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Abstract10

In this paper we propose a model to forecast eruptions in a real for-11

ward perspective. Specifically, the model provides a forecast of the next12

eruption after the end of the last one, using only the data available up to13

that time. We focus our attention on volcanoes with open conduit regime14

and high eruption frequency. We assume a generalization of the classical15

time predictable model to describe the eruptive behavior of open conduit16

volcanoes and we use a Bayesian hierarchical model to make probabilistic17

forecasts. We apply the model to Kilauea volcano eruptive data and Mount18

Etna volcano flank eruption data.19

The aims of the proposed model are: 1) to test whether or not the20

Kilauea and Mount Etna volcanoes follow a time predictable behavior; 2)21

to discuss the volcanological implications of the time predictable model22

parameters inferred; 3) to compare the forecast capabilities of this model23

with other models present in literature. The results obtained using the24

MCMC sampling algorithm show that both volcanoes follow a time pre-25
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dictable behavior. The numerical values inferred for the parameters of the26

time predictable model suggest that the amount of the erupted volume27

could change the dynamics of the magma chamber refilling process during28

the repose period. The probability gain of this model compared with other29

models already present in literature is appreciably greater than zero. This30

means that our model provides better forecast than previous models and it31

could be used in a probabilistic volcanic hazard assessment scheme.32
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1. Introduction35

One of the main goals in modern volcanology is to provide reliable fore-36

cast of volcanic eruptions with the aim of mitigating the associated risk. The37

extreme complexity and non linearity of a volcanic system make determin-38

istic prediction of the evolution of volcanic processes rather impossible (e.g.39

Marzocchi 1996; Sparks 2003). Volcanic systems are intrinsically stochas-40

tic. In general, eruption forecasting involves two different time scales: i)41

a short-term forecasting, mostly based on monitoring measures observed42

during an episode of unrest (e.g., Newhall and Hoblitt 2002, Marzocchi et43

al. 2008 among others); ii) a long-term forecasting, usually made during a44

quiet period of the volcano, and mostly related to a statistical description45

of the past eruptive catalogs (e.g. Klein, 1982, Bebbington and Lai, 1996a46

among others). Here, we focus our attention only on this second issue.47

In a long-term eruption forecast perspective we believe that an incisive48

and useful forecast should be made before the onset of a volcanic eruption,49

using the data available at that time, with the aim of mitigating the as-50

sociated volcanic risk. In other words, models implemented with forecast51

purposes have to allow for the possibility of providing “forward” forecasts52

and should avoid the idea of a merely “retrospective” fit of the data avail-53

able. Models for forecasting eruptions should cover a twofold scope: fit the54

eruption data and incorporate a robust forecast procedure. While the first55

requirement is mandatory, the latter one is not commonly used in statisti-56

cal modeling of volcanic eruptions. By carrying out and testing a forecast57

procedure on data available at the present, one could make enhancement in58

the forecast matter and reveal the model limitations.59

Different methods have been presented in the past years aiming at60
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the identification of possible recurrence or correlation in the volcanic time61

and/or volume data for long-term eruption forecast. Klein (1982), Mulargia62

et al (1985) and Bebbington and Lai (1996a and 1996b) studied the time63

series of volcanic events looking at the mean rate of occurrence. Sandri et al.64

(2005) applied a generalized form of time predictable model to Mount Etna65

eruptions using regression analysis. Marzocchi and Zaccarelli (2006) found66

different behavior for volcanoes with “open” conduit regime compared to67

those with “closed” conduit regime. Open conduit volcanoes ( Mt Etna,68

Kilauea volcano there tested) seem to follow a so-called Time Predictable69

Model. While closed conduit volcanoes seem to follow a homogeneous Pois-70

son process. De La Cruz-Reyna (1991) proposed a load-and-discharge model71

for eruptions in which the time predictable model could be seen as a partic-72

ular case. Bebbington (2008) presented a stochastic version of the general73

load-and-discharge model also including a way to take into account the his-74

tory of the volcano discharging behavior. In this paper the author studied75

the time predictability as a particular case of his model with application to76

Mount Etna, Mauna Loa and Kilauea data series. A different hierarchical77

approach has been presented by Bebbington (2007) using Hidden Markov78

Model to study eruption occurrences with application to Mount Etna flank79

eruptions. This model is able to find any possible underlying volcano ac-80

tivity resulting in changes of the volcanic regime. Salvi et al (2006) carried81

out analysis for Mt Etna flank eruption using an Non Homogeneous Poisson82

process with a power law intensity, while Smethurst et al (2009) applied a83

Non Homogeneous Poisson process with a piecewise linear intensity to Mt84

Etna flank eruptions.85

In a recent paper Passarelli et al (2010) proposed a Bayesian Hierarchical86
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Model for interevent time-volumes distribution using the time predictable87

process with application to Kilauea volcano. The model presents a new88

Bayesian methodology for an open conduit volcano that accounts for uncer-89

tainties in observed data. Besides, the authors present and test the forecast90

ability of the model retrospectively on the data through a forward sequen-91

tial procedure. While the model seems to produce better forecasts that92

other models in the literature, it produces fits to eruption volumes and in-93

terevent times that are too large, reducing the forecast performances. This94

is due to the use of normal distributions for the log-transformed data. This95

is a restrictive distributional assumption that creates very long tails. Here96

we propose a more general modeling strategy that allows for more flexible97

distributions for the interevent times and volumes data.98

Using the same framework of Passarelli et al (2010), we will model the99

interevent times and volumes data through distributions with exponential100

decay (Klein, 1982, Mulargia, 1985, Marzocchi, 1996, Bebbington, 1996a ,101

1996b and 2007, Salvi et al, 2006, Smethurst et al, 2009). This provide a102

general treatment of the volume and interevent time series, hopefully im-103

proving the forecast capability of the model. As eruptive behavior we use104

the Generalized Time Predictable Model (Sandri et al, 2005 and Marzocchi105

and Zaccarelli, 2006). This model assumes: 1) eruptions occur when the106

volume of magma in the storage system reaches a threshold value, 2) magma107

recharging rate of the shallow magma reservoir could be variable and 3) the108

size of eruptions is a random variable, following some kind of statistical109

distribution. Under these assumptions, the time to the next eruption is de-110

termined by the time required for the magma entering the storage system to111

reach the eruptive threshold. The more general form for a time-predictable112
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model is a power law between the erupted volume and the interevent time:113

ri = cvb
i (1)

where, if the parameter b is equal to unity we are in a classical time pre-114

dictable system (see De La Cruz Reyna 1991, Burt et al. 1994). If b is equal115

to 0 the system is not time predictable. If b > 1 or 0 < b < 1 we have a116

non-linear relationship implying a longer or shorter interevent time after a117

large volume eruption compared to a classical time predictable system. The118

goal of the present work is to infer the parameters of Equation (1).119

In the remainder of this paper, we focus our attention on some specific120

issues: 1) to discuss the physical meaning and implications of parameters121

inferred; 2) to verify if the model describes the data satisfactorily; 3) to122

compare the forecasting capability of the present model with other models123

previously published in literature using the sequential forward procedure124

discussed in Passarelli et al (2010). In the first part of this paper, we will125

introduce the generality of the model by considering three stages: 1) a model126

for the observed data; 2) a model for the process and 3) a model for the127

parameters (Wikle, 2002). Then we will discuss how: 1) to simulate the128

variables and parameters of the model; 2) to check the model fit; 3) to use129

the model to assess probabilistic forecast in comparison with other statistical130

published models. The last part of the paper contains the application of131

the model to Kilauea volcano and Mount Etna eruptive data.132
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2. A Bayesian Hierarchical Model for133

Time-Predictability134

In the following sections we present a detailed description of our pro-135

posed model. We denote it as Bayesian Hierarchical Time Predictable Model136

II (BH TPM II), while the model proposed in Passarelli et al. (2010) is de-137

noted as BH TPM. In Section 2.1 we discuss the measurement error model.138

In Section 2.2 we consider a model for the underlying process, which is139

based on the exponential distribution. In Section 2.3 we discuss the dis-140

tributions that are placed on the parameters that control the previous two141

stages of the model. In Section 2.4 we introduce the simulation procedure142

and in Section 2.5 we consider model assessment and forecasting of volcanic143

eruptions.144

2.1. Data model145

The dataset for this model has n pairs of observations: volumes and in-146

terevent times denoted as dvi
and dri

respectively. We assume independence147

between the measurement errors of interevent times and volumes. This is148

justified by the fact that these two quantities are measured using separate149

procedures. Dependence between times and volumes will be handled at the150

process stage, following the power law in Equation (1). In addition, we151

assume that, conditional on the process parameters, the interevent times or152

volumes are independent within their group. This is a natural assumption153

within a hierarchical model framework. It is equivalent to assuming that the154

volumes (times) are exchangeable between them. Exchangeability implies155

that all permutations of the array of volumes (times) will have the same156

joint distribution. Exchangeability is weaker than independence, and it is157
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implied by it.158

Our measurement error model assumes a multiplicative error for the159

observations. This follows from BH TPM where is was assumed that160

log(dri
) = log ri + log εri

(2)

with log εri
∼ N(0, σ2

Dri
) where σ2

Dri
= (

∆dri

dri
)2 (for more details see Pas-161

sarelli et al, 2010). The analogous assumption log(dvi
) = log vi + log εvi

and162

log εvi
∼ N(0, σ2

Dvi
) where σ2

Dvi
= (

∆dvi

dvi
)2, was considered for the volumes.163

Exponentiating on both sides of Equation (2) we have164

dri
= εri

ri (3)

which is the data stage model we propose in BH TPM II.165

The error in Equation (3) follows a probability distribution with posi-166

tive support. We choose an inverse gamma distribution. This is a flexible167

distribution defined by two parameters which will provide computational168

advantages. We fix the two defining parameters by assuming E(εri
) = 1169

and calculating var(εri
) using a delta method approximation. Specifically,170

from the assumption that log εri
∼ N(0, σ2

Dri
)), we have that E(log εri

) = 0171

and var (log εri
) = σ2

Dri
= (

∆dri

dri
)2. Thus172

var (εri
) = σ2

Dri

[
g′

(
E

(
∆dri

dri

))]2

=

(
∆dri

dri

)2

where g(x) = exp(x) and g′ is the first derivative.173

Recall that a random variable X that follows an inverse gamma distri-174

bution with parameters αri
and βri

has expected value E(X) =
βri

αri−1
and175
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variance var(X) =
β2

ri

(αri−1)2(αri−2)
. We then have that176

βri

αri
− 1

= 1 and
β2

ri

(αri
− 1)2(αri

− 2)
=

(
∆dri

dri

)2

.

Solving for αri
and βri

gives αri
= (

dri

∆dri
)2+2 and βri

= (
dri

∆dri
)2+1 where

∆dri

dri
177

is the relative error. Analogous calculations can be done for the volumes.178

The joint distributions for the measurement errors εr = (εr1 , . . . , εrn) and179

εv = (εv1 , . . . , εvn) result in180

[εr|αri
, βri

] =
n∏

i=1

Γ−1(αri
, βri

) and [εv|αvi
βvi

] =
n∏

i=1

Γ−1(αvi
, βvi

) (4)

where αvi
=

(
dvi

∆dvi

)2

+ 2 and βvi
=

(
dvi

∆dvi

)2

+ 1. Here we use [X] to181

denote the distribution of a random variable X and Γ−1 to denote an inverse182

gamma.183

The distribution of the observed variables dri
and dvi

can be obtained184

from the error distributions specified by the expression in (4). Noting that185 ∣∣∣ dεri

d(dri )

∣∣∣ = 1
ri

and using the change of variables formula for probability density186

functions, we have that187

[dr|αri
, βri

, ri] =
n∏

i=1

Γ−1(αri
, βri

ri) and [dv|αvi
, βvi

, vi] =
n∏

i=1

Γ−1(αvi
, βvi

vi).

(5)

The expression in (5) will be used to obtain the likelihood function for our188

data.189

2.2. Process model190

The starting point for the model pertaining the unobserved quantities191

ri is the assumption that volcanic eruptions correspond to a homogeneous192

Poisson process. A Poisson process in times has the property that the193
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number of events that occur during a given time interval follow a Poisson194

distribution with mean proportional to the length of the interval. Addition-195

ally the time between consecutive events is distributed as an exponential196

random variable (Klein, 1982, Mulargia, 1985, Marzocchi, 1996, Bebbington197

and Lai, 1996a, 1996b). Thus we assume that ri ∼ Exp(λ) implying that198

the joint distribution of r = (r1, . . . , rn) is given by [r|λ] =
∏n

i=1 Exp(λ).199

Given the distributional assumption for the interevent times we can ob-200

tain the distribution of the volumes vi using Equation (1). Recalling that201

ri = cvb
i and

∣∣∣ dri

dvi

∣∣∣ = cbvb−1
i , the change of variable formula for probability202

density functions yields [vi] = cbλvb−1
i e−λcvb

i Written in distributional form203

we have: vi ∼ Wb
(
b,

(
1
λc

) 1
b

)
where Wb(·, ·) denotes a Weibull distribution.204

The joint distribution for the volumes v = (v1, . . . , vn) is given as205

[v|λ, b, c] =
n∏

i=1

Wb

(
b,

(
1

λc

) 1
b

)
. (6)

This completes the specification of the second stage of our model.206

2.3. Parameters model207

To complete our model we need to specify distributions for the param-208

eters b, c and λ. Our choices are based on prior information obtained from209

previous modeling efforts. In a Bayesian setting, like the one proposed in210

this work, we have the ability to include structural information, like the211

one used to build the second stage model, as well as prior information. The212

final product consists of the posterior distribution of all model parameters.213

This contains a blend of the information provided by all the stages of the214

model: data, process and prior knowledge.215

We choose for λ a gamma distribution with known parameters, from216

now on hyperparameters. This is denoted as have: λ ∼ Ga(αλ, βλ) where217
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αλ and βλ are calculated by fitting the interevent times data with a gamma218

distribution, via maximum likelihood estimation. For the time predictable219

equation parameters, i.e. b and c, we use normal distributions with moments220

calculated using the posterior distributions taken from BH TPM (Passarelli221

et al., 2010). Thus [b] = N(µb, σ
2
b ) and [c] = N(µc, σ

2
c ).222

By choosing the values of the hyperparameters we are introducing a cer-223

tain degree of subjectivity in our modeling. We believe that this is a desir-224

able feature of the Bayesian approach, as it allows to incorporate knowledge225

from similarly behaved open conduit volcanoes. We remark the subjective226

approach allowed in Bayesian Statistics could be a suitable tool in model-227

ing geophysical phenomena where available data are scarce. This provides228

the possibility of incorporating knowledge obtained from other sources in a229

probabilistic way, through the prior distributions. This allows for the in-230

troduction of physical and/or statistical constraints, when available, on the231

parameters governing the examined phenomenon. In principle this method-232

ology could be helpful to improve the understanding of a particular system.233

We want to point out, though, that subjective statistical modeling choices234

need careful justification, possibly relying on physical or phenomenological235

constraints.236

2.4. Posterior and full conditional distributions237

The three stage model specification developed in the previous sections238

produces a posterior distribution for the model parameters r, v, b, c and λ239

that, using Bayes theorem, can be written as240

[r, v, b, c, λ|dr, dv∆dr∆dv] ∝ (7)

[dr|αdr , βdr , r][dv|αdv , βdv , v][v|c, λ, b][r|λ][λ][b][c] .
11



To make inference about the posterior distribution specified by Equation241

(7) we draw samples from it using Markov chain Monte Carlo (MCMC)242

methods (Gelman et al. 2000, Gilks et al, 1996 ). This requires the full243

conditional distributions for each parameter in the model. In the equations244

below we specify each of them using the notation [X| . . .] to indicate the245

distribution of variable X conditional on all other variables.246

[ri| . . .] ∝ r
αri
i exp

{
−ri

(
λ +

βri

dri

)}
= Ga

(
αr + 1 , λ +

βri

dri

)

247

[vi| . . .] ∝ v
αvi+b−1

i exp

{(
λcvb

i +
βvi

vi

dvi

)}

248

[λ| . . .] ∝ λ2n+αλ−1 exp

{
−λ

(
βλ + c

n∑
i=1

vb
i +

n∑
i=1

ri

)}
=

Ga

(
αλ + 2n , βλ + c

n∑
i=1

vb
i +

n∑
i=1

ri

)

249

[c| . . .] ∝ cn exp

{
−cλ

n∑
i=1

vb
i +

µcc

2σ2
c

− c2

2σ2
c

}

250

[b| . . .] ∝
n∏

i=1

(
bvb−1

)
exp

{
−λc

n∑
i=1

vb
i +

µbb

2σ2
b

− b2

σ2
b

}

The full conditional distributions of ri, i = 1, . . . , n and λ can be sampled251

directly in Gibbs steps, as they correspond to gamma distributions. The252

full conditionals of the other parameter do not have standard forms. So253
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we use Metropolis steps to obtain samples from them. Once samples from254

the MCMC are obtained we discard the first part of the chain as a burn-in255

phase (see for example Gilks et al., 1996 ); then we do a “thinning” of the256

chain by subsampling the simulated values at a fixed lag k. This strategy257

ensures that, setting k to some high enough value, successive draws of the258

parameters are approximately independent (Gelman, 1996). To define the259

lag we use the auto-correlation function as shown later in the text.260

2.5. Model Checking and Forecasting procedure261

We have presented, so far, the hierarchical structure of the model and262

the fitting procedure for the model parameters, based on MCMC sampling.263

We now address the issues of (1) testing the goodness of the proposed model264

and (2) forecasting future interevent times.265

Bayesian model checking is based on the idea that predictions obtained266

from the model should be compatible with actual data. So our strategy267

consists of simulating data from the predictive posterior distribution and268

comparing them to actual observations. The predictive posterior distribu-269

tion quantifies the uncertainty in future observations given the observed270

data. By denoting r̃ future values of interevent times we have that the271

posterior predictive is272

[r̃ | Data] =

∫

R+

[r̃ | λ][λ | Data]dλ (8)

where R+ denotes the parameter space. To obtain samples from the distri-273

bution in Equation (8) we start from the MCMC samples of λ. Suppose we274

have N of them and denote them as λj. Conditional on λj, for j = 1, . . . , N275

we simulate r̃j from [r̃ | λj], which are products of exponentials. We ob-276

tain N synthetic catalogs with n pairs of interevent time and volume data.277
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These are compared to the observed data using descriptive statistics. As278

descriptive statistics we choose the mean number of events or rate of occur-279

rence, maximum, minimum, median and standard deviation for both real280

and synthetic data.281

To test the ability of the model to forecast future volumes and interevent282

times we use a sequential approach. We proceed by fitting the model to the283

first data pair, then we add the data of the second event to the model284

fitting. We continue adding data sequentially until the last event. This285

provides an assessment of the number of data needed for the model to effec-286

tively “learn” the model parameters. Therefore, we are able to decide the287

minimum amount of data needed to define the learning phase for the model.288

For the remaining part of data (i.e. voting phase), we use the sequentially289

sampled parameters to generate the distribution for the next event (in-290

terevent time). We can thus compare the forecasted interevent times with291

the observed data and with forecasts from other published methods (see292

forward procedure discussed in Passarelli et al, 2010).293

A close look at Equation (8) reveals a practical forecasting problem. We294

observe that the posterior predictive distribution of the interevent times295

depends on the distribution of the interevent times given the parameter296

λ. While this is statistically correct, it is not a realistic forecasting pro-297

cedure. In fact, in a generalized time predictable system the time to the298

next eruption is strongly dependent on the volume of the previous eruption.299

More explicitly, in our current framework, after the end of the n-th eruption300

we have samples of λ that are simulated using only the information up to301

(dr(n−1)
, dv(n−1)

). We would like to incorporate the information on dvn . We302

do this by resampling the posterior realizations of λ using the Sampling303
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Importance Resampling algorithm (hereafter SIR), (Rubin,1988, Smith and304

Gelfand, 1992) together with Bayes theorem.305

Let θn−1 = b, c, λ be the samples obtained from our model using the first306

n− 1 data. For the n-the interevent time we have307

[r̃n | dvn ] =

∫

R+

[r̃n | dvn , vn−1, θn−1][θn−1 | dvn , vn−1]dθn−1 (9)

Obtaining samples from the predictive distribution in Equation (9) requires308

samples of [θn−1 | dvn , vn−1], which are not available. Our MCMC algorithm309

produces samples of [θn−1 | dvn−1 , vn−1] instead. Using Bayes theorem we310

have that311

[θn−1 | dvn , vn−1] ∝ [dvn | vn−1, θn−1][θn−1 | vn−1] . (10)

In Equation (10) we recognize [dvn | vn−1, θn−1] as the inverse gamma distri-312

bution used for volume data in Equation (5). [θn−1 | vn−1] is the posterior313

distribution for parameters λ, b and c up to the first n − 1 events. The314

SIR algorithm consists of resampling the output from the MCMC, say θj
n−1,315

with replacement, using the normalized weights defined as316

w∗(θi
n−1) =

w(θi
n−1)∑m

j=1 w(θj
n−1)

where w(θi
n−1) = [dvn | vi

n−1, θ
i
n−1]. The weights w correspond to the317

inverse gamma distribution in Equation (5) for the observed volume of the318

n-th event conditional on the sampled volumes of the previous event and319

the remaining parameter, as simulated by the MCMC. The output from320

the SIR algorithm can be used within Equation (9) to obtain the desired321

samples of the n interevent time. An brief description of the SIR algorithm322

is given in Appendix A.323
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Finally we use the notion of probability gain or information content,324

as proposed by Kagan and Knopoff, 1987, to make explicit comparisons of325

different forecasting methods. We calculate the information gain for the326

present model with respect to other statistical models in the literature. Let327

A and B be two statistical models, the probability gain is defined as the328

difference between their log-likelihoods, i.e.:329

PG =
n∑

i=m

(lA(δdri
)− lB(δdri

)). (11)

Here lA and lB are the natural logarithm of the likelihoods for Model330

A and B respectively and m, . . . , n denote the voting phase. These are331

calculated in a temporal window δdri
of one month around the observed332

interevent time in the voting phase. If PG is greater than zero, Model A333

has better forecasting performance than Model B, if PG is zero the two334

models are equivalent. Together with the total probability gain given by335

equation (11), we can calculate the “punctual” probability gain, i.e. the336

probability for each event lA(δdri
) − lB(δdri

) with i = m, . . . , n (Passarelli337

et al, 2010).338

3. Application to Kilauea volcano and Mount Etna339

We apply the BH TPM II to Kilauea volcano and Mt Etna eruption340

data. Marzocchi and Zaccarelli, 2006 have found that Kilauea volcano and341

Mt. Etna follow a time predictable eruptive behavior. They also stated that342

these volcanoes are in open conduit regime because of their high eruptive343

frequency and, consequently, short duration of interevent times. Bebbing-344

ton, 2007 have showed evidences of the time-predictable character of Mt.345
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Etna flank eruptions using a catalog starting in 1610 AD. The same re-346

sults on time-predictability are attained by Sandri et al., 2005 only focusing347

on the Mt Etna flank eruptions in the period 1971-2002. Passarelli et al,348

2010 have found time-predictability of Kilauea volcano for eruptive catalog349

starting in 1923 AD.350

These findings led us to use Kilauea and Mt Etna as test cases for our351

proposed model. Our goals in this paper is to test: 1) whether or not they352

follow a time predictable behavior; 2) the reliability of the assumptions353

used in the model; 3) improvements in using the information given by the354

volume measurement errors; 4) the ability to fit the observed data, and355

5) the forecast capability of the model compared with models previously356

published in literature for Kilauea and Mt Etna.357

3.1. Kilauea volcano358

Kilauea volcano is the youngest volcano on the Big Island of Hawaii.359

The subaerial part of Kilauea is a dome-like ridge rising to a summit eleva-360

tion of about 1200 m, is about 80 km long, 20 km wide and covers an area of361

about 1500 km2. Kilauea had a nearly continuous summit eruptive activity362

during the 19th century and the early part of the 20th century. During363

the following years, Kilauea’s eruptive activity had shown little change. Af-364

ter 1924, summit activity had become episodic and after a major quiescence365

period during 1934-1952, the rift activity raised increasing the volcanic haz-366

ard (Holcomb, 1987). It is widely accepted that Kilauea has its own magma367

plumbing system extending from the surface to about 60 km deep in the368

Earth, with a summit shallow magma reservoir at about 3 km depth. The369

shallow magma reservoir is an aseismic zone beneath the South zone of the370
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Kilauea caldera and it is surrounded on two sides by active rift conduits371

(Klein et al, 1987).372

The eruption history of Kilauea volcano directly documented dates back373

to 18th century, however before the 1923 the eruption record is spotty and in374

most of the events the erupted volume is unknown. Therefore, we limit our375

analysis to the 42 events after 1923 AD (please refer to Passarelli et al., 2010376

for more details on the Kilauea catalog completeness). The data are listed377

in Table (1) where we report the onset date of each eruption together with378

the volume erupted (lava + tephra) and the relative interevent time. The379

volume of the 1924/05/10 event is taken from http://www.volcano.si.edu/380

and is only the tephra volume. Since the eruption that began in 1983 is381

still ongoing with a volume erupted greater than 3 km3, we have 41 pairs382

of data of interevent time (i.e. the time between the onset of i-th and the383

onset of (i+1)-th eruptions) and volume erupted (in the i-th eruption).384

In the next two subsections we will present the results of the model for385

the Kilauea dataset.386

3.1.1. Results for variables and parameters387

We begin with a discussion of the choice of hyperparameter values. For388

interevent times we choose an error (∆dri
) of 1 day for all data in the cat-389

alog. For the volumes we assume relative errors (∆dvi
/dvi

) of 0.25 for data390

before the 1960 AD (i.e. i = 1, . . . , 13) and of 0.15 for data after the 1960391

AD (i.e. i = 14, . . . , 41) (see discussion in Passarelli et al., 2010). Other392

hyperparameters for the distributions of b and c, are chosen by matching the393

first two moments of the output of the BH TPM, i.e. µb = 0.2, σb = 0.1,394

µc = 200 days/106m3 and σc = 50 days/106m3 (see Passarelli et al, 2010395
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Figure 4).396

We run an MCMC simulation for 201,000 iterations with a burn-in of397

1,000 iterations and a thinning of one every 20 iterations. We checked the398

output for convergence and approximate independence of the final sample.399

In Figure 1 we show the MCMC realizations of ri and vi (blue stars), ob-400

tained using the whole catalog, and compare with the observed data (red401

pluses). The plots indicate that the model is able to accurately reproduce402

the data and that measurement errors have a realistic impact in the esti-403

mation uncertainty of the true interevent times and volumes.404

Figure 2 shows the posterior distributions of b, c and λ using all data. As405

the distribution of b (top left panel) is concentrated within the [0,1] inter-406

val, with mean 0.45 and standard deviation 0.05, we infer that the Kilauea407

volcano has a time predictable behavior. This is compatible with the find-408

ings in Passarelli et al. (2010). For the distribution of c (top right panel),409

which is function of the average magma recharge process, we find that the410

distribution is mostly contained within the interval [100,240] days/106 m3,411

with mean 164 days/106m3 and a standard deviation 24days/106m3. In the412

bottom left panel we have the posterior distribution for λ, the time of oc-413

currence of the number of events over the length of the catalog. Most of this414

distribution is contained in the interval [1.5, 3] × 10−3 days−1 and has mean415

is 2.0×10−3 ×10−3 days−1 and standard deviation 0.3×10−3 ×10−3 days−1.416

This results are compatible with the time of occurrence calculated directly417

from the data with Maximum Likelihood Estimation (MLE) techniques,418

which yields λMLE = 1.9× 10−3 × 10−3 days−1 with 95 % confidence inter-419

val [1.4, 2.5] × 10−3 × 10−3 days−1. Figure 3 corresponds to the sequential420

version of Figure 2. The plots are obtained using the approach discussed in421
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Figure 1: Blue stars show the posterior distributions of pairs of simulated variables (in-

terevent times ri and volumes vi). The top panel corresponds to i = 1, . . . , 20 and the

the bottom panel to i = 21, . . . , 41.
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section 2.5.422

Figure 2: Posterior distributions for BH TPMII parameters obtained using all data in

the catalog: top left panel refers to b, top right to c and bottom left to λ.

The results obtained imply a power law relationship between interevent423

times and volumes. As discussed in Passarelli et al, 2010, this non linear424

association underlines the role played by the magma discharging process425

in the eruption frequency. Such relationship implies the possibility of hav-426

ing a non constant input rate in the magma storage system. Therefore, a427

large erupted volume may trigger the increasing of the magma upwelling428

process inside a shallow reservoir. We expect a shorter quiescence period429

after an eruption characterized by a large volume compared with a process430

where the magma recharging rate is constant (i.e. classical time predictable431

model). A simple explanation is the existence of an additional gradient432
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Figure 3: Posterior distributions of: b parameter in top left panel, c parameter in top

right panel and λ in the bottom left panel, all calculated using the sequential procedure

discussed in the text. Black dashed line represents the learning phase. Red triangles are

the mean of each distribution.

of pressure due to the drainage process of the shallow magma system by433

a large erupted volume. This pressure gradient may increase the magma434

upwelling process from the deep crust into the shallow storage system. Non435

constant magma input rate for the shallow magma reservoir for Kilauea436

volcano has been found by Aki and Ferrazzini (2001) and Takada, (1999).437

This non-stationarity should be take into account in modeling the magma438

chamber dynamics at Kilauea volcano.439
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3.1.2. Model checking and Forecasts440

We use the ability of our approach to quantify uncertainties in future441

predictions given the observed data to check the validity of our model. We442

simulate 10,000 synthetic catalogs using the procedure described in Section443

2.5. We then calculate for both, synthetic catalogs and observed data,444

the rate of occurrence, the maximum, the minimum, the median and the445

standard deviation. Figure 4 shows the comparisons between the histograms446

of the synthetic data and the corresponding observed values. Predictions447

are in good agreement with observed values for the rate of occurrence, the448

minimum and the median. The are some discrepancies for the maximum449

and, consequently, for the standard deviation. In these cases the observed450

value falls in the tails of the predictive distributions. This is due to the451

fact that the maximum corresponds to the 18 years of quiescence of the452

Kilauea volcano (i.e. 1934-1952 AD). This is a extraordinary long period of453

rest for the Kilauea and it could be considered as an extreme value. The454

second longest interevent time is about 5 years of quiescence (i.e. 1955-455

1959 AD). Such value falls right at the center of the distribution with p-456

value=0.7. In summary, the model is capable of reproducing the data, with457

the exception of future extreme events that correspond to the tails of the458

predictive distribution.459

We use the sequential approach of Section 2.5 to evaluate the model’s460

forecast performance and compare it with published results for the Kilauea461

volcano’s interevent times. Here we compare our results with those from the462

homogeneous Poisson process (Klein et al., 1982), the Log-Normal model463

(Bebbington and Lai, 1996b), the Generalized Time Predictable Model464

(GTPM) (Sandri et al., 2005) and the BH TPM (Passarelli et al., 2010).465
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Figure 4: Histograms of samples from the posterior predictive distributions of several

summaries of the interevent times for the Kilauea (Red bars). Red dashed lines denote

the corresponding observed values. p-values correspond to the proportion of samples above

the observed values.

The homogeneous Poisson implies a totally random and memoryless erup-466

tive behavior. In the Log-Normal model interevent times are described using467

a log-normal distribution. The mode of a log-normal distribution could re-468

veal a certain degree of ciclicity in the eruptive behavior for Kilauea volcano.469

The GTPM consists of a linear regression among pairs of interevent times470

and volumes. The BH TPM is a hierarchical model where the interevent471

times and volumes are described via log-normal distributions and uses the472

logarithm of the generalized time predictable model equation as eruptive473

behavior.474

To gauge the role of the information provided by the volumes in the se-475
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quential estimation of the interevent times we compare the MCMC samples476

of λ with those obtained after the SIR procedure. The results are shown477

in Figure 5. From the figure it is clear that the information provided by478

the volumes shrinks and shifts the distribution of λ . We use the resampled479

λ values to calculate the probability gains with respect to the other four480

models considered. The results are plotted in Figure 6 where we show the481

”punctual“ probability gain and we report the total probability gain as cal-482

culated using equation (11). As indicated by positive total probability gains483

in all cases, our model shows an improvement in forecasting capability when484

compared to any of the other four models. The largest gain is observed for485

the Poisson model (panel a) where the model provides better forecasts for486

20 out of 27 eruptions. The largest global gain is obtained testing against487

the GTPM (panel d). This latter results is likely due to the inclusion of488

information on measurement error. The smallest overall gain is achieved489

with respect to BH TPM (panel b). This is not surprising as BH TPM is490

the closets model to BH TPMII among the ones considered.491

Overall we observe that BH TPMII has better forecasting performance492

than any of the four competing models in more than 50% of the events. Thus493

BH TPMII seems to be more reliable for probabilistic hazard assessments494

that the other models considered.495

Finally we investigate possible linear associations between the pointwise496

probability gains and the interevent times or volumes in each of the four497

considered cases. We only find a significant correlation (p-value≤ 0.01) for498

the case of the homogeneous Poisson process. In this case there is a clear in-499

verse relationship. This implies that the longer the interevent time the worse500

our forecast is. This is justified by the fact that for long quiescence periods501
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Figure 5: Sequentially updated posterior samples of λ’s in the voting phase (events from 14

to 41). Blue stars corresponds to MCMC output. Red triangles correspond to resampling

after observing the corresponding volumes.

the Kilauea volcano could become memoryless with transition from open502

to closed conduit regime (see Marzocchi and Zaccarelli, 2006). In addition,503

considering the events as a point in time (see Bebbington, 2008) together504

with the fact that we do not consider intrusions not followed by eruptions505

(Takada, 1999, Dvorak and Dzurisin, 1993) could be distorting. Finally506

another possible explanation could be related to possible modification of507

the shallow magma reservoir geometry after an eruption ( Gudmundsson,508

1986).509
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Figure 6: “Punctual probability gain” of the BH TPMII for each event after the learning

phase against: in panel a Poisson Model (Klein, 1982), in panel b BH TPM (Passarelli

et al, 2010), in panel c Log-Normal Model (Bebbington and Lai, 1996b) and in panel c

Generalized Time Predictable Model (Sandri et al., 2005). Values greater than zero in-

dicate when BH TPM model performs better forecast than the reference models. Positive

values indicate that BH TPMII has better forecasting ability than the alternative model.

Global probability gains are reported as “PG” in each of the four cases.

3.2. Mount Etna volcano510

Mount Etna volcano is a basaltic stratovolcano located in the North-511

Eastern part of the Sicily Island. It is one of the best known and monitored512

volcano in the world and records of its activity date back to several centuries513

B.C. The sub-aerial part of Mount Etna is 3,300 m high covering an area of514

approximately 1,200 km2. Two styles of activity occur at Mt Etna: a quasi-515

continuous paroxysmal summit activity, often accompanied with explosions,516
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lava fountains and minor lava emission; a less frequent flank eruptive ac-517

tivity, typically with higher effusion rate originate from fissures that open518

downward from the summit craters. The flank activity is sometimes ac-519

companied by explosions and lava spattering; recently, two flank eruptions520

have been highly explosive and destructive, the 2001 and 2002-2003 events521

(Behncke and Neri, 2003, Andronico et al, 2005, Allard et al, 2006).522

At present there are petrological, geochemical and geophysical evidences523

for a 20-30 km deep reservoir controlling the volcanic activity (Tanguy et524

al, 1997), but it is still debated whether or not Mt Etna has one o more525

shallower plumbing systems. Results from seismic tomography do not reveal526

any low velocity zone in the uppermost part of the volcanic edifice, while a527

high-velocity body at depth of < 10 km b.s.l. is interpreted as a main solid-528

ified intrusive body (Chiarabba et al, 2000, Patanè et al, 2003). However, a529

near-vertical shallower plumbing system has been recently inferred at about530

4.5 km b.s.l. using deformation data (Bonforte et al, 2008 for a review). It531

is widely accepted that a central magma conduit feeds the near-continuous532

summit activity, while lateral eruption are triggered by lateral draining of533

magma from its central conduit. Only few events appear to be independent534

from the central conduit being fed by peripheral dikes (see Acocella and535

Neri, 2003 among others).536

The recorded eruptive activity for Mt Etna dates back to 1500 B.C.537

(Tanguy et al, 2007). Unfortunately, the eruptive catalog can be considered538

complete only since 1600 AD for flank eruptions (Mulargia et al, 1985).539

Instead summit activity, was recorded carefully only after the World War II540

(Andronico and Lodato, 2005) and only after 1970 all summit eruptions were541

systematically registered (Wadge, 1975, Mulargia et al, 1987). Thus the Mt542
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Etna catalog is considered complete since 1970 AD for summit eruptions.543

There are several catalogs for Mt Etna eruptions available in the literature,544

the most recent ones being those compiled by Behncke et al (2005), Branca545

and Del Carlo (2005) and Tanguy et al (2007); the Andronico and Lodato546

(2005) catalog is detailed only for events in the 20th century. In this study547

we use only the flank eruptions since 1600 AD using the Behncke et al548

(2005) catalog as it appears the most complete, at least for volume data.549

We also integrate and double-check the volume data for the 20th century550

events with the Andronico and Lodato (2005) catalog. The Behcke et al551

(2005) catalog lists events up to 2004/09/07 eruption, so we update it for552

2006 AD and 2008 AD eruptions using information available in Burton et553

al (2005) and Behncke et al (2008). A raw estimation for the volume of554

the 2008/05/13 eruption was kindly provided by Marco Neri (Marco Neri555

personal communication, 2010).556

The choice of using only lateral eruptions needs qualification. Although557

it could be arguable and could explain only one aspect of the eruption558

activity at Mt Etna volcano, we are pushed in this direction by the quality559

of data available. Besides, from a statistical point of view, it is better not560

to use an incomplete dataset with the awareness of the risk of losing one561

piece of information, than using incomplete data and find false correlations562

(Bebbington, 2007). Flank eruptions, however, constitute one of the most563

important threat for a volcanic hazard assessment at Mt Etna (see Behncke564

et al, 2005 and Salvi et al, 2006 among others). Thus, in our opinion, the565

choice of using only flank eruptions seems the best available in a volcanic566

hazard assessment perspective. In Table 2 the data of flank eruptions at Mt567

Etna are reported; we indicate the onset date, interevent times (dri
) and568
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volumes (dvi
). There are 63 eruptive events and consequently 62 pairs of569

interevent time and volume data.570

The next two subsections are organized as follows: we will show first571

the results obtained for the model parameters both using all data and the572

sequential procedure discussed in Section 2.5, the ability of the model to573

fit the data (model checking) and the forecasts obtained. We will compare574

them with previously published models, when the comparison is possible.575

3.2.1. Results for variables and parameters576

In order to apply the model to the Mt Etna flank eruptions, first we need577

to specify the measurements errors (∆dri
, ∆dvi

) and the hyperparameters578

(µb, σ
2
b , µc and σ2

c ) for the priors distribution for b and c. In the Behncke579

et al. (2005) catalog there is no mention about the interevent time errors580

whereas relative errors are given for volume data. Therefore, we assign an581

error of 1 day for ∆dri
for interevent times. According to Behncke et al.582

(2005) we assign relative errors as follows: ∆dvi
/dvi

= 0.25 for i = 1, . . . , 43,583

∆dvi
/dvi

= 0.05 for i = 44, . . . , 60 and ∆dvi
/dvi

= 0.25 for i = 61, 62. The584

latter errors are relative to the 2006 and 2008 AD events not in Behncke et al585

(2005) catalog; where volumes are the first raw estimate not reparametrized586

yet (Marco Neri personal communication, 2010). For the hyperparameters587

we choose the same parameters as the Kilauea case.588

The obtained simulations are presented in Figures 7 and 8. As in the Ki-589

lauea case, the model reliably reproduces the assumed measurement errors.590

In Figure 8 we present the results for the model parameters b, c and λ using591

all data. As the distribution of b (top left panel in Figure 8) is within [0,1]592

with mean and standard deviation b = 0.30 and σb = 0.04 respectively, we593
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conclude that Mt Etna flank eruptions follow a generalized time predictable594

eruptive behavior. For the distribution of c (top right panel) we find a value595

within [200,460] days/106 m3 with mean c = 330days/106m3 and error (1596

standard deviation) σc = 40days/106 m3. In the bottom left panel we have597

the posterior distribution for the time of occurrence λ. This is concentrated598

in the interval [3.5,8] x10−4 days−1. The mean value and standard deviation599

are λ = 5.4 × 10−4 days−1 and σλ = 0.6 × 10−4 days−1 respectively. This600

result is totally compatible with the occurrence time calculated directly by601

the data with MLE technique, i.e. λMLE = 4.2 × 10−4 days−1 with 95 %602

confidence interval [3.2, 5.4]× 10−4 days−1. Figure 9 presents the sequential603

estimation of parameters b, c and λ.604

From the values corresponding to the posterior distributions of b and605

c we are lead to speculate about the role played by the magma chamber606

feeding system in the eruption frequency as we have speculated in Section607

3.1.1. Mt Etna volcano seems to act as a non-stationary volcano (Mulargia608

et al, 1987), and the non-stationarity could also imply some sort of cyclicity609

in the eruption frequency (Behncke and Neri, 2003, Allard et al, 2006).610

This possible non-stationarity should be taken into account in modeling the611

magma chamber dynamics at Mt Etna volcano.612

3.2.2. Model checking and Forecasts613

The results of the model check are presented in Figure 10. It is imme-614

diate to realize the agreement of the synthetic simulations (blue bars) with615

values calculated from the data (red bar) for the rate of occurrence, mini-616

mum and median. For the rate of occurrence where the p-value=0.94, we617

can speculate that the model predicts interevent times slightly longer that618
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the observed one. Although the model works well for minimum, median619

and rate, it is less satisfactorily for the maximum and, as a consequence, for620

the standard deviation. For these cases the observed value falls in the tails621

of the predictive distribution. This can be imputed by the fact that the622

maximum observed interevent time is relative to a long quiescence period623

from 1702 to 1755 AD and can be considered an extreme value. By consid-624

ering the second longest interevent time in catalog, i.e. quiescence period625

from 1614 AD to 1634 AD, it is compatible with the synthetic maximum626

distribution with p-value=0.7.627

Summing up, as for Kilauea data, BH TPM II model is able to capture628

the main data features except for the extreme value that fall within the tail629

of the predictive distribution.630

Using the sequential approach discussed in Section 2.5 now we test the631

forecast ability of the present model. But, before we embark in this compar-632

ison, we present the results of the SIR procedure used to resample the λj’s633

with the information provided by the erupted volumes. Figure 11 shows the634

comparison of the MCMC output with the resampled draws. It is clear that635

the information provided by the volume data in the SIR procedure shrinks636

and shifts the λj distributions637

There are several statistical model in literature for the eruptive data638

series of Mt Etna. The models are: BH TPM proposed by Passarelli et al639

(2010); A Non Homogeneous Poisson process with a power law intensity640

proposed by Salvi et al (2006); A Non homogeneous Poisson process with641

piecewise linear intensity by Smethurst et al (2009); the GTPM proposed by642

Sandri et al (2005), and the Hidden Markov Models of Bebbington (2007).643

The latter model allows the detection of change in volcanic activity using644
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Hidden Markov Models. The activity level of Mt Etna volcano is tested645

through the onset count data, the interevent time data and the quiescence646

time data (interonset in the Bebbington 2007 terminology) together with647

time and size-predictable model. Unfortunately, we were not able to apply648

the sequential procedure to the Bebbington (2007) model due to its intrinsic649

complexity, so we do not perform the probability gain test against it.650

We have already discussed the BH TPM and GTPM in the previous651

sections. Salvi et al (2006) proposed a model based on a non homogeneous652

Poisson process (NHPP). The intensity of the process has a power law time653

dependence, whose parameters are estimated using MLE. The intensity can654

increase or decrease with time, depending on the value of the exponent.655

This provides the ability to fit any trend in eruptive activity. In Smethurst656

et al (2009), a different (NHPP) was proposed, using a piecewise linear657

intensity, fitted with numerical MLE. The intensity of the process is constant658

for eruption before 1970 AD, and then increases linearly with time. The659

model has a change point that is not easy to handle under our sequential660

procedure, as the proposed method to estimate it requires the use of all the661

data. Adding one data point at a time may produce a different estimated662

change point (see Gasperini et al, 1990). In addition, the estimation of the663

parameters of the process in the Smethurst et al (2009) model is subject to664

numerical stability issues that may complicate a sequential approach.665

To tackle the change point problem and compute “forward” probabilities666

of eruptions, we use two different approaches. The first one is to fix the667

change point (i.e. 1964 AD) at the values estimated in Smethurst et al668

(2009) and simulate sequentially the other two model parameters.669

The second approach consists of empirically estimating the trend for the670
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process intensity, calculated under the sequential procedure. As we show671

in Figure 12, after the learning phase, we examine and evaluate the trend672

for the intensity λMLE (blue stars in the graph), calculated by adding one673

data at a time, assuming a homogeneous Poisson process. We find that674

the intensity shows a slow increase with important fluctuations up to the675

change point found by Smethurst et al. (2009) (black dashed line). Then,676

after the change point, the intensity rises more markedly. We estimate its677

trend using linear regressions. In Figure 12, we denote positive significant678

slopes using green lines. Other cases correspond to red lines. It is clear from679

the graph that there are no significant trends up to four events after the680

change point found by Smethurst et al (2009). This delay in the detection of681

the chance point is due to the sequential nature of the forward procedure.682

Hence to evalute probabilities sequentially, we consider an Homogeneous683

Poisson process up to four events after the change point of Smethurst et al684

(2009) and then a linearly increasing intensity.685
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Figure 7: Same as Figure 1. From top to bottom the first panel corresponds to ri and vi

i = 1, . . . 20, the second panel corresponds to i = 21 . . . 40 and the third panel corresponds

to i = 40, . . . , 62.
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Figure 8: Posterior distributions for BH TPMII parameters obtained using all data in

the catalog: top left panel refers to b, top right to c and bottom left to λ.
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Figure 9: Posterior distributions of: b, top panel; c, middle panel, and λ, bottom panel.

All distributions are calculated using the sequential procedure discussed in the text. Black

dashed lines represent the learning phase. Red triangles correspond to the means
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Figure 10: As Figure 4, histograms of samples from the posterior predictive distributions

of several summaries of the interevent times for the Mt Etna (Blue bars). Red dashed

lines denote the corresponding observed values. p-values correspond to the proportion of

samples above the observed values.
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Figure 11: As Figure 5, the SIR procedure is applied to samples of λ obtained after the

learning phase as required for the sequential approach used (i.e. events from 20 to 62).

Blue stars correspond to the MCMC output and red ones to resampled draws.
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Figure 12: Trend detection for the intensity of a homogeneous Poisson process using the

sequential procedure. Blue stars correspond the intensity calculated sequentially via MLE

by adding one data point at a time. Red lines represent non significant regressions (at 1%

level), green lines represents significant regressions. The black dashed line is the change

point estimated by Smethurst et al 2009. Sequential estimation allows the detection of

the change point only four events after the change point found by Smethurst et al., 2009.
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Finally we present the results for the probability gain in Figure 13. As686

it is shown in the inset of each panel, PG’s are always greater than zero,687

showing the present model performs better than the other ones. In partic-688

ular, the forecasting test against the homogeneous Poisson process (Panel689

a) shows only 14 eruptions out of 42 with a negative “punctual” proba-690

bility gain, corroborating the fact that Mt Etna flank eruptions are non691

stationary in time (Mulargia et al 1987, Bebbington, 2007, Salvi et al 2006692

and Smethurst et al, 2009). In testing against BH TPM (Panel b), only693

17 eruptions have a negative probability gain indicating that modeling Mt694

Etna interevent times with log-normal distributions does not seem to be695

the best choice. The result in Panel c against the GTPM is the best one696

and remarks the limitation of a regression technique in modeling linear rela-697

tionship between the logarithm of interevent times and of volumes, without698

using measurement errors. Salvi et al (2006) model, in Panel d, performs699

worse forecasts compared with BH TPMII, confirming that a power law in-700

tensity is not appropriate for Mt Etna eruption occurrences (Smethurst et701

al 2009). In Panel e, the test against the Smethurst et al (2009) model,702

with fixed change point as they found, is the worse one, although the PG703

is still slightly positive. On one hand, this test shows that modeling the704

intensity with a linear increasing function for events in the last 40 years705

seems more appropriate. At the same time, it shows some limitations: a706

close look at Subplot e shows that event 38 has a very high gain in fa-707

vor of the BH TPMII. This event is the 2001 AD eruption, started after708

10 years of quiescence. Therefore, the Smethurst et al (2009) model, with709

the ad hoc fitted piecewise linear intensity, could be misleading for real710

forecasting purposes as the observed eruption frequency decreases in the711
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future. Finally we present, in Panel f, the probability gain against the mod-712

ified Smethurst et al (2009) model following the specification discussed in713

the previous paragraph for the “forward” application. Here the probabil-714

ity gain is considerably higher than that in Panel e, although the linear715

intensity fits better the last part of the catalog.716

As a summary, it seems that, the BH TPMII shows better results in717

forecasting for more than 50% of the eruptive events manifesting a higher718

reliability. However, we have to remark that the Smethurst et al (2009)719

model is preferable if the Mt Etna flank eruptive frequency keeps increasing720

in the next years.721

We investigate some possible linear relationship between the ”punctual”722

probability gains and the interevent times or volumes using linear regression723

analysis. We do not find any correlation between volumes and probability724

gain. The only significant relationship (p-value≤ 0.01) is an inverse linear725

relationship between “punctual” probability gain calculated against the ho-726

mogeneous Poisson process and interevent times. The inverse relationship727

implies that we systematically perform worse forecast for long interevent728

times. We can justify this results stating that for long quiescence peri-729

ods the volcano becomes memoryless with transition from open and closed730

conduit regime (see Marzocchi and Zaccarelli, 2006 and Bebbington, 2007).731

Another explanation could be related to the complexity of the volcano erup-732

tion system not considered in this model. The time predictable model seems733

more appropriate when the eruptions are close in time. Conversely, when734

the quiescence period are extremely long, other compelling physical pro-735

cesses may control the volcanic activity. Finally, by neglecting the summit736

activity we lose one piece of information related to the amount of erupted737
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Figure 13: “Punctual probability gain” of the BH TPMII for each event after the learning

phase with respect to: Poisson Model (Klein, 1982) (Panel a); BH TPM (Passarelli et

al, 2010) (Panel b); GTPM (Sandri et al, 2005) (Panel c); Salvi et al. 2006 (Panel d),

; Smethurst et al. 2009 (Panel e); Modified piecewise linear model of Smethurst et al,

2009 (Panel f). Values greater than zero indicate that BH TPM model performs better

than the reference models. The inset in each panel is the total Probability gain.

volume from summit crater during the quiescence period. This may intro-738

duce a bias that could explain the inverse relationship.739

4. Conclusion740

In this work we propose a Bayesian Hierarchical model to fit a time741

predictable model for open conduit volcanoes (BH TPMII). The use of742

Bayesian Hierarchical model provides a suitable tool to take into account743
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the uncertainties related to the eruption process as well as those relative744

to the data, parameters, and variables. We have applied the model to the745

Kilauea eruptive catalog from 1923 to 1983 AD and to Mount Etna flank746

eruptions from 1607 to 2008 AD. The results show that both volcanoes have747

a time predictable eruptive behavior where interevent times depend on the748

previous volume erupted. The numerical values of the time predictable749

model parameters inferred, suggest that the amount of the erupted volume750

could change the dynamics of the magma chamber refilling process during751

the repose period.752

The model shows a good fit with the observed data for both volcanoes753

and is also able to capture extreme values as a tail behavior of the dis-754

tributions. The forecasts obtained by BH TPM II are superior to those755

provided by other statistical models for both volcanoes. In particular we756

have improved the forecast performance compared to that of BH TPM. It757

is important to notice that a model based on a NHPP, as the one developed758

in Smethurst et al (2009), could provide better forecast if the flank eruptive759

activity on Mt Etna keeps increasing in time in the same fashion as it did760

in the last 40 years; any change from this trend may cause wrong forecasts761

of the Smethurst et al’s (2009) model. Finally, we remark again that the762

model proposed here may be used for real prospective long-term forecasts763

to Kilauea and Mount Etna volcano.764
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Appendices765

A. Sampling Importance Resampling algorithm766

The Sampling Importance Resampling (SIR) is a non iterative procedure767

proposed by Rubin (1988). The SIR algorithm generates an approximately768

independent and identically distributed (i.i.d.) sample of size m from the769

target probability density function f(x). It starts by generating M (m ≤770

M) random numbers from a probability density function h(x) as inputs to771

the algorithm. The output is a weighted sample of size m drawn from the772

M inputs, with weights being the importance weights w(x). As expected,773

the output of the SIR algorithm is good if the inputs are good (h(x) is close774

to f(x)) or M is large compared to m.775

The SIR consists of two steps: a sampling step and an importance re-776

sampling step as given below:777

1. (Sampling step) generate X1, . . . , XM i.i.d. from the density h(x) with778

support including that of f(x);779

2. (Importance Resampling Step) draw m values Y1, . . . , Ym from X1, . . . , XM

with probability given by the importance weights:

w∗(X1, . . . , XM) =
w(Xi)∑M

j=1 w(Xj)
for i = 1, . . . , M.

where w(Xj) = f(Xj)/h(Xj) for all j.780

The resampling procedure can be done with or without replacement.781
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M., Pecora, E., Pompilio, M., Salerno, G., Spampinato, L., 2005. A multi-

disciplinary study of the 200203 Etna eruption: insights into a complex

plumbing system. 2005. Bull Volcanol 67:314–330 doi:10.1007/s00445-004-

0372-8.

[48] Bebbington M.S., 2007. Identifying volcanic regimes using Hidden Markov

Models. Geophys. J. Int. 171, 921-941.

[48] Bebbington M, 2008. Incorporating the eruptive history in a stochastic

model for volcanic eruptions. J. Volcanol. Geotherm. Res. 175, 325-333.

[48] Bebbington M.S., Lai C. D. 1996a. Statistical analysis of New Zealand

volcanic occurrence data, J. Volcanol. Geotherm. Res., 74, 101–110.

[48] Bebbington M.S., Lai C. D. 1996b. On nonhomogeneous models for vol-

canic eruptions, Math. Geology, 28,5, 585–600.

[48] Behncke B, Neri M 2003. Cycles and trends in the recent erup-

tive behaviour of Mount Etna (Italy). Can J Earth Sci 40:1405–1411

doi:10.1139/E03052.

[48] Behncke, B., Neri, M., Nagay, A., 2005. Lava flow hazard at Mount Etna
46



(Italy): new data from GIS-based study, in Kinematics and dynamics of

lava flow, Manga, M., and Ventura, G., eds, Geological Society of America,

Special Paper 396, 189-208,doi:10.1130/2005.2396(13).

[48] Behncke, B., Calvari, S., Giammanco, S., Neri, M., Pinkerton, H.,

2008. Pyroclastic density currents resulting from the interaction of

basaltic magma with hydrothermally altered rock: an example from

the 2006 summit eruptions of Mount Etna. Bull Volcanol, 70:1249–1268

doi:10.1007/s00445-008-0200-7.

[48] Bonforte, A., Bonaccorso, A., Guglielmino, F., Palano, M., Puglisi,

G.,2008. Feeding system and magma storage beneath Mt. Etna as re-

vealed by recent inflation/deflation cycles, J Geophys Res, 113 B05406,

doi:10.1029/2007JB005334.

[48] Branca, S., Del Carlo, P., 2005. Types of eruptions of Etna volcano AD

1670-2003: implication for short term eruptive behavior. Bull Volcanol 67:

732 – 742, doi:10.1007/s00445-005-0412-z.

[48] Burt M.L., Wadge G., Scott W.A., 1994. Simple stochastic modelling of

eruption history of basaltic volcano: Nyamuragira, Zaire, Bull. Volcanol.,

56:87–97.

[48] Burton, M., Neri, M., Andronico, D., Branca, S., Caltabiano, T., Calvari,

S., Corsaro, R. A., Del Carlo, P., Lanzafame, G., Lodato, L., Miraglia,

L., Salerno, G., Spampinato, L., 2005. Etna 2004-2005: an archetype

for geodynamically-controlled effusive eruptions. Geophys Res Lett, 32,

L09303, doi:10.1029/2005GL022527.

[48] Chiarabba, C., Amato, A., Boschi, E., Barberi, F., 2000. Recent seismicity

and tomographic modeling of the Mount Etna plumbing system. J Geophys

Res, 105, B5, 10923–10938.

[48] De la Cruz-Reyna S., 1991. Poisson-distributed patterns of explosive erup-

tive activity, Bull. Volcanol., 54, 57–67

[48] Dvorak, J.J., Dzurisin, D., 1993. Variations in magma-supply rate at Ki-

lauea volcano, Hawaii, J. Geophys. Res., 98, 22255-22268.

[48] Gasperini, P, Gresta, S, Mulargia, F, 1990. Statistical analysis of seis-

47



mic and eruptive activities at Mount Etna during 1978-1987, J Volcanol

Geotherm Res, 40, 317 – 325.

[48] Gelman,A., 1996 Inference and monitoring convergence, in Markov chain

Monte Carlo in practice, pp 131–143, eds Gilks W.R., Richardson S.,

Spiegelhalter D.J., Chapman & Hall, London, 2nd edn.

[48] Gelman A., Carlin J.B., Stern H.S., Rubin D.B.,2000. Bayesian Data Anal-

ysis,1st edn, Chapman & Hall/CRC,Boca Raton-Florida.

[48] Gilks W.R., Richardson S., Spiegelhalter D.J., 1996. Introducing Markov

chain Monte Carlo, in Markov chain Monte Carlo in practice, pp 1–19, eds

Gilks W.R., Richardson S., Spiegelhalter D.J., Chapman & Hall, London,

2nd edn.

[48] Gudmundsson A, 1986. Possible effect of aspect ratios of magma chambers

on eruption frequency. Geology 14, 991-994.

[48] Holcomb, R.T.,Eruptive history and long term behavior of Kilauea vol-

cano. In Volcanism in Hawaii, Decker R.W., Wrigth, T.L., Stauffer, P.H.

(Eds), U.S. Geol. Surv. Prof. Pap. 1350 pp. 261–350.

[48] Kagan Y.Y., Knopoff L., 1987. Statistical Short-Term Earthquake Predic-

tion, Science, 236(4808), 1563–1567

[48] Klein F.W.,1982 Patterns of historical eruptions at Hawaiian Volcanoes,

J. Volcanol. Geotherm. Res., 12 , 1–35

[48] Klein F.W., Koyanagi,R.Y., Nakata, J.S., Tanigawa, W.R., The seismicity

of Kilauea’s magma system, in Volcanism in Hawaii, pp. 1019–1185 U.S.

Geol. Surv. Prof. Pap. 1350.

[48] Marzocchi W.,1996. Chaos and stocasticity in volcanic eruptions the case

of Mount Etna and Vesuvius, J. Volcanol. Geotherm. Res.,70, 205-212.

[48] Marzocchi W., Zaccarelli L.,2006. A quantitative model for the time size

distribution of eruptions, J Geophys Res, 111, doi:10.1029/2005JB003709.

[48] Marzocchi, W., Sandri, L., Gasparini, P., Newhall, C. G., Boschi,

E., 2004. Quantifying probabilities of volcanic events: the example

of volcanic hazard at Mt. Vesuvius. J. Geophys. Res., 109, B11201,

doi:10.1029/2004JB003155.

48



[48] Marzocchi W., Sandri L., Selva J.,2008. BET EF: a probabilistic tool for

long- and short-term eruption forecasting, Bull. Volcanol., 70, 623–632,

doi:10.1007/s00445-007-0157-y

[48] Mulargia F.,Tinti S., Boschi E.,1985. A statistical analysis of flank erup-

tions on Etna Volcano, J Volcanol Geotherm Res , 23, 263–272.

[48] Mulargia F., Gasperini, P., Tinti S. ,1987. Identifying different regimes in

eruptive activity: an application to Etna volcano, J Volcanol Geotherm

Res, 34, 89–106.

[48] Newhall C.G., Hoblitt,R.P., 2002. Constructing event trees for volcanic

crises, Bull. Volcanol., 64, 3–20, doi:10.1007/s004450100173.
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Table 1: Catalog of eruptive events at Kilauea volcano

Eruption # Onset Interevent time Volume

yyyymmdd [days] lava e tephra [106m3]

1 1923 08 25 259 0.073

2 1924 05 10 70 0.79

3 1924 07 19 1083 0.234

4 1927 07 07 594 2.30

5 1929 02 20 155 1.40

6 1929 07 25 482 2.60

7 1930 11 19 399 6.20

8 1931 12 23 988 7.00

9 1934 09 06 6504 6.90

10 1952 06 27 703 46.70

11 1954 05 31 273 6.20

12 1955 02 28 1720 87.60

13 1959 11 14 60 37.20

14 1960 01 13 408 113.20

15 1961 02 24 7 0.022

16 1961 03 03 129 0.26

17 1961 07 10 74 12.60

18 1961 09 22 441 2.20

19 1962 12 07 257 0.31

20 1963 08 21 45 0.80

21 1963 10 05 517 6.60



Eruption # Onset Interevent time Volume

yyyymmdd [days] lava e tephra [106m3]

22 1965 03 05 294 16.80

23 1965 12 24 681 0.85

24 1967 12 05 291 80.30

25 1968 08 22 46 0.13

26 1968 10 07 138 6.60

27 1969 02 22 91 16.10

28 1969 05 24 812 185.00

29 1971 08 14 41 9.10

30 1971 09 24 132 7.70

31 1972 02 03 457 162.00

32 1973 05 05 189 1.20

33 1973 11 10 251 2.70

34 1974 07 19 62 6.60

35 1974 09 19 103 10.20

36 1974 12 31 333 14.30

37 1975 11 29 654 0.22

38 1977 09 13 794 32.90

39 1979 11 16 896 0.58

40 1982 04 30 148 0.50

41 1982 09 25 100 3.00

42 1983 01 03 ongoing
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Table 2: Catalog of eruptive events at Mount Etna vol-

cano

Eruption # Onset Interevent time Volume

yyyymmdd [days] lava e tephra [106m3]

1 1607 06 28 954 158.00

2 1610 02 06 86 30.00

3 1610 05 03 1520 91.71

4 1614 07 01 7476 1071.00

5 1634 12 19 2985 203.03

6 1643 02 20 1369 4.12

7 1646 11 20 1519 162.45

8 1651 01 17 6628 497.53

9 1669 03 11 7308 1247.50

10 1689 03 14 4741 20.00

11 1702 03 08 19359 16.94

12 1755 03 09 2891 4.73

13 1763 02 06 132 21.08

14 1763 06 18 197 149.96

15 1764 01 01 847 117.20

16 1766 04 27 5135 137.25

17 1780 05 18 4391 29.35

18 1792 05 26 3824 90.13

19 1802 11 15 2324 10.43

20 1809 03 27 944 38.19
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Eruption # Onset Interevent time Volume

yyyymmdd [days] lava e tephra [106m3]

21 1811 10 27 2769 54.33

22 1819 05 27 4906 47.92

23 1832 10 31 4034 60.74

24 1843 11 17 3199 55.70

25 1852 08 20 4519 134.00

26 1865 01 03 3525 94.33

27 1874 08 29 1731 1.47

28 1879 05 26 1396 41.93

29 1883 03 22 1154 0.25

30 1886 05 19 2243 42.52

31 1892 07 09 5772 130.58

32 1908 04 29 693 2.20

33 1910 03 23 536 65.20

34 1911 09 10 2638 56.60

35 1918 11 30 1660 1.20

36 1923 06 17 1965 78.50

37 1928 11 02 4988 42.50

38 1942 06 30 1700 1.80

39 1947 02 24 1012 11.90

40 1949 12 02 358 10.20

41 1950 11 25 1923 152.00

42 1956 03 01 4329 0.50

43 1968 01 07 1184 1.00
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Eruption # Onset Interevent time Volume

yyyymmdd [days] lava e tephra [106m3]

44 1971 04 05 1031 78.00

45 1974 01 30 40 4.40

46 1974 03 11 350 3.20

47 1975 02 24 278 11.80

48 1975 11 29 882 29.40

49 1978 04 29 118 27.50

50 1978 08 25 90 4.00

51 1978 11 23 253 11.00

52 1979 08 03 592 7.50

53 1981 03 17 741 33.30

54 1983 03 28 713 100.00

55 1985 03 10 599 30.03

56 1986 10 30 1106 60.00

57 1989 11 09 765 38.40

58 1991 12 14 3503 250.00

59 2001 07 17 467 40.90

60 2002 10 27 681 131.50

61 2004 09 07 675 40.00

62 2006 07 14 669 25.00

63 2008 05 13 35.00
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