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Computer simulators are used in science and technology to model physical processes or the

behavior of real-world systems. Sensitivity analysis provides a useful tool for quantifying

the impact of uncertainty in the computer simulator inputs on the computed output. We

focus on global sensitivity analysis, which quantifies output uncertainty as all the inputs

vary continuously over the input space. The influence of each input and how uncertainty

in the output is apportioned amongst the inputs are determined by calculating the main

effects and sensitivity indices of the computer simulator inputs. Typically, these quanti-

ties are computed using Monte Carlo methods, which require a large number of computer

simulator runs, making the calculations infeasible if the simulator is computationally ex-

pensive. Bayesian methods have been used to tackle sensitivity analysis of computationally

expensive simulators through building a statistical emulator for the computer simulator

output, typically, based on a Gaussian process prior for the simulator output function.

In this work, we develop an approach for integrating global sensitivity analysis tools and

extending semi-Bayesian approaches to a fully Bayesian methodology. The approach is

utilized to carry out sensitivity analysis of the Leaf-Canopy Model, a radiative transfer

model that simulates the interaction of sunlight with vegetation.
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1 Introduction

Complex process models are widely used in science and engineering to study various real-world

systems in order to understand underlying processes and make predictions about their future

behavior. These mathematical models are implemented in computer code, which can take from a

fraction of a second to several days in order to obtain a single run. We refer to the mathematical

model and its computer code implementation as a simulator. Here, we consider deterministic

simulators, i.e., different runs of the simulator using the same inputs result in the same output.

In many cases, the process model inputs are not easily observable, and thus, there is uncertainty

about the values of the simulator inputs. Describing and quantifying the induced uncertainty

in the simulator output due to uncertainty in its inputs is known as sensitivity analysis.

Sensitivity analysis is a valuable tool in model development, calibration, and validation,

since it can be used to identify where a model can be improved by obtaining better input

information. In general, there are two approaches for sensitivity analysis, local and global.

Local sensitivity analysis determines how the output changes as the inputs are each varied

about a fixed point, while global sensitivity analysis studies how the output changes as all the

inputs vary continuously over the entire input space; see Saltelli et al. (2000) for a review of both

approaches. For global sensitivity analysis, which is the subject of this paper, the sensitivity

of the simulator output is measured via the calculation of the “main effects”, which provide a

summary of the influence of each input on the model output, and by the “sensitivity indices”,

which are variance-based measures that give the expected amount by which the uncertainty in

the output would be reduced if the true value of the input was known.

Calculating the main effects and sensitivity indices requires the evaluation of multidimen-

sional integrals over the input space of the simulator. Thus, standard numerical integration

methods (e.g., Monte Carlo integration or multidimensional quadrature) are infeasible when the

simulator is computationally expensive. This problem has been tackled through building a sta-

tistical emulator, which is a computationally efficient statistical approximation of the simulator

output. The Gaussian process (GP) provides a popular approach to developing the emulator

because it is a convenient and, in general, flexible statistical model. In Bayesian modeling, it

is commonly used as a prior model for an unknown function, such as the output of a computer

simulator. Using GP emulators for deterministic simulators dates back to the work of Sacks

et al. (1989); see, e.g., the book by Santner et al. (2003). Moreover, in more recent years there

has been an upsurge in research activity on Bayesian methods for analysis of computer simula-

tors; see, e.g., Kennedy and O’Hagan (2001), Craig et al. (2001), Oakley and O’Hagan (2002),
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Higdon et al. (2004), Goldstein and Rougier (2006), Bayarri et al. (2007), Bayarri et al. (2009),

Han et al. (2009), and Gramacy and Lian (2012).

Once posterior inference is obtained using the GP model, the main effects and sensitiv-

ity indices can be determined using runs from the emulator’s posterior predictive distribution,

which are substantially faster than simulator runs. Oakley and O’Hagan (2004) develop a semi-

Bayesian estimation approach for the main effects based on fixed GP “range of dependence”

parameters. They also propose approximate point estimates for the sensitivity indices based on

ratios of posterior expectations to estimate the posterior expectation of ratios of variances.

A similar approach, albeit based on likelihood estimation for the GP parameters, is used by

Morris et al. (2008). Also under a likelihood estimation setting, Marrel et al. (2009) compare

sensitivity indices built from either the entire stochastic process for the GP emulator or only its

mean. An example of an approach that does not utilize GP emulation can be found in Ziehn

and Tomlin (2009), where orthonormal polynomial expansions are used to approximate the

variance components needed for the calculation of sensitivity indices. Finally, seeking to extend

the scope of variance-based sensitivity analysis methods, Oakley (2009) presents a decision-

theoretic framework which allows the model user (or decision maker) to relate the importance

of each uncertain input to the model user’s optimal decision.

The impetus for our work is full inference for sensitivity analysis, including appropriate

uncertainty quantification for main effects and sensitivity indices. The starting point of our

approach involves approximating a computationally expensive simulator by a fully Bayesian GP

model. Based on runs of the GP posterior predictive distribution, we develop an approach to

full inference for global sensitivity analysis. First, we calculate Bayesian point estimates of the

main effects and their associated uncertainties. This approach is appealing because it utilizes

analytic expressions to estimate the main effects based on the GP model, which results in efficient

computation. Next, we design a method to obtain full posterior distributions of different types

of sensitivity indices over the input space of the model. This latter method expands the inference

scope of the earlier work in Oakley and O’Hagan (2004), Morris et al. (2008), and Marrel et al.

(2009). A similar approach to full inference for sensitivity indices was discussed in Taddy et al.

(2009), based on a treed GP prior (Gramacy and Lee, 2008) for the simulator output; this

approach is implemented in the tgp package for R as detailed in Gramacy and Taddy (2010).

The motivating application for this work is provided by the Leaf-Canopy Model (LCM), a

radiative transfer model for the interaction of sunlight with vegetation. The methodology is

applied to the LCM to estimate the main effects and sensitivity indices of each of its inputs at 8
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different MODIS spectral bands that are sensitive to vegetation; MODIS (Moderate Resolution

Imaging Spectroradiometer) is a key instrument aboard the Terra and Aqua satellites.

The outline of the paper is as follows. Section 2 develops the methodology for sensitivity

analysis, with some of the technical details provided in the appendices. Section 3 includes a

description of the LCM model and reports inference results on sensitivity analysis for its inputs.

Finally, Section 4 concludes with a summary and discussion.

2 Methods

To prepare the ground for the proposed methodology, Section 2.1 reviews GP-based emulation

for computer simulators. The approach to inference for sensitivity analysis is presented in

Section 2.2. In particular, Section 2.2.1 develops a computationally efficient approach to point

and interval estimation for the main effects, whereas in Section 2.2.2, we describe a method to

sample the entire posterior distribution of the sensitivity indices.

2.1 Gaussian process emulation

An emulator is a computationally efficient statistical model that is used to approximate a com-

putationally expensive simulator. Denote by f(v) the simulator output as a function of input

vector v = (v1, . . . , vk). Given a set of training model runs D = {(xi, yi) : i = 1, . . . , n}, where

xi = (x1i, . . . , xki) is the i–th realized design input vector, and yi = f(xi) is the corresponding

output, the emulator treats the computer simulator as a black box and uses D to estimate f(·).

Following the work of Sacks et al. (1989) and Kennedy and O’Hagan (2001), GPs are widely

used to model the computer code output function f(·). The advantage of a GP emulator is

that it is a fully specified statistical model that requires one carefully chosen set of model runs.

While the GP approximation introduces uncertainty into the computation of the main effects

and sensitivity indices, this uncertainty is quantifiable.

Under a GP prior for function f(·), for any finite set of input points (v1, . . . ,vN ), where

vi = (v1i, . . . , vki) for i = 1, . . . , N , the joint distribution of the outputs (f(v1), . . . , f(vN )) is

multivariate normal. Furthermore, GP models typically assume that the output is a smooth

function of its inputs, that is, nearby locations in the input space produce outputs that are

stochastically close in value. A GP is fully specified by its mean function, E (f(v)), and positive

definite covariance function, Cov (f(vi), f(vj)). We assume constant mean function, E (f(v)) =

µ, and covariance function, Cov (f(vi), f(vj)) = τ2Corr (f(vi), f(vj)), which is taken to be
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isotropic with constant variance, τ 2, and a product power exponential correlation of the form,

Rφ = Corr (f(vi), f(vj)) = exp

{

−

k
∑

`=1

φ`|v`i − v`j|
a`

}

, (1)

where φ = (φ1, . . . , φk), with φ` > 0, is the vector of “range of dependence” parameters, which

control the dependence strength in each of the component directions of v. Here, a` ∈ [1, 2]

are the “smoothness” parameters, which are typically fixed based on a combination of prior

knowledge about f(·) and computational considerations (e.g., Higdon et al., 2004). For example,

a value of a` = 2 implies that f(·) is a smooth infinitely differentiable function, whereas smaller

values of a` result in rougher (continuous) realizations. The form of the correlation function

in (1) corresponds to a choice commonly used for GP emulation of computer simulators. In

our context, it facilitates computing of some of the integrals needed for estimation of the main

effects (see Section 2.2.1). However, the approach to sensitivity analysis presented in Section

2.2 is sufficiently generic to allow application under more general GP covariance functions.

To obtain the set of training data, D, we use a Latin Hypercube design (McKay et al., 1979)

to generate the design matrix of the model inputs and calculate the corresponding outputs

using the simulator. We treat the functional form of the simulator output, f(·), as unknown and

specify a prior for it in the form of the isotropic GP discussed above. We note that it is often

useful (or necessary) to add a small (fixed) jitter term to the covariance function for numerical

stability. This is a standard computational strategy in Bayesian nonparametric regression as

well as analysis of simulators with GP priors (e.g., Neal, 1998; Higdon et al., 2004).

Given D, there are n induced variables from the GP representation for f(·), that is, yi =

f(xi), for i = 1, . . . , n, with induced prior (f(x1), . . . , f(xn)) ∼ Nn

(

µ1n, τ
2Rφ

)

. Here, 1n is

the n–dimensional vector with all elements equal to 1, and Rφ is the n× n observed correlation

matrix with (i, j)–th element given by exp
{

−
∑k

`=1 φ`|x`i − x`j |
a`

}

. To complete the Bayesian

model for the GP emulator, we fix a`, ` = 1, . . . , k, and place (independent) priors on the

hyperparameters of the GP, µ, τ 2, and φ`, ` = 1, . . . , k. Thus, the joint posterior distribution of

all parameters, ψ = (µ, τ 2,φ), is given by p(ψ | D) ∝ Nn

(

y|µ1n, τ
2Rφ

)

p(µ)p(τ 2)p(φ1) . . . p(φk),

where y = (y1, ..., yn). Samples from p(ψ | D) are obtained using Markov chain Monte Carlo

(MCMC) posterior simulation as discussed in Appendix A.

Analysis of simulator output performed using runs of the emulator have an additional level

of uncertainty, since those runs are an approximation of the computer code output. We account

for this uncertainty by performing any further analysis over the posterior predictive distribution
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of the GP. For any generic input, v = (v1, . . . , vk), which is not part of the design, we can obtain

the posterior predictive distribution for ỹ = f(v). Specifically,

p (ỹ | D) =

∫

N
(

ỹ | m(v), s2(v)
)

p (ψ|D) dψ (2)

with

m(v) ≡ E
(

Ỹ |ψ, D
)

= µ+ rT (v)R−1
φ (y − µ1n) , (3)

s2(v) ≡ Var
(

Ỹ |ψ, D
)

= τ2
(

1− rT (v)R−1
φ
r(v)

)

, (4)

where r(v) is the n× 1 vector with i–th element given by Corr (f(v), f(xi)).

The joint predictive distribution for (ỹ, ỹ ′) = (f(v), f(v′)) corresponding to generic inputs

v = (v1, . . . , vk) and v
′ = (v′1, . . . , v

′
k) is given by p(ỹ, ỹ′ | D) =

∫

p(ỹ, ỹ′ | ψ)p(ψ | D) dψ, where

p(ỹ, ỹ′ | ψ) is bivariate normal with (2× 1) mean vector

ω(v,v′) = µ12 +RT
(

v,v′
)

R−1
φ (y − µ1n) , (5)

and (2× 2) covariance matrix

C(v,v′) = τ2
(

B
(

v,v′
)

−RT
(

v,v′
)

R−1
φ R

(

v,v′
)

)

, (6)

where B (v,v′) is the (2 × 2) correlation matrix for (f(v), f(v′)), and R (v,v′) is the (n × 2)

matrix, where the elements of the first column are given by Corr (f(v), f(xi)), i = 1, . . . , n, and

the elements of the second column by Corr (f(v′), f(xi)), i = 1, . . . , n.

2.2 Fully Bayesian inference for global sensitivity analysis

Variance-based sensitivity analysis builds from a decomposition of the simulator output function

into summands of increasing dimensionality. Specifically, for a k–dimensional input space,

y = f (v) = f0 +
k

∑

`=1

f`(v`) +
∑

1≤`<m≤k

f`,m (v`, vm) + · · ·+ f1,2,...,k (v1, . . . , vk) .

Here, f0 is the global mean given by f0 = E(Y ) =
∫

v
f (v) dH (v), where H (v) =

∏k
`=1 H`(v`)

is the uncertainty distribution of the inputs comprising independent components H`(v`). The

next k terms are the main effects, where f`(v`) is the main effect of input v`, providing a measure
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of the influence of input v` on the computed output. For ` = 1, . . . , k,

f`(v`) = E (Y |v`)− E (Y ) =

∫

v−`

f (v) dH (v−`|v`)− E (Y ) ,

where v−` denotes input vector v excluding element v`. Because of the independent components

of the uncertainty distribution, the conditional distributionH (v−`|v`) simplifies toH (v−`). The

remaining terms of the decomposition are the interactions, which quantify the combined influence

on the output of two or more inputs taken together. For instance, the first-order interactions,

f`,m(v`, vm) = E(Y |v`, vm)− f`(v`)− fm(vm)− E(Y ).

Sobol (1993) shows that based on this output decomposition, and assuming independence

between the input variables in the uncertainty distribution, the total variance, Var(Y ) = W ,

can also be decomposed as the sum of partial variances,

W =
k

∑

`=1

W` +
∑

1≤`<m≤k

W`,m + · · ·+W1,2,...,k, (7)

where W` = Var (f`(v`)) = Var(E(Y |v`)), W`,m = Var (f`,m(v`, vm)), and analogously for the

higher order terms. Hence, the sensitivity indices are given by

S` =
W`

W
, S`,m =

W`,m

W
, . . . , S1,2,...,k =

W1,2,...,k

W
,

where S` is the first-order sensitivity index for input v`, which measures the fractional contri-

bution of that input to the variance of f(v), S`,m, for ` 6= m, is the second-order sensitivity

index, which measures the contribution of interaction due to inputs v` and vm on the variance

of f(v), and analogously for the higher order terms. The decomposition in (7) standardizes the

sensitivity indices, that is,
∑k

`=1 S` +
∑

1≤`<m≤k S`,m + ... + S1,2,...,k = 1.

Introduced by Homma and Satelli (1996), the total sensitivity index, ST
` , is a further related

measure, defined by the sum of all the sensitivity indices involving input v`. Specifically,

ST
` = 1−

W−`

W
, ` = 1, . . . , k,

where W−` = Var(E(Y |v−`)) is the total contribution to Var (f(v)) due to all inputs except v`.

A large difference between S` and ST
` for the `–th input indicates an important role of interaction

terms involving that input on the variation in the output

The definition of the main effects and sensitivity indices involves expectations with respect
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to the simulator output function y = f (v). Therefore, if we approximate the output func-

tion by a GP model, we must account for this approximation by computing E∗ {E (Y ) | D},

E∗ {E (Y |v`) | D}, E∗{S` | D}, and E∗{ST
` | D}, where E∗ {· | D} indicates expectations with re-

spect to the GP posterior predictive distribution, p(ỹ | D), developed in Section 2.1. As pointed

out by Oakley and O’Hagan (2004), E∗{S` | D}, and E∗{ST
` | D}, which are posterior expecta-

tions of ratios or random variables, cannot be derived analytically. Instead, Oakley and O’Hagan

(2004) obtain approximate point estimates for S` and ST
` by computing the ratio of expectations

over p(ỹ | D), where E∗{S` | D} is approximated by the ratio of E∗ {Var (E (Y |v`)) | D} and

E∗ {Var(Y ) | D}, and analogously for E∗{ST
` | D}. The approximation of the sensitivity indices

through ratios of expectations is also used in the likelihood approach of Morris et al. (2008).

2.2.1 Point estimates and uncertainty bands for the main effects

Here, we develop fully Bayesian point estimates for the main effects accompanied by a measure of

posterior predictive uncertainty. The corresponding expressions result in relatively straightfor-

ward computing owing to the conditional normality structure of the GP emulator. The approach

is similar to the one in Oakley and O’Hagan (2004), but extends their empirical Bayesian method

based on fixed range parameters for the GP correlation function.

Given the generic input v = (v1, . . . , vk), the distribution of the predicted emulator output,

ỹ = f(v), is given by (2). In order to determine the main effect of input v`, we need to calculate

E∗ {E (Y ) | D} and E∗ {E (Y |v`) | D}. We assume independent components in the uncertainty

distribution for the inputs, which, for simpler notation, are taken to be uniform over a normalized

range of values in (0, 1) for each input. Then, using (2)–(4), in Appendix B we obtain

E∗ {E (Y ) | D} =

∫

f(v)
E (Y ) p (f(v) | D) df(v) =

∫

ψ

{

µ+ T TR−1
φ (y − µ1n)

}

p (ψ | D) dψ.

Here, T is the n×1 vector with i–th element given by
∏k

`=1

{

∫ 1
0 exp (−φ`|v` − x`i|

a`) dv`

}

. Note

that the elements of T can be computed analytically if a` = 1, for ` = 1, . . . , k, which is the

specification for the exponential correlation function. Under this specification, the i–th element

of T is written as
∏k

`=1

{

φ`
−1

(

2− e−φ`x`i − e−φ`(1−x`i)
)}

.

For each specified value uj of the j–th input,

E (Y |uj) =

∫

{v`: 6̀=j}
f (v1, . . . , uj , . . . , vk)

∏

{`: 6̀=j}

dH`(v`). (8)
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Again, using (2)–(4), in Appendix B we derive

E∗ {E (Y |uj) | D} =

∫

f(v1,...,uj ,...,vk)
E (Y |uj) p (f(v1, . . . , uj , . . . , vk) | D) df (v1, . . . , uj , . . . , vk)

=

∫

ψ

{

µ+ T T
j (uj)R

−1
φ (y − µ1n)

}

p (ψ | D) dψ,

where T j(uj) is the n× 1 vector with i–th element given by

exp (−φj |uj − xji|
aj )×

∏

{`: 6̀=j}

{∫ 1

0
exp (−φ`|v` − x`i|

a`) dv`

}

.

For a measure of (posterior predictive) uncertainty associated with the estimate of the main

effects, we use Var∗ {E (Y |uj)− E(Y ) | D}, which is given by

Var* {E(Y | uj) | D}+Var* {E(Y ) | D} − 2Cov* {E(Y | uj),E(Y ) | D} =

E*
{

(E(Y | uj))
2 | D

}

−

(

E* {E(Y | uj) | D}

)2

+ E*
{

(E(Y ))2 | D
}

−

(

E* {E(Y ) | D}

)2

− 2

(

E* {E(Y | uj)E(Y ) | D} − E* {E(Y | uj) | D}E* {E(Y ) | D}

)

(9)

Because we already have the expressions for E∗ {E (Y |uj) | D} and E∗ {E (Y ) | D}, what is

needed is expressions for E∗
{

(E (Y |uj))
2 | D

}

, E∗
{

(E (Y ))2 | D
}

, and E* {E(Y | uj)E(Y ) | D}.

Extending the arguments in the derivation of E∗ {E (Y ) | D} and E∗ {E (Y |uj) | D}, it can be

shown (see Appendix B) that

E∗
{

(E (Y |uj))
2 | D

}

=

∫

ψ

{

τ2
(

e− T T
j (uj)R

−1
φ T j(uj)

)

+
(

µ+ T T
j (uj)R

−1
φ (y − µ1n)

)2
}

p (ψ | D) dψ

E*
{

(E(Y ))2 | D
}

=

∫

ψ

{

τ2
(

g − T TR−1
φ T

)

+
(

µ+ T TR−1
φ (y − µ1n)

)2
}

p(ψ | D)dψ (10)

and

E* {E(Y | uj)E(Y ) | D} =
∫

ψ

{

τ2
[

eφ−1
j

(

2− e−φjuj − e−φj(1−uj)
)

− T T
j (uj)R

−1
φ T

]

+

(

µ+ T T
j (uj)R

−1
φ

(y − µ1n)
)(

µ+ T TR−1
φ

(y − µ1n)
)

}

p(ψ | D)dψ

(11)

where e =
∏

{`: 6̀=j}

{

∫ 1
0

∫ 1
0 exp (−φ`|v` − v′`|

a`) dv`dv
′
`

}

, and g =
∏k

`=1

{

∫ 1
0

∫ 1
0 exp (−φ` | v` − v′` |

a`) dv`dv
′
`

}

.

Note that, again, e and g are available analytically under the exponential correlation function.
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In particular, letting a` = 1, for ` = 1, . . . , k, we obtain e =
∏

{`: 6̀=j}

{

2φ−2
`

(

e−φ` + φ` − 1
)}

,

and g =
∏k

`=1

{

2φ−2
`

(

e−φ` + φ` − 1
)}

.

2.2.2 Full inference for the sensitivity indices

The approach of Section 2.2.1 cannot be extended to estimate the sensitivity indices. Instead of

relying on approximate point estimates for S` and ST
` , ` = 1, ..., k, we propose to sample from the

posterior distributions for the sensitivity indices by computing at every MCMC sample of the

GP emulator all the expectations needed for the definition of the S` and ST
` , that is, Var(Y ) =

E(Y 2)− (E(Y ))2, E
(

(E(Y |uj))
2
)

, and E
(

(E(Y |u−j))
2
)

. Letting {v = (v1, . . . , vk), y = f(v)} be

a generic run of the simulator, the expectation and variance of y are given by

E (Y ) =

∫

v

f(v)
∏k

`=1
dH`(v`) and Var (Y ) =

∫

v

f2(v)
∏k

`=1
dH`(v`) − (E(Y ))2 .

For a generic value uj of the j–th input, squaring the expression for E (Y |uj) in (8) and then

taking its expectation, we obtain

E
(

(E (Y |uj))
2
)

=
∫

{

∫

{v`: 6̀=j} f (v1, . . . , uj, . . . , vk)
∏

{`: 6̀=j} dH`(v`)
}2

dHj(uj)

=
∫

{
∫

{v`: 6̀=j}

∫

{v′`: 6̀=j} f (v1, . . . , uj , . . . , vk) f (v′1, . . . , uj, . . . , v
′
k)

∏

{`: 6̀=j} dH`(v`)
∏

{`: 6̀=j} dH`(v
′
`)} dHj(uj)

=
∫

v

∫

{v′`: 6̀=j} f(v)f (v′1, . . . , vj , . . . , v
′
k)

∏k
`=1 dH`(v`)

∏

{`: 6̀=j} dH`(v
′
`).

Regarding the expectations needed for the total sensitivity indices, let u−j =

(u1, . . . , uj−1, uj+1, . . . , uk). Then, E (Y |u−j) =
∫

f (vj,u−j) dHj(vj), and, analogously to the

derivation above,

E
(

(E (Y |u−j))
2
)

=

∫ ∫

f (uj ,u−j) f
(

v′j ,u−j

)

dHj(v
′
j)
∏k

`=1
dH`(u`).

At each MCMC posterior sample of the GP emulator, the posterior distributions for the

first-order sensitivity index, Sj, and the total sensitivity index, ST
j , are sampled by evaluating

all the expectations that enter their definition,

Sj =
Var (E(Y |uj))

Var(Y )
=

E
(

(E(Y |uj))
2
)

− (E(Y ))2

Var(Y )
(12)

ST
j =

Var(Y )−Var (E(Y |u−j))

Var(Y )
= 1−

E
(

(E(Y |u−j))
2
)

− (E(Y ))2

Var(Y )
. (13)
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The computing involves Monte Carlo integration based on samples from the uncertainty distri-

bution, in the spirit of techniques from Saltelli (2002), but extending the approach to account

for the GP approximation to the computer simulator output.

Specifically, we begin by generating input sample matrix M of size B × k,

M =











v1,1 v1,2 . . . v1,k
...

... . . .
...

vB,1 vB,2 . . . vB,k











where each row ofM is drawn independently from the uncertainty distribution over the simulator

inputs, H (v) =
∏k

`=1 H`(v`).

Next, we generate k input sample matrices, Nj , for j = 1, . . . , k, of size B × k each,

Nj =











v′1,1 v′1,2 . . . v1,j . . . v′1,k
...

... . . .
... . . .

...

v′B,1 v′B,2 . . . vB,j . . . v′B,k











where the j–th column of matrix Nj equals the j–th column of matrix M, but the remaining

elements of each row of Nj form independent random samples from the corresponding marginal

of the uncertainty distribution,
∏

{`: 6̀=j}H`(v`).

Finally, we generate k input sample matrices, N−j, for j = 1, . . . , k, of size B × k each,

N−j =











v1,1 v1,2 . . . v′1,j . . . v1,k
...

... . . .
... . . .

...

vB,1 vB,2 . . . v′B,j . . . vB,k











where matrices N−j and M have all columns in common except the j–th one; the v ′b,j, b =

1, ..., B, are randomly sampled from Hj(vj).

Now, the Monte Carlo simulation, based on the posterior samples from the GP emulator,

proceeds as follows:

• For each MCMC posterior sample for ψ = (µ, τ 2,φ), obtain the following posterior pre-

dictive samples according to (2): for each row b of M , sample ỹb, then compute ỹ2b ; for

each row b of Nj , sample ỹ′b,j; and for each row b of N−j , sample ỹ′b,−j.

• Obtain the posterior sample for E(Y ) and E(Y 2) by computing B−1
∑B

b=1 ỹb andB−1
∑B

b=1 ỹ
2
b ,

respectively.

11



• For j = 1, . . . , k, obtain the posterior sample for E
(

(E(Y |uj))
2
)

and E
(

(E(Y |u−j))
2
)

through B−1
∑B

b=1 ỹbỹ
′
b,j and B−1

∑B
b=1 ỹbỹ

′
b,−j, respectively.

• Compute the posterior realizations for the first-order sensitivity indices, Sj, and the total

sensitivity indices, ST
j , by evaluating expressions (12) and (13), respectively, using the

posterior samples above for the required expectations.

Because the posterior samples for the variances in expressions (12) and (13) are evaluated

through differences of expectations, negative values can arise for the Sj and/or ST
j posterior

realizations. This issue can be overcome by appropriate choice of the Monte Carlo sample size

B. For instance, for the results reported in Section 3.2, we used B = 250, 000; with the exception

of the occurrence of negative values for sensitivity indices supported by values close to 0, the

estimated posterior distributions in Figure 3 were similar under B = 25, 000.

This approach enables estimation of the entire distribution for each sensitivity index allowing

for the uncertainty of the sensitivity indices to be determined. While repeated samples from the

GP predictive distribution are required for computing (12) and (13), these are computationally

inexpensive emulator runs, which are substantially faster than those obtained using the computer

simulator. The computational burden imposed by the large Monte Carlo sample size, required

as discussed above, can be relaxed through a simple parallel implementation of the method,

using a number of nodes over blocks of the MCMC posterior samples for the GP emulator.

Nevertheless, the methodology remains computationally feasible for computer simulators with

small to moderate number of inputs. An additional challenge for simulators with large number

of inputs involves the GP emulation approach, which is restricted by the inversion of high-

dimensional covariance matrices associated with the larger number of training simulator runs

that are needed for high-dimensional input spaces.

Finally, note that the method discussed in this section can, in principle, be also applied

to obtain the posterior distribution for the main effects. However, the approach requires for

each input a (relatively large) number of sample matrices (of size B × k each) over a (relatively

fine) grid in the input space; each of these matrices can be used to obtain the posterior sample

for E(Y |vj = wq), where wq is the q–th grid point for the j–th input. Hence, in practice, the

approach becomes prohibitively computationally expensive even for moderate dimensions for

the input space. The approach of Section 2.2.1 offers a practically feasible alternative to point

and interval estimation for the main effects. At the same time, we note that the method of this

section is entirely generic with regard to the statistical model emulator utilized for the computer

simulator, whereas the approach of Section 2.2.1 is specific to GP emulators.
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3 Application

Measurements from Earth observing satellites are used to produce a wide array of data products,

e.g., sea surface temperature, polar ice coverage, and plant type. Such data products are used

in a wide variety of further scientific studies, and also as inputs to important policy decisions,

especially those concerning the impact of human activity on the biosphere. Many of the data

products are produced by inverting a Radiative Transfer Model (RTM). RTMs are implemented

in complex computer programs to simulate light reflected off the surface of the Earth and its

propagation through the atmosphere as a function of biospheric parameters, e.g., land cover type,

available water, leaf chemistry. The upwelling radiation at the top of the atmosphere simulated

by an RTM is also observed by the satellite, and thus RTMs can be used in conjunction with

satellite measurements to invert for key data products (inputs to the RTM) in the study of

biosphere and ecosystem dynamics. Hence, RTMs are widely used in geoscience and remote

sensing for the prediction of the properties of Earth’s coupled dynamical system.

While RTMs are deterministic computer simulators, there is uncertainty about the values

of their inputs. Here, we study the impact of this uncertainty on the computed output, using

the methods presented in Section 2. Specifically, we work with the Leaf-Canopy Model (LCM)

(Ganapol et al., 1999), a particular RTM which simulates light reflected by vegetation. In

Section 3.1, we provide a description of the LCM simulator, and in Section 3.2, we study the

sensitivity of the LCM output to uncertainty in its inputs.

3.1 Leaf-Canopy Model

The LCM was developed by the Vegetation Modeling Transport Group (University of Arizona),

in collaboration with the Ecosystem Science and Technology Branch at NASA Ames in support

of MODIS, a key instrument aboard Terra and Aqua satellites. In particular, the LCM was

developed to capture the essential biophysical processes associated with the interaction between

light and vegetation. The LCM simulator combines two different radiative transfer algorithms:

LEAFMOD, which simulates the radiative regime inside the single leaf, and CANMOD, which

combines the information coming from LEAFMOD with canopy structural parameters to com-

pute the radiative regime within and at the top of the canopy.

LEAFMOD is run in the forward and inverse modes to compute the leaf optical properties.

In the forward mode, it uses the leaf’s thickness, scattering profile, and absorption profile to

calculate hemispherical reflectance and transmittance and the directional distribution of the

radiance exiting the leaf surface. The leaf absorption profile is constructed from biochemical
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Figure 1: LCM simulator flowchart. First, a leaf type is specified, and its absorption profile is constructed

based on its biochemical components. Next, the leaf scattering profile is determined by executing LEAF-

MOD in the inverse mode. Given the constructed scattering and absorption profiles of the leaf and

its thickness, LEAFMOD is run in the forward mode to compute the leaf reflectance and transmittance

properties. Then, the output of LEAFMOD is fed to CANMOD together with LAI, LAD, soil reflectance,

the sun angle, and the wavelength to compute the canopy hemispherical reflectance coefficient.

concentrations, and absorptivity properties of chlorophyll and carotenoids, protein, lignin and

cellulose, and water (Ganapol et al., 1998). In the inverse mode, LEAFMOD uses leaf thickness

and spectral measurements from the LOPEX leaf database to determine the scattering profile

of the leaf. The LOPEX leaf species archive stores experimentally obtained spectral properties

for many common species (Hosgood et al., 1995)

The CANMOD algorithm combines the leaf spectral information coming from LEAFMOD

with Leaf Area Index (LAI), leaf angle distribution (LAD), soil reflectance, and sun angle, and

computes the radiative regime, at any given wavelength (between 400 and 2100 nm), within

and at the top of the canopy. LAI is the area of the leaves on a canopy divided by the area

of the ground covered by the canopy, and is thus a dimensionless quantity. LAD describes the
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Input Min Max

LAI 0 8
Chlorophyll (µg/cm2) 0 100

Water fraction 0.1 0.8
Protein (mg/cm2) 0.1 1

Lignin/Cellulose (mg/cm2) 0.1 6
Thickness (cm) 0.01 0.1
Soil reflectance 0.3 1.3

Table 1: Ranges of inputs to the LCM.

LAI, water fraction, and soil reflectance

parameters are dimensionless.

band # wavelength (nm) MODIS band

1 469 ref3
2 555 ref4
3 1240 ref5
4 1640 ref6
5 2130 ref7
6 667 ref13
7 748 ref15
8 870 ref16

Table 2: Wavelength for each band used and the corre-

sponding MODIS band number. Bands are in the MODIS

band order, not in the wavelength order.

orientation of the leaves and it takes 5 discrete values: planophile (leaves mainly horizontal),

erectophile (leaves mainly vertical), plagiophile (leaves mainly at 45 degrees), extremophile

(leaves mainly both horizontal and vertical), unophile (leaves mainly spherical).

Figure 1 shows a flowchart for the operation of the LCM simulator, including details on its

implementation steps. From the two coupled algorithms, the LCM inputs include leaf chem-

istry variables (chlorophyll, water fraction, lignin/cellulose, and protein), leaf thickness, soil

reflectance, canopy architecture (LAI and LAD), wavelength, and sun angle. In our analysis,

the LAD variable is set to planophile, and the sun angle is set to zenith. Table 1 lists the LCM

inputs and their ranges, and Table 2 includes the 8 bands (or groups of wavelengths) used by

the LCM along with their corresponding MODIS band numbers.

In the next section, we perform sensitivity analysis of the LCM in order to identify inputs

that are the main contributors to variability in the computed canopy reflectance. Such anal-

ysis is an important model development tool, since it provides guidance as to where better

input information should be obtained in order to reduce variability in the output. Additionally,

identification of the more influential inputs gives information as to how well these inputs can

be estimated by combining LCM output at different wavelengths and remote sensed measure-

ments. Of particular interest is estimation of LAI, which is a key parameter used in climate and

ecological models that quantify the exchange of fluxes of energy, mass, and momentum between

the land surface and the atmosphere (e.g., Houborg et al., 2007).

3.2 Sensitivity Analysis Results for the LCM Simulator

We apply the Bayesian approach to the GP emulator using a training set of 250 LCM runs

based on a Latin Hypercube design at each of the 8 MODIS bands (see Table 2). We use the
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Figure 2: Posterior point estimates ± 2 standard deviations of the main effects for the LCM simulator

at 8 MODIS bands.

exponential correlation function, setting in (1) a` = 1, for ` = 1, . . . , k = 7 (a jitter term was not

needed). We place a normal prior on µ, an inverse-gamma prior on τ 2, and a Unif(0, bφ`
) prior

on each φ`, ` = 1, . . . , 7, assuming prior independence for all hyperparameters. Details on prior

specification as well as MCMC posterior simulation for the GP model parameters are provided

in Appendix A. We have also experimented with gamma priors of varying dispersion for each

φ`, which resulted in nearly identical posteriors. For the uncertainty distribution, we assume

independent uniform components over the ranges given in Table 1 for each input variable.

Figure 2 shows plots of the main effects for the 7 normalized input variables and their uncer-

tainty intervals for each of the 8 MODIS bands, based on the approach of Section 2.2.1. The inter-

val estimates are computed by adding and subtracting two standard deviations, calculated from

the variance point estimate given in (9), to the posterior mean estimate E∗ {E (Y |uj)− E(Y ) | D}.
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Figure 3: Box plots of the posterior distributions of the first-order and total sensitivity indices for the

LCM inputs at 8 MODIS bands (first-order indices are in magenta). The horizontal line inside each box

indicates the median; the edges of the box correspond to the first and third quartile; and the whiskers

stretch to horizontal lines outside the box that cover the central 95% of the probability mass for each

distribution (outliers have been removed to avoid cluttering the plots).
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Normalizing the range of values of the inputs to the unit interval allows all the main effects to

be plotted together on the same plot. In general, the larger the variation of the main effect plot,

the greater the influence of that input on the LCM output. For visible spectrum (bands 1, 2

and 6), the LCM is most sensitive to chlorophyll, where an increase in chlorophyll produces a

decrease in the LCM output. For near infrared (bands 3, 7 and 8), the LCM is most sensitive

to LAI, where an increase in LAI produces an increase in the LCM output. Finally, for short

infrared bands (bands 4 and 5), the chlorophyll effect is diminished, while LAI and water are

dominant for band 4, and water becomes more influential for band 5. In general, we observe

that all dominant inputs have non-linear main effects. Figure 3 shows boxplots summarizing

posterior inference for the first-order and total sensitivity indices, obtained using the method

of Section 2.2.2. The results indicate that inputs with influential main effects are also major

contributors to the variation in the LCM, i.e., they have large sensitivity indices.

We also study the extent to which the proposed methodology improves on methods that do

not fully incorporate uncertainty by fixing some of the GP emulator parameters and/or using

ad-hoc point estimates for the sensitivity indices. First, we fix the GP range of dependence

parameters, φ`, ` = 1, . . . , 7, to their posterior modes (obtained from the fully Bayesian fit of

the GP emulator) and apply the approach of Section 2.2.1 to obtain point and interval estimates

for the LCM main effects (not shown). The point estimates were similar to the ones in Figure 2.

However, there was a decrease in the width of the uncertainty intervals, which was particularly

noticeable at the regions of steeper slope for the dominant inputs main effects. Next, we compute

approximate point estimates for first-order and total sensitivity indices. Specifically, for the Sj ,

we work again with fixed parameters φ`, and employ the Monte Carlo simulation method of

Section 2.2.2 to obtain samples for the numerator and denominator in expression (12). From

these samples, we compute point estimates for Var (E (Y |uj)) and Var(Y ), which are then divided

to produce the approximate point estimates for the first-order sensitivity indices. The approach

is analogous for the total sensitivity indices. Although implemented in a different fashion, this is

the essence of the method in Oakley and O’Hagan (2004). Table 3 reports representative results

for three MODIS bands, one each from the visible spectrum, the near infrared, and the short

infrared (bands 1, 3, and 4, respectively). Contrasting these results with Figure 3, we note that

the approximate point estimates for band 1 successfully identify the inputs with the largest first-

order sensitivity indices; this was also the case for bands 2, 5, and 6, and, to a smaller extent,

bands 7 and 8. However, for band 4 and, more detrimentally, for band 3 qualitatively different

conclusions would be drawn from Table 3. The shortcomings of this approach are exacerbated
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band 1 band 3 band 4

Input first-order total first-order total first-order total

LAI 0.008 0.012 0.169 0.184 0.024 0.052
Chlorophyll 0.680 0.699 0.022 0.029 0.037 0.041

Water fraction 0.016 0.026 0.338 0.346 0.740 0.799
Protein 0.035 0.041 0.059 0.073 0.021 0.033

Lignin/Cellulose 0.052 0.058 0.225 0.323 0.084 0.097
Thickness 0.210 0.233 0.076 0.103 0.088 0.099

Soil reflectance 0.033 0.046 0.000 0.021 0.108 0.111

Table 3: Approximate point estimates of the first-order and total sensitivity indices for the LCM inputs

at three of the MODIS bands (see Section 3.2 for details).

by the total sensitivity indices estimates, where essentially for all bands, the difference from the

first-order indices for the dominant inputs is significantly underestimated.

The results in Figure 3 suggest that many inputs with negligible first-order sensitivity indices

have non-negligible total sensitivity indices. A substantial difference between Sj and ST
j of the

j–th input indicates an important role of interaction terms involving that input on the variation

in the output. The approach of Section 2.2.2 to full inference for Sj and ST
j enables formal

probabilistic statements for the differences ST
j − Sj, and thus a more informative approach to

sensitivity analysis than comparison of point estimates for the sensitivity indices.

4 Discussion

We have presented a framework for Bayesian global sensitivity analysis of deterministic sim-

ulators. The basis of the methodology is statistical model approximation (emulation) of the

simulator output, which is built from Gaussian process (GP) priors. We have discussed an ap-

proach to full inference for sensitivity indices of the simulator inputs. The approach combines

draws from the posterior predictive distribution of the GP emulator and Monte Carlo samples

from the input uncertainty distribution to obtain samples from the posterior distributions of

the sensitivity indices. We have also derived expressions which enable ready computing of point

estimates and standard errors for the main effects of the simulator inputs. The methodology has

been applied to the Leaf-Canopy Model (LCM), a radiative transfer model for the interaction

of sunlight with vegetation, to identify the most influential inputs at different spectral bands.

We used the standard specification in the GP emulation literature based on the product

power exponential correlation function, and thus we are bound by the assumptions of isotropic

covariance and variance homogeneity. Although for the LCM simulator this specification resulted

in flexible interpolation, the use of a non-stationary GP prior model might be more appropriate
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in other applications. We found that in applying the inference method for sensitivity indices,

one must monitor the resulting posterior distributions under different Monte Carlo sample sizes

until results stabilize, which took longer for some LCM bands than others. The methodology

can be extended to estimate main effects and sensitivity indices associated with first and higher

order interactions. However, this extension comes at an increasing computational cost, and thus

a practical strategy may be to investigate terms that include inputs with large total sensitivity

indices. Finally, an interesting direction for future work involves the emulation of a dynamic

implementation of the LCM which takes into account seasonal effects.
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APPENDIX A

Posterior inference for the GP emulator: Following the GP model formulation in Section

2.1, the posterior distribution is p(µ, τ 2,φ | D) ∝ Nn

(

y|µ1n, τ
2Rφ

)

p(µ)p(τ 2)p(φ1)...p(φk). We

place independent priors on the GP parameters, specifically, we use a N(aµ, bµ) prior for µ, an

Γ−1(aτ , bτ ) prior for τ
2, and Unif(0, bφ`

) priors for φ`, ` = 1, . . . , k. Here, Γ−1(a, b) denotes the

inverse-gamma distribution with mean b/(a− 1), provided a > 1.

Posterior simulation from p(µ, τ 2,φ | D) proceeds via Gibbs sampling. The full conditional

posterior distribution for µ is normal with variance S =
(

τ−21TnR
−1
φ

1n + b−1
µ

)−1
, and mean

M = S
(

τ−21T
nR

−1
φ
y + aµb

−1
µ

)

. For τ2, the posterior full conditional is Γ−1(A,B), with A =

aτ +0.5n and B = bτ +0.5 (y − µ1n)
T R−1

φ (y − µ1n). The posterior full conditional for each φ`,

` = 1, . . . , k, is proportional to |Rφ|
− 1

2 exp(−0.5τ−2 (y − µ1n)
T R−1

φ (y − µ1n)) × 1(0,bφ`)
(φ`),

which cannot be sampled directly. We use Metropolis-Hastings steps for each φ` based on a

right-truncated exponential proposal distribution with density d` exp(−d`φ`)/{1−exp(−d`bφ`
)}.

To choose the rate parameter d` (which is the only tuning parameter), we obtain an estimate

φ̃` of φ` (e.g., the MLE), set φ̃` equal to the median of the proposal distribution, and solve for d`.
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Prior specification: We set aτ = 2, a value that yields infinite variance for the correspond-

ing inverse-gamma prior. To specify the hyperparameters aµ, bµ and bτ , note that for each i,

E(Yi) = E (E (Yi|µ)) = E(µ) = aµ, and Var(Yi) = E
(

Var
(

Yi|τ
2
))

+ Var (E (Yi|µ)) = bτ + bµ.

Now, assume we have a prior guess for the center, cy, and range, ry, of the simulator output

values. (For instance, such information is readily available for our application to the LCM sim-

ulator.) Then, we set aµ = cy, and bτ = bµ ≈ (ry/4)
2, using 2(ry/4)

2 ≈ bτ + bµ, with the extra

inflation factor 2, and splitting the variance estimate equally between bτ and bµ.

Specifying prior information for the φ` is more difficult. One way to specify bφ`
is based on

the interpretation of φ` under the correlation function in (1): for any fixed α`, it controls how

fast the correlation decays with distance in the direction of the `–th input x`. In particular, for

α` = 1, 3/φ` is the “range of dependence”, i.e., the value of the distance d = |x`−x′`| that yields

correlation approximately 0.05. Hence, we could use, say, 0.1dmax, where dmax = max |x` − x′`|,

as a rough guess at 3/φ` and specify bφ`
from 0.1dmax = 3/bφ`

. For the application to the LCM

simulator, we used the available range for each input variable to specify dmax and thus bφ`
. The

resulting uniform priors for the φ` led to a significant amount of prior to posterior learning.

APPENDIX B

Here, we provide details for the derivation of the expressions for E∗ {E (Y ) | D}, E∗ {E (Y |uj) | D},

E∗
{

(E(Y |uj))
2 | D

}

, E∗
{

(E (Y ))2 | D
}

, and E∗ {E (Y |uj) E (Y ) | D}, which form the basis of

the approach to estimation of the main effects discussed in Section 2.2.1.

Regarding the posterior point estimate for the global mean, we obtain

E∗ {E (Y ) | D} =

∫

f(v)
E (Y ) p (f(v) | D) df(v)

=

∫

ψ

{

∫

v

{

∫

f(v)
f (v) p (f(v)|ψ) df(v)

}

dH (v)

}

p (ψ | D) dψ

=

∫

ψ

{

∫

v

m(v)

k
∏

`=1

dH` (v`)

}

p (ψ | D) dψ

=

∫

ψ

{

∫

v

{

µ+ rT (v)R−1
φ

(y − µ1n)
}

k
∏

`=1

dH` (v`)

}

p (ψ | D) dψ

=

∫

ψ

{

µ+ T TR−1
φ (y − µ1n)

}

p (ψ | D) dψ,
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where T is the (n× 1) vector with i–th element
∏k

`=1

{

∫ 1
0 exp (−φ`|v` − x`i|

a`) dv`

}

.

Turning to the posterior point estimate for E(Y |uj), for any specified value uj of the j–th

input, let vj = (v1, . . . , uj , . . . , vk) and f (vj) = f(v1, . . . , uj , . . . , vk). Then, we can derive

E∗ {E (Y |uj) | D} =

∫

f(vj)
E (Y |uj) p (f(vj) | D) df(vj)

=

∫

ψ







∫

{v`: 6̀=j}

{

∫

f(vj)
f (vj) p (f(vj)|ψ) df(vj)

}

∏

{`: 6̀=j}

dH`(v`)







p (ψ | D) dψ

=

∫

ψ







∫

{v`: 6̀=j}
m(vj)

∏

{`: 6̀=j}

dH` (v`)







p (ψ | D) dψ

=

∫

ψ

{

µ+ T T
j (uj)R

−1
φ (y − µ1n)

}

p (ψ | D) dψ,

with T j(uj) an (n×1) vector with i–th element exp (−φj|uj − xji|
aj )

∏

{`: 6̀=j}

{

∫ 1
0 exp (−φ`|v` − x`i|

a`) dv`

}

.

Next, we derive the expression for E∗
{

(E(Y |uj))
2 | D

}

. Denote vj as before and v′j =

(v′1, . . . , uj , . . . , v
′
k). Then,

(E (Y |uj))
2 =





∫

{v`: 6̀=j}
f (vj)

∏

{`: 6̀=j}

dH`(v`)





2

=

∫∫

{v`: 6̀=j}

{v′`: 6̀=j}

f(vj)f(v
′

j)
∏

{`: 6̀=j}

dH`(v`)dH`(v
′
`).

Therefore, taking expectation with respect to the bivariate posterior predictive distribution for

(f(vj), f(v
′
j)), developed in Section 2.1, we obtain

E∗
{

(E (Y |uj))
2 | D

}

=

∫

(E (Y |uj))
2 p(f(vj), f(v

′

j) | D)df(vj)df(v
′

j)

=

∫

ψ

{

∫∫

{v`: 6̀=j}

{v′`: 6̀=j}

{∫

f (vj) f
(

v′j
)

p
(

f(vj), f(v
′

j) | ψ
)

df(vj)df(v
′

j)

}

×
∏

{`: 6̀=j}

dH`(v`)dH`(v
′
`)

}

p (ψ | D) dψ

=

∫

ψ







∫∫

{v`: 6̀=j}

{v′`: 6̀=j}

E
(

f(vj)f(v
′

j) | ψ
)

∏

{`: 6̀=j}

dH`(v`)dH`(v
′
`)







p (ψ | D) dψ.

Using the standard covariance identity, we obtain

E
(

f(vj)f(v
′

j) | ψ
)

= Cov
(

f(vj), f(v
′

j) | ψ
)

+ E(f(vj) | ψ) E
(

f(v′j) | ψ
)

(14)
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where the expectation and covariance terms are taken over the conditional bivariate normal

distribution for (f(vj), f(v
′

j)) | ψ, D with mean vector and covariance matrix given by (5)

and (6), respectively. Denote by R1 ≡ R1 (v1, . . . , uj , . . . , vk) and R2 ≡ R2 (v
′
1, . . . , uj , . . . , v

′
k)

the first and second columns, respectively, of the (n × 2) matrix R(v,v ′) in (6). Note that

here the input vectors, (v1, . . . , uj , . . . , vk) and (v′1, . . . , uj , . . . , v
′
k), have common element uj .

Therefore, R1 is the (n×1) vector with elements exp
(

−φj |uj − xji|
aj −

∑

{`: 6̀=j} φ`|v` − x`i|
a`

)

,

for i = 1, ..., n, and analogously for R2, replacing v` with v′`. Then using (3) and (4), we obtain

E(Ỹ | ψ) = µ+RT
1 R

−1
φ

(y − µ1n) and E(Ỹ ′ | ψ) = µ+RT
2 R

−1
φ

(y − µ1n) (15)

Cov(Ỹ , Ỹ ′ | ψ) = τ2
{

exp

(

−
∑

{`: 6̀=j}
φ`|v` − v′`|

a`

)

−RT
1 R

−1
φ R2

}

(16)

Substituting (15) and (16) in (14), we obtain for each j = 1, ..., k,

E∗
{

(E(Y |uj))
2 | D

}

=

∫

ψ

{

τ2
(

e− T T
j (uj)R

−1
φ T j(uj)

)

+
(

µ+ T T
j (uj)R

−1
φ (y − µ1n)

)2
}

p(ψ | D)dψ,

where e =
∏

{`: 6̀=j}

{

∫ 1
0

∫ 1
0 exp (−φ`|v` − v′`|

a`) dv`dv
′
`

}

.

Next, we derive the expression for E*
{

(E(Y ))2 | D
}

. We have

E*
{

(E(Y ))2 | D
}

=

∫ ∫ ∫

ψ

(E(Y ))2 p(f (v) , f
(

v′
)

| ψ)p(ψ | D)dψdf (v) df
(

v′
)

=

∫

ψ

∫ ∫ ∫

v′

∫

v

f (v) f
(

v′
)

p(f (v) , f
(

v′
)

| ψ)p(ψ | D)

k
∏

`=1

dH` (v`)
k
∏

`=1

dH`

(

v′`
)

df (v) df
(

v′
)

dψ

=

∫

ψ

∫

v′

∫

v

E
(

f (v) f
(

v′
)

| ψ
)

k
∏

`=1

dH` (v`)

k
∏

`=1

dH`

(

v′`
)

p(ψ | D)dψ

As before, we obtain E (f (v) f (v′) | ψ) using the covariance formula E (f(v)f(v′) | ψ) =

Cov (f(v), f(v′) | ψ) + E (f(v) | ψ) E (f(v′) | ψ), where:

• E (f (v) | ψ) = µ+ rTR−1
φ

(y−µ1n), with r the (n× 1) vector with i–th element given by

Corr (f(v), f(xi) | ψ) = exp
[

−
∑k

`=1 φ` | v` − x`i |
a`

]

• E (f (v′) | ψ) = µ+ r′TR−1
φ (y − µ1n), with r

′ the (n× 1) vector with i–th element given

by Corr (f(v′), f(xi) | ψ) = exp
[

−
∑k

`=1 φ` | v
′
` − x`i |

a`

]
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• Cov (f (v) , f (v′) | ψ) = τ 2
{

exp
[

−
∑k

`=1 φ` | v
′
` − v` |

a`

]

− rTR−1
φ r

′

}

.

Combining the expressions above, we obtain E*
{

(E(Y ))2 | D
}

as given in equation (10).

Finally, we derive an expression for E* {E(Y | uj)E(Y ) | D}. We can write

E* {E(Y | uj)E(Y ) | D} =

∫ ∫ ∫

ψ

E(Y | uj)E(Y )p(f (vj) , f
(

v′
)

| ψ)p(ψ | D)dψdf (vj) df
(

v′
)

=

∫

ψ

∫ ∫ ∫

v′

∫

{v`: 6̀=j}
f (vj) f

(

v′
)

p(f (vj) , f
(

v′
)

| ψ)p(ψ | D)

∏

{`: 6̀=j}

dH` (v`)
k
∏

`=1

dH`

(

v′`
)

df (vj) df
(

v′
)

dψ

=

∫

ψ

∫

v′

∫

{v`: 6̀=j}
E
(

f (vj) f
(

v′
)

| ψ
)

∏

{`: 6̀=j}

dH` (v`)

k
∏

`=1

dH`

(

v′`
)

p(ψ | D)dψ.

We obtain E (f (vj) f (v′) | ψ) using the covariance formula, which requires:

• E (f (vj) | ψ) = µ+ rTj R
−1
φ (y − µ1n), with rj the (n× 1) vector with i–th element given

by Corr (f(vj), f(xi) | ψ) = exp
[

−
∑

{`: 6̀=j} φ` | v` − x`i |
a`

]

× exp [−φj | uj − xji |
aj ]

• E (f (v′) | ψ) = µ+ r′TR−1
φ

(y − µ1n), with r
′ the (n× 1) vector with i–th element given

by Corr (f(v′), f(xi) | ψ) = exp
[

−
∑k

`=1 φ` | v
′
` − x`i |

a`

]

• Cov (f(vj), f(v
′) | ψ) = τ 2

{

exp
[

−
∑

{`: 6̀=j} φ` | v
′
` − v` |

a`

]

exp
[

−φj | v
′
j − uj |

aj

]

− rTj R
−1
φ
r′
}

.

The final result for E* {E(Y | uj)E(Y ) | D} given in equation (11) arises by combining the

expressions above.
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