the final prediction. Prior collaborative filtering research
has demonstrated that this full Bayesian modeling approach
inference results in good performance on the Netflix movie
recommendation task [20]. However, straightforward inte-
gration over the posterior estimation of all model parameters
while doing Bayesian inference could be computationally in-
tractable. Some techniques, such as Markov chain Monte
Carlo and Laplace approximation, have been introduced to
approximate the integral, among which Variational Bayesian
seems a feasible solution in standard collaborative filtering
settings [20].

Scalability and analytical tractability are also important is-
sues that need to be addressed while taking the Bayesian
approach to build a system like ours. For our particu-
lar task, the “over fitting” maybe a serious problem for
user/item/object specific parameters hi due to the limited
data per user/item/object. This motivates us to follow the
Variational Bayesian approach at the E step to estimate the
distribution of the hidden representation of objects. How-
ever, it may not be a serious problem for user/item/object
independent global parameters (A,W ) given the large amount
of data available to estimate these global parameters, assum-
ing the recommender system is serving many users/items.
Thus the posterior distribution of (A,W ) is like to peak
around the MAP point with a very small variance, and thus
it is not worth the effort to do Variational Batesian on these
parameters. Thus we chose to follow the MAP estimation
using conjugate gradient descent method to get the MAP (a
point estimator) of other parameters (Ar,Wr,1,Wr,2) at the
M step.

The posterior distribution of hi and MAP of (Ar,Wr,1,Wr,2)
are combined to make the final predictions:

ŷr,i,j =

∫
hi,hj

P (hi)(h
T
i Arhj + (Wr,1fi)

TWr,2fj)dhi (2)

Now we derive the estimation of the distribution of hi and
the values of (Ar,Wr,1,Wr,2) using the following modified
variational Bayesian EM algorithm.2

3.2.1 E Step:
In the E step, the Variational Bayesian approach is used to
estimate the posterior distribution of H. Assuming (A,W )
2To make this paper more readable for the general ACM
RecSys participants, we omit the detailed derivation in this
paper and can add them to the appendix if needed.

are known, based on Equation 1, we have:

P (H|A,W,D) ∝∏
(r,i,j,y)∈D

N(hT
i Arhj + (Wr,1fi)

TWr,2fj , 1/λ
(y)
r )

N∏
i=1

N(hi|0, 1/λ(h)I)

Using the above distribution for Bayesian inference in Equa-
tion 2 to predict y will result in intractable integrals. Thus
we approximate the posterior by the following variational
distribution:

Q(H) =

N∏
i=1

Q(hi)

The mean and covariance of these composite distributions
are denoted as: EQ(hi)(hi) = h̄i, and V arQ(hi)(hi) = Σi

This variational distribution is restricted to belong to the
Gaussian family so that replacing P (H) with Q(H) in Equa-
tion 2 will lead to straightforward prediction of yr,i,j . With
the intention that Q(H) should be made very similar to the
true posterior P (H|A,W,D), we can estimate Q(H) by min-
imizing the KL-divergence between it and P (H|A,W,D).
Since Q(H) is factorized into individual Q(hi), we can fo-
cus on one Q(hi) at a time by fixing/ignoring other factors.
With some derivation, we will have the following simple ex-
pectation over a quadratic form of hi:

EQ(H)(logQ(H)− logP (H|A,W,D))

= EQ(hi)(
1

2
hT
i Σ−1

i hi − cihi + logQ(hi)) + Const. (3)

where

Σ−1
i = (

∑
(r,i,j,y)∈D

λ(y)
r ArEQ(hi)(hjh

T
j )AT

r

+
∑

(r,j,i,y)∈D

λ(y)
r AT

r EQ(hi)(hjh
T
j )Ar + λ(h)I)

= (
∑

(r,i,j,y)∈D

λ(y)
r Ar(h̄jh̄

T
j + Σj)A

T
r

+
∑

(r,j,i,y)∈D

λ(y)
r AT

r (h̄jh̄
T
j + Σj)Ar + λ(h)I)

ci = (
∑

(r,i,j,y)∈D

λ(y)
r ỹArh̄j +

∑
(r,j,i,y)∈D

λ(y)
r ỹAT

r h̄j)

ỹ = y − (Wr,1fi)
TWr,2fj .

Based on Equation 3, we have Q(hi) = N(h̄i,Σi), where
h̄i = ciΣi.

3.2.2 M Step
In the M step, we estimate A and W based on the approx-
imate posterior estimation of Q(H) at E step. This can
be done by maximizing the expected posterior likelihood of



A,W as follows:

{Â, Ŵ} = arg max
A,W

EQ(H)(logP (A,W,H|D))

= arg max
A,W

EQ(H) log(P (D,A,W |H)) (4)

Because Q(H) is factorized into different Q(hi), we can
exam the expectation for each individual hi. With some
operations, we can find the gradient of each Q(hi) factor
with respect to each Ar,Wr,∗ can be calculated as follows:

∂EQ(hi)(logP (D,A,W |H))

∂Ar

=
∑

(r,i,j,y)∈D

λ(y)
r (h̄T

i Arh̄j + (Wr,1fi)
TWr,2fj − y)Wr,2fjf

T
i

+λ(w)Wr,1

∂EQ(hi)(logP (D,A,W |H))

∂Wr,2

=
∑

(r,i,j,y)∈D

λ(y)
r (h̄T

i Arh̄j + (Wr,1fi)
TWr,2fj − y)Wr,1fif

T
j

+λ(w)Wr,2

Based on the above gradient for each Q(hi) factor and Equa-
tion 4, we can use the conjugate gradient descent method to
find the MAP estimation of A,W at the M step.

4. EXPERIMENTS
4.1 Evaluation Data
We collected a data set from the web site Epinion.com.
Epinions.com is a general consumer review site. The prod-
ucts are categorized into more than 20 categories (books,
movies, electronics, etc.). Each review contains a particular
user’s rating about the product, and the rating is an integer
from 1 to 5. Every user also maintains a “trust” user list,
which provides the social network of trust relationships be-
tween users. The trust value is binary. The whole data set
we collected contains 56,859 users, 271,365 different items,
and 1,154,812 reviews/ratings. There are total of 603,686
trust statements among pairs of users. Most of the items
are assigned into one category by Epinions. 10,994(19.3%)
users only rate one item. The average number of ratings
per user is only 20.3, and the average number of ratings per
product is only 4.3. Compared to popular recommendation
data set, such as Movielens and Netflix, this is a very chal-
lenging data set due to the sparsity.

Brand and brand loyalty have been identified by marketing
researchers as very important characteristics about prod-
ucts and customers [9]. Thus we want to use brand related
features for products and users. Although we expect this in-
formation could be available in real recommender systems,
it is not explicitly provided by epinion.com, thus we extract
it for a subset dataset. One subset contains products in the
family/kids category, and it includes 19947 products, 14063
users and 105329 ratings in total. Each item has a 0/1 fea-
ture vector, where each dimension corresponds to a brand
and the value is 1 if the item belongs to the corresponding
brand, otherwise 0. Similarly, each user has a 0/1 brand fea-
ture vector and a dimension is 1 if the user has purchased

any product in the corresponding brand, otherwise 0. Each
user feature vector is a dynamic vector as the list of products
purchased by the user changes over time.

We first split the data randomly into three parts: 80% as
the candidates for training3, 10% as the validation set to
configure the system, and 10% as the testing set.

4.2 Evaluation Methodology
We design the experiments to answer the following ques-
tions:

1. Does the proposed framework work well in basic col-
laborative filtering settings.

2. Does integrating features, a variety of feedback the
and social network improve the recommendation per-
formance?

To answer the first question, we compare the performance of
the proposed approach on a standard collaborative filtering
setting (PLRMC) where only the user-item rating matrix is
available. The baseline algorithm we used is the probabilis-
tic matrix factorization approach proposed by Salakhutdi-
nov and Minh in [26], which works better than SVD and
Netfix’s own cinemax system on Netflix data set. We also
evaluate the performance of the proposed approach on the
task of using social network for recommendation (PLRMS).
The authors of [21] kindly shared their data set to us, and
we use it in our first experiment. We control the experi-
mental as described by [21], run our algorithm on their data
set, and compare our performance with the results reported
by their 2009 SIGIR paper. More details about this second
data set is described in [21].

To answer the second question, we compared the perfor-
mance with following settings:

R: Rating a model trained on user feedback on ratings

RP: Rating + Purchasing a model trained on user feed-
back on ratings and purchasing information of users.

RPT : Rating + Purchasing + Trust Network a model
trained on ratings, purchasing information and the
trust network between users.

RPTF: Rating + Purchasing+ Trust Network + Feature
a model trained on ratings, purchasing information,
the trust network and features.

The Epinion data set does not contain purchasing informa-
tion. However, many other e-commerce web sites such as
Amazon.com can collect more purchasing information than
ratings. We convert the rating data into purchasing training
data by changing all ratings to value 5, and we add in user
and product pairs not rated into purchasing data as negative
samples. Most e-commerce web sites have more purchasing
information than ratings. To simulate the scenario of these

3Depending on the setting of each run, a varied portion of
the 80% data are used for training.



Table 1: Comparison with existing approaches.
Train ratio is the percentage of data with rating
labels given. Dim is the number of hidden dimen-
sions. The PMF and RSTE results are copied from
Ma et.al.’s SIGIR09 paper.

Train raio @ Dim PMF RSTE PLRMC PLRMS

80% @ 5 1.183 1.135 1.034 1.033
90% @ 5 1.158 1.111 1.026 1.023
80% @ 10 1.176 1.126 1.034 1.032
90% @ 10 1.154 1.109 1.025 1.023

web sites, we only make a portion of the 80% rating training
data available, and convert the rest into purchasing training
data, assuming the users do not provide ratings on those
items.

We focus on the product recommendation task and evalu-
ate different approaches using two evaluation measure. The
first one is to predict user rating of products, and we use
the commonly used Root Mean Square Error RMSE as the
evaluation measure.

Although RMSE is commonly used in collaborative filter-
ing research, we would like to validate our approach on a
more realistic task. In the real-world, a major task for a
recommender system is to recommend top items that the
users may like. Hopefully the users will find some interest-
ing item(s) to purchase. Minimizing RMSE does not nec-
essarily optimizing the top recommendations. Thus we also
simulate the ranking scenario and investigate the effect of
our approaches on the ranking task. If we have complete rel-
evance judgements from each individual user, we can carry
out the ranking experiments in a standard information re-
trieval evaluation setting and report Precision and Recall
measures. However, this is almost infeasible given the epin-
ion.com data set. Thus we design our ranking experiments
based on a variation of the evaluation method proposed by
Koren et. al. [18]. For a user, each product rated as 5 by
the user in the 10% testing set is considered a good/relevant
testing point for that particular user. 1000 products ran-
domly sampled are considered the irrelevant testing data
points. For each user, the ratings of all the 1001 products
are predicted using the trained model. All 1001 items are
ranked according the score and the relative rank of the rel-
evant product is recorded. This rank should be smaller for
a better recommendation algorithm.

4.3 Experimental results
4.3.1 Comparing with existing algorithms

Table 1 shows that the proposed PLRMC and PLRMS

models outperform two baseline models. This demonstrate
that our approach works reasonably well in the standard
filtering setting when only the user-item rating matrix is
available (comparing PLRMC with PMF) or when trust
network information is also available (comparing PLRMS

with RSTE).

4.3.2 Comparing PLRMs with different information
Does integrating features, heterogeneous feedback and the
social network improve the recommendation performance?

Table 2: RMSE comparison of different settings
training ratio 20% 40% 80%

R 1.06431 1.03427 0.997688
RP 1.06342 1.033224 0.996456

RPT 1.06215 1.0337 0.996155
RTPF 1.06129 1.03226 0.99533

Figure 2: Simulated ranking results with 80% train-
ing set

Table 2 compares the performance PLRM when different
information is given. We found the RMSE is decreasing as
more information is added. The improvement is bigger when
the amount of training data (data with ratings) is smaller.
One may ask whether this improvement is significant for a
real recommender system and worth the effort, and we will
address it in the next section.

4.3.3 Ranking results
Figure 2 compares the performance of PLRMs with differ-
ent information given on the simulated ranking task. The
x-axis is the cumulative rank distribution between 0% and
20% (top 200 ranked items out of 1001) and the y-axis is the
portion of relevant products covered by this level of rank.
Although the RMSE differences between R, RP, RPT and
RPTF seem small (Table 2), the performance of RPTF is
significantly better than other methods on the ranking task.
We also observe similar results when the percentage of train-
ing data is smaller (20% or 40%). This is not surprising, as
Koren has found that top-K recommendation task can bet-
ter highlight the differences among methods than RMSE
[18]. The results are very encouraging and show the PLRM
approach has much potential in real ranking based recom-
mendation tasks, and thus it worth to spend the extra effort
on integrating various information. In particular, the brand
information is very valuable for recommendations.

4.3.4 Similar Products
One useful function of a recommender system is to recom-
mend similar products for a particular product, which we
call a query. The Probabilistic Latent Relational Models
can also provide this function, and the products similar-
ity can be measured based on the hidden representations.
However, the hidden representations are more reliable for
items with a significant amount of feedback, and thus the
similarity search results are reasonable in these cases. Some
examples of similar products are shown in Table 3. For some
products with few (1 or 2) ratings, the hidden representa-
tions learned are unreliable and thus the similar products
found are not reasonable. In those cases, we may want to
use the description/meta data to measure similarities. If a
recommender system collects feedback on whether two items
are similar, we can introduce a similar relationship between
products into the PLRM framework for joint learning.

5. CONCLUSION
Although content based adaptive filtering, collaborative fil-
tering, and social network have been researched for the rec-
ommendation task, the research is fragmented. Most exist-
ing techniques focus on using one or two kinds of user feed-



Table 3: Similar products. The number of ratings
for each query is also provided.

Name ratings
Query Little Smart Sort ’n Go Car 92

Neighbors
Little Smart Tiny Tot Driver 69

Matchbox Special 5-Pack Vehicles 44
Primo - Choo Choo Train 8

Query Enfamil With Iron 202

Neighbors
Activity Walker 42

Similac With Irons 34
Munchkin White Hot Basic Spoons 22

back to learn a user model. As recommender systems be-
come more popular and multi-functional, the problem of in-
tegrating a variety feedback types, meta data about users/items,
and social networks for personalized recommendation is im-
portant and deserve research attention. We approach the
problem by examining desirable characteristics of a recom-
mender system and develop a new model, PLRM, as a uni-
fied probabilistic framework to build a such system. We
generalize all user feedback types as different relationships
between user and objects (user or item) that receive the
feedback. The Probabilistic Latent Relational Model de-
composes the model to be learned into two components: the
hidden representations of users and items, and the proba-
bilistic relational functions for different feedback types. The
model is trained from various user feedback types. This en-
ables the system to make recommendations to a particular
user based on information from other users, the user’s other
types of feedback, the description of the user, the descrip-
tion of the products, the user’s feedback on other products,
and the user’s social network. This modeling framework has
more potential than many existing recommendation tech-
niques because it tries to integrate heterogeneous informa-
tion for recommendation.

This paper is a major step towards the direction of exploiting
heterogenous feedback types, meta data and social networks
for personalized recommendation. As the potential benefit
of integrating heterogeneous information for recommenda-
tion are receiving more research attention and a new pio-
neering workshop on this topic will be held at ACM RecSys
2010 this year [4], we expect more research in this direction
in the following years. We are also planning to continue this
research and systematically propose several alternative in-
formation combination approaches and compare probabilis-
tic latent relational models with them in the future. For the
PLRMs, we leave much of the model refining tasks, such as
choosing the number of hidden features, learning of the vari-
ances of the parameters, to future research. Other kinds of
meta data, such as the location or the time, about users will
be added. Our experiments consider only one network type,
while the proposed solution can also be applied to situa-
tions when multiple different social networks co-exist. If we
want to model real world social influence among users, the
model should be modified. For mathematical convenience,
we use Gaussian distributions in most of the places, while
other functional forms can also be introduced in the future.
Besides, we are also plan to go beyond two way interaction
to model relationship between three or more objects, and a

possible direction is to add tensor or polyadic factorization
components into PLRMs [5].

Compared to popular factorization models for CF, the major
difference of PLRM is to decompose the learning into two
components: learning the representation of items (hi) and
learning the relationships between items (Ar). This idea is
motivated by recent research in neurolinguistics.
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