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Abstract

Optimization of complex functions, such as the output of computer simulators, is

a difficult task that has received much attention in the literature. A less studied prob-

lem is that of optimization under unknown constraints, i.e., when the simulator must

be invoked both to determine the typical real-valued response and to determine if a

constraint has been violated, either for physical or policy reasons. We develop a statis-

tical approach based on Gaussian processes and Bayesian learning to both approximate

the unknown function and estimate the probability of meeting the constraints. A new

integrated improvement criterion is proposed to recognize that responses from inputs

that violate the constraint may still be informative about the function, and thus could

potentially be useful in the optimization. The new criterion is illustrated on synthetic

data, and on a motivating optimization problem from health care policy.

Key words: constrained optimization, surrogate model, Gaussian process, sequential

design, expected improvement

1 Introduction

A common optimization problem that arises in fields ranging from applied engineering to
public policy is to find x∗ = arg minx∈X f(x), subject to constraints: x∗ ∈ C, where we may
only learn about the relationship between x and f(x) : X → R and the constraint region C
through expensive evaluations of the noisy joint process

Z(x) = f(x) + ε, ε ∼ N (0, η2) (1)

C(x) = c(x + εc) = I{x+εc∈C} ∈ {0, 1}.

The real-valued noise variance, η2, is unknown but may be zero, and εc indicates that the
constraint mapping may be random. In particular, the constraint region C ⊂ X is well-
defined but often non-trivial. Although it will typically be deterministic (εc = 0), this is not
required by our treatment. Finally, we suppose that observing the joint response (Z,C)(x) is
expensive. So we wish to keep the number of evaluations, (x1, z1, c1), . . . (xN , zN , cN), small.
One way to do this is to build regression and classification models fN(x) for f(x) and cN(x)
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for c(x) based on the data. The surrogate surfaces may be searched to find x′ yielding a small
objective in expectation, and satisfying the constraint with high probability. We can then
repeat the process with N +1 points, including (x′, Z(x′), C(x′)), stopping when convergence
in the location of x∗ is achieved, or when resources are exhausted.

To shed light upon the difficulty in solving this problem, and to thereby suggest possible
points of attack, consider the following simplification where the constraint region C is known
at the outset (i.e., there is no need to estimate cN). In this case a sensible approach is as
follows. Obtain realizations z(x) of Z(x) only for x ∈ C with the largest expected improve-

ment (EI, Jones et al., 1998) under fN [more on this in Section 2] and proceed to construct
fN+1 by adding in the (x, z(x)) pair into the design. This presumes that evaluating f(x) for
x ∈ X \ C is a waste of resources. But this need not be so, since Z(x), for any x, contains
information about f , and therefore about promising location(s) for x∗ ∈ C. It could even be
that x′ /∈ C is best at reducing the overall uncertainty in the location of x∗ ∈ C, through an
improved new surrogate fN+1. When this is the case [e.g., see Section 3.3] it makes sense to
sample Z(x′) for x′ /∈ C despite the constraint violation.

Assessing when this odd maneuver is advantageous requires a more global notion of im-
provement; EI cannot directly quantify the extent to which x′ /∈ C improves our information
at x ∈ C. Finally, when C is not known a priori, new evaluations (x′, z′ = z(x′)) provide
information about both f and c through their surrogates fN and cN . Thus incremental
decisions toward solving the constrained optimization problem must incorporate uncertainty
from both surrogates. We propose a new integrated improvement statistic to fit the bill.

The rest of the paper is outlined as follows. In Section 2 we outline EI for (unconstrained)
optimization and the GP surrogate models upon which it is based. In Section 3 we develop
the conditional and integrated expected improvement statistic(s) for the case of known con-
straints, with an illustration. We extend the method to unknown constraints in Section
4, and demonstrate the resulting constrained optimization algorithm on synthetic data. In
Section 5 we consider a motivating problem from health care policy research, and conclude
with some discussion and extensions in Section 6.

2 Previous Work

2.1 Surrogate Modeling

The canonical choice of surrogate model for computer experiments is the stationary Gaussian
process (GP, Sacks et al., 1989; O’Hagan et al., 1999; Santner et al., 2003), which is one way
of characterizing a zero mean random process where covariance C(x, x′) = σ2K(x, x′) varies
spatially depending upon the x locations. Let ZN = (z1, . . . , zN)T be the vector of observed
responses at the design points x1, . . . , xN collected (row-wise) in XN . Conditional on this
data DN = {XN , ZN}, the (posterior) predictive distribution of Z(x) at a new point x under
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the GP is normal with

mean ẑN(x) = kT
NK−1

N ZN , (2)

and variance σ̂2
N(x) = σ2[K(x, x) − kT

N(x)K−1
N kN(x)],

where kT
N(x) is the N -vector whose ith component is K(x, xi), and KN is the N ×N matrix

with i, j element K(xi, xj). These are sometimes called the kriging equations. Joint pre-
diction at a collection of points X is multivariate normal with mean vector ẑN(X) and co-
variance matrix Σ̂N(X) which are defined by the straightforward matrix extension of kN(X)
and K(X,X). We follow Gramacy and Lee (2008) in specifying that K(·, ·) have the form
K(x, x′|g) = K∗(x, x′) + ηδx,x′ , where δ·,· is the Kronecker delta function, and K∗ is a true

correlation function. The η term, referred to as the nugget, is positive (η > 0) and provides
a mechanism for introducing measurement error into the stochastic process—implementing
η2 > 0 in Eq. (1) (Gramacy, 2005, appendix). It causes the predictive equations (2) to
smooth rather than interpolate the data (XN , ZN). It is common to take K∗(·, ·) from a
parametric family, such as the separable Matérn or power families (e.g., Abrahamsen, 1997),
which roughly model K∗(·, ·) as an inverse function of coordinate-wise Euclidean distance.
We prefer the power family, which is standard for computer experiments.

2.2 Optimization by Expected Improvement

Conditional on a GP surrogate fN , a step towards finding the minimum may be based upon
the expected improvement (EI) statistic (Jones et al., 1998). For a deterministic function
(η = 0), the current minimum fmin = min{z1, . . . , zN} is deterministic. In this case, the
improvement is defined as I(x) = max{fmin − Z(x), 0}. The next location is chosen as

x′ = arg max
x∈X

E{I(x)}, (3)

where the expectation is taken over Z(x) ∼ FN(x), the predictive distribution (2) implied
by fN evaluated at x. Jones et al. (1998) give an analytical expression for the EI:

E{I(x)} = (fmin − ẑN(x))Φ

(

fmin − ẑN(x)

σ̂N(x)

)

+ σ̂N(x)φ

(

fmin − ẑN(x)

σ̂N(x)

)

. (4)

Basically, the EI is the cumulative distribution of the predictive density that lies “under-
neath” fmin. A relevant diagram illustrating EI appears in Figure 1 in Section 3.1.1. Jones
et al. (1998) also provide a branch and bound algorithm for performing the maximization
over X to find x′. Once x′ is chosen it is added into the design as (xN+1, zN+1) = (x′, f(x′))
and the procedure repeats with fN+1. Jones et al. (1998) use maximum likelihood infer-
ence to set the parameters for fN , i.e., d only since η = 0, and call the resulting iterative
procedure the efficient global optimization (EGO) algorithm. The above choice of fmin is
sensible but somewhat arbitrary. Another reasonable choice that we promote in this paper
is fmin = min ẑN(x), the minimum of the (posterior) mean predictive surface.
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The situation is more complicated for noisy responses. We must then estimate the nugget,
η, and extend the Jones et al. (1998) definition of fmin to be a random variable: the first order
statistic of Z1, . . . , ZN . Calculating the EI would thus require integrating over fmin in Eq. (3).
This breaks the analytical tractability of EGO algorithm, however one can always proceed
by Monte Carlo methods. Once in the Monte Carlo framework, extensions abound. For
example, it is trivial to take a Bayesian approach and thereby factor parameter uncertainty
into the EI calculation. Conditional on the parameters however, choosing fmin min ẑN(x)
is still deterministic. So this choice allows an analytical approach to proceed when point-
estimates (i.e., MLEs) of parameters are used, or it leads to a more efficient Monte Carlo
algorithm when sampling from the Bayesian posterior. The downside of the Monte Carlo
approach, whether taken for Bayesian or fmin considerations, is that the branch and bound
algorithm for determining x′ in Eq. (3) is no longer available. However, proceeding with a
discrete set of space-filling candidates, and leveraging direct optimization methods in tandem,
has proved fruitful (Taddy et al., 2009b).

2.3 Towards Constrained Optimization

Ours in not the first attempt at tackling the constrained optimization problem via surrogate
modeling. Schonlau et al. (1998) consider deterministic responses (η = 0) where the known
constraint region can be written as ak ≤ ck(x) ≤ bk, for k = 1, . . . , K. They then treat the
ck(x) as additional response variables that co-vary with f(x). This breaks the analytical
tractability of the EI calculation. Assuming that the K + 1 responses are independent the
calculation is again tractable, otherwise a Monte Carlo approach is needed. We are not
aware of any previous literature addressing our more general problem: where the function
f may not be deterministic, and when there are unknown constraints of arbitrary form.
Even in simpler settings, like the one above, it may be advantageous to sample outside the
constraint region. This requires a new improvement statistic—one that weighs the overall
expected improvement of the next sequentially chosen design point in aggregate.

3 Integrated Expected Conditional Improvement

Here we generalize the EI framework to accommodate the drawbacks outlined above. To start
with, we assume that constraints are deterministic, and known (with trivial computation)
in advance. Section 4 provides extensions for unknown constraints.

Define the conditional improvement as

I(y|x) = max{fmin − Z(y|x), 0}, (5)

where Z(y|x) ∼ FN(y|x), which is the predictive distribution of the response Z(y) at a
reference input location y under the surrogate model fN given that the candidate location
x is added into the design. We do not use an N + 1 subscript for the posterior predictive
distribution because the realization of the response z(x) is not yet available.
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The expected conditional improvement (ECI) at the reference point y is then E{I(y|x)}.
Here the expectation is over all of the random quantities: the distribution of Z(y|x), and
perhaps of fmin depending upon how it is defined. The ECI may be evaluated at all pairs
of inputs (x, y) ∈ X . The potential to generalize EI, which accounts for improvement at the
point x alone, comes by integrating over the choices for y. Let g(y) denote a density over
y ∈ X which may be uniform in a bounded region. Then the integrated expected conditional

improvement (IECI) is defined as

Eg{I(x)} = −

∫

X

E{I(y|x)}g(y) dy. (6)

This suggests using x′ = arg maxx∈X Eg{I(x)} as the next adaptively sampled point. As long
as E{I(y|x)} ≤ E{I(y)} for all x ∈ X , this statistic (6) is defensible. Defining fmin carefully
[see Section 3.1.1] ensures that this monotonicity condition holds.

The negation in Eq. (6) keeps IECI in line with the convention of maximizing, i.e.,
of preferring large EI statistics over small ones. To explain, consider how I(y|x) “looks
ahead”. We wish to measure an improvement at x, but in a roundabout way we assess that
improvement at a reference point y instead, supposing x has been added into the design. If
y still has high improvement potential after x has been added in, then x must not have had
much influence on the improvement at y. If x is influential at y, then the improvement at y
should be small after x is added in, not large.

We can alternatively define IECI as the expected reduction in improvement at the refer-
ence location, y, when x is added into the design:

Eg{I(x)} =

∫

X

(E{I(y)} − E{I(y|x)})g(y) dy, (7)

which is guaranteed to be positive under our monotonicity assumption. We would then take
the x′ which gave the largest reduction. But clearly this is within an additive constant (the
weighted-average EI over g(y)) of the definition given in Eq. (6), and is thus equivalent.

The integrated approach allows constraints to be handled through g(y). E.g., g(y) can
be uniform for y ∈ C and zero otherwise. Or, [as we discuss in Section 4] it can give higher
weight to y with a greater chance of satisfying the constraint. When there are no constraints,
choosing g(y) uniform on y ∈ X yields an aggregated statistic that will offer a more global
search, compared to EI, in a manner similar to how the expected reduction in variance
generalizes the predictive variance for sequential design by active learning (Seo et al., 2000;
Gramacy and Lee, 2009).

3.1 Expected Conditional Improvement

The key ingredient in calculating the ECI is an assumption about how Z(y|x) behaves relative
to Z(y). Let FN(y|x) denote the distribution of Z(y|x). Overloading the notation somewhat,
let fN(z(x)) denote the density of Z(x) under FN , and likewise fN(z(y)|x) for Z(y|x). By
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the law of total probability,

fN(z(y)|x) =

∫

fN(z(y), z(x)|x) dz(x) (8)

=

∫

fN+1(z(y)|x, z(x))fN(z(x)) dz(x),

where fN+1(z(y)|x, z(x)) is the predictive density of Z(y) when the design matrix and re-
sponse vector are augmented by (x, z(x)). Note that the above expressions involving z(y)
have an implicit conditioning upon y. For an arbitrary surrogate, computing the integral in
Eq. (8) analytically would present a serious challenge. However, under a GP surrogate it is
trivial since FN and FN+1 are both (univariate) normal distributions (2), and a convolution
of normals is also normal. Trivially, the mean and variance of the (normal) predictive density
fN+1(z(y)|x, z(x)) is unchanged after integrating out Z(x) since the GP is not dynamic, so
there is no update from fN without observing z(xN+1).

But at the same time, the predictive variance (2) does not depend upon the responses, ZN

or z(x) via ZN+1. So we can deduce what variance of the predictive density fN+1(z(y)|x, z(x))
will be once z(x) arrives. We will have σ̂2

N+1(y|x, z(x)) = σ̂2
N+1(y|x) under the assumption

that the evidence in z(x) does not update/change parameters of the GP (which it can’t if it is
not observed!). Now, σ̂2

N+1(y|x, z(x)) depends upon K−1
N+1(x) whose N +1st row and column

are populated with K(xi, x) for i = 1, . . . , N and with K(x, x) appearing in the bottom
right-hand corner. So K−1

N+1(x) can then be obtained in terms of K−1
N via partitioned inverse

equations. If

KN+1(x) =

[

KN kN(x)
kT

N(x) K(x, x)

]

, then

K−1
N+1(x) =

[

[K−1
N + g(x)gT (x)µ−1(x)] g(x)

gT (x) µ(x)

]

,

where g(x) = −µ(x)K−1
N kN(x) and µ−1(x) = K(x, x) − kT

N(x)K−1
N kN(x). This saves us

from performing any additional O(N3) matrix operations. So σ̂2
N+1(y|x) = σ2[K(y, y) −

kT
N+1(x; y)K−1

N+1(x)kN+1(x; y)] where kT
N+1(x; y) is an (N +1)-vector whose first N entries are

identical to kN(y) and with an N+1st entry of K(y, x). The amount by which σ̂2
N+1(y|x, z(x))

is reduced compared to σ̂2
N(y) is then readily available. Let G(x) ≡ g(x)gT (x). Then,

σ̂2
N+1(y|x) = σ̂2

N(y) − σ2[kT
N(y)G(x)µ−1kN(y) (9)

+ 2kT
N(y)g(x)K(x, y) + K(x, y)2µ].

So we can see that the deduced predictive variance at y will be reduced when z(x) is observed
by an amount that depends upon how far apart y and x are. This is not only sensible, but
will also be helpful for determining the influence of x in improvement calculations.

To sum up, we propose to define FN(y|x), for the purposes of sequential design, to be
a normal distribution with (true) mean ẑN(y|x) = ẑN(y) and deduced variance σ̂2

N(y|x) ≡
σ̂2

N+1(y|x, z(x)) = σ̂2
N+1(y|x) as given in Eq. (9), above. As with the kriging equations (2),
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joint sampling for a collection of (M) reference inputs YM is possible via the appropriate
matrix extensions to kN(YM) and K(YM , YM) in order to derive ẑN(YM |x) and Σ̂N(YM |x).

Now, with an appropriate definition of a deterministic fmin, the same analytic expression
for the EI from Section 2 can be extended to the ECI:

E{I(y|x)} = (10)

(fmin − ẑN(y|x))Φ

(

fmin − ẑN(y|x)

σ̂N(y|x)

)

+ σ̂N(y|x)φ

(

fmin − ẑN(y|x)

σ̂N(y|x)

)

.

If we cared only about the ECI (without integration (6)), the branch and bound algorithm
given by Jones et al. (1998) would apply leading to a conditional EGO algorithm.

3.1.1 Choosing fmin

Figure 1 illustrates how a deterministic choice of fmin can influence the ECI. Consider two
cases ((a) and (b)), which pertain to the choices for fmin introduced in Section 2.2 (rep-
resented by horizontal lines): (a) uses only the observed locations and (b) uses the whole
predictive curve. We will return to details of these choices shortly. In the figure, the solid
parabolic curve represents the predictive mean surface E{Z(·)}. The EI is the area of the
predictive density drawn as a solid line, plotted vertically and centered at ẑ(y), which lies
underneath the horizontal line(s), representing choices of fmin. The ECI is likewise the area

Z(y) ∼ fN(y)
Z(y|x) ∼ fN(y|x)

y x

(a): fmin ≡ ẑ

(b): fmin

Figure 1: Illustrating how the choice of fmin influences the ECI. The solid curve represents
the mean-predictive E{Z(·)}. The densities of Z(y) and Z(y|x) are shown as solid and
dashed “bell-curves”, respectively. In (a) fmin is taken to be the mean predictive at the N
input locations whereas in (b) it is taken to be the minimum of predictive-mean surface.
The respective improvements are the areas of the densities underneath fmin.
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of the predictive density drawn as a dashed line lying below the horizontal line(s). This
dashed density has the same mean/mode as the solid one, but it is more sharply peaked by
the influence of x. If we suppose that the densities, drawn as bell-curves in the figure, are
symmetric (as they are for a GP), then it is clear that the relationship between ECI and EI
depends upon fmin. As the dashed line is more peaked, the left-tail cumulative distributions
have the property that FN(fmin|x) ≥ FN(fmin) for all fmin ≥ E{Z(y|x)} = E{Z(y)}, to which
choice (a) for fmin corresponds. Therefore E{I(y|x)} ≥ E{I(y)} in this case, violating our
desired monotonicity property. But for choice (b) the ECI represents a reduction compared
to the EI, since fmin ≤ E{Z(y|x)}, thus satisfying the monotonicity property.

Case (a) in Figure 1 is meant to represent taking fmin = min{z1, . . . , zN}, deterministi-
cally. It may similarly represent the minimum of the mean-predictive at the XN locations,
which would coincide with the minimum of the ZN values in the no-noise (η = 0) case.
In the noisy case (η > 0) fmin in Eq. (5) is a random variable whose distribution can be
approximated by simulation from FN . But this extra computational effort would be in
vain because the monotonicity property is not guaranteed. Case (b) corresponds to taking
fmin = min E{Z(·)}, the minimum of the posterior mean-predictive—another deterministic
choice. In this case it is clear that fmin will always cut through the density of Z(y|x) at or
below its mean/mode E{Z(y|x)} = E{Z(y)} and ensure that the monotonicity property is
satisfied. Accordingly, we shall use this choice throughout the remainder of the paper.

3.1.2 A Monte Carlo Approach for Calculating the ECI

The following Monte Carlo procedure may be used to obtain samples of the ECI via the
GP surrogate posterior predictive fN , taking full account of uncertainty in the parameters
θ = (σ2, d, η). The procedure is borne out via Monte Carlo sampling for θ in Figure 2. If

For t = 1, . . . , T , current design DN = (XN , ZN), repeat:

1. Sample θ(t) from the posterior distribution conditional
upon fN , priors, and DN , and possibly conditional upon
θ(t−1) in an MCMC setup

2. Calculate fmin = min ẑN(·|θ(t))

3. Obtain the tth sample from E{I(y|x)} as
E

(t){I(y|x)} = E{I(x|y)|θ(t)}, following Eq. (10) with
ẑN(y|x, θ(t)) and σ̂2

N(y|x, θ(t))

Figure 2: Monte Carlo approximation of the ECI statistic.

θ is considered known, or has been estimated offline, e.g., via maximum likelihood, then we
may skip the loop (and Step 1), taking T = 1 with θ(1) = θ. In either case, an estimate of
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the ECI is obtained by ergodic averaging:

E{I(y|x)} ≈
1

T

T
∑

t=1

E
(t){I(y|x)}. (11)

3.2 Integrated Expected Conditional Improvement Algorithm

Calculating the IECI (6) from the ECI requires integrating over y ∈ X according to g(y),
which may be uniform in a bounded (constraint) region. It will not generally be possible
to integrate analytically, so we propose to augment the Monte Carlo procedure from Sec-

tion 3.1.2. Given a large number of sampled reference locations YM ≡ y(1), . . . , y(M) iid
∼ g, the

IECI may be approximated with T Monte Carlo samples from the ECI as follows.

Eg{I(x)} ≈ −
1

MT

M
∑

m=1

T
∑

t=1

E
(t){I(y(m)|x)} (12)

When the parameters θ are known, T = 1 as before. With larger M (and T ) we obtain an
improved approximation, and in the limit we have equality. In the case where g is uniform
over a convex region, a grid or maximum entropy design may be preferred (Santner et al.,
2003, Section 6.2.1). When the marginals of g are known, a Latin Hypercube Design (LHD,
Santner et al., 2003, Section 5.2.2) may be more generally appropriate.

If we choose (or are required) to work with a size M grid, design, or LHD of reference
locations y ∈ X , we may view g as discrete and finite measure. An alternate approach in
this case is to forgo (re-)sampling from g and compute a weighted average instead:

Eg{I(x)} ≈ −
1

T

T
∑

t=1

1

M

M
∑

m=1

E
(t){I(y(m)|x)}g(y(m)). (13)

This has the disadvantage that the ECI may be evaluated at many reference locations y(m)

with low (or zero) probability under g. But it has the advantage of an implementation that
is easily adapted to the unknown constraint situations described shortly.

3.3 Illustrating IECI

To illustrate IECI consider the following process E{Z(x)} = f(x) = sin(x)+2.55φ0.45(x−3),
observed for x ∈ [0, 7]. As a mixture of a sinusoid and normal density function (with µ = 3
and σ = 0.45) it has two local minima in this region. To make things interesting, realizations
of the process are observed with i.i.d. noise so that Var{Z(x)} = 0.152. The top-left panel of
Figure 3 shows one random realization of this process at LHD inputs. The predictive mean
and 90% interval obtained by sampling from the posterior under the GP is also shown. A
visual inspection of the surface(s) reveals that, indeed, there are two local minima.

Below that panel, on the bottom-left, the EI (solid black) and IECI (dashed red) surfaces
are plotted, normalized to appear on the same [0, 1] scale. As a further visual aid, the design

9



Figure 3: Comparing EI and IECI. The top panels show the design and posterior predictive
surface. The bottom panels show EI and IECI statistics for the corresponding surfaces above.
In the case of constrained optimization, in the right panels, the constraint violation region
Cc is shown with slashes.

XN is also shown, and the vertical lines crossing the x-axis intersect with the curves at their
maxima. We took a uniformly spaced set of 100 candidate locations in [0, 7], our X , and
calculated the EI and IECI at x ∈ X . Likewise, we took the same M = 100 points as
reference locations YM = X for the IECI calculations via Eq. (12). EI recommends taking a
sample from the left local minima, although the relative heights of the two disparate regions
of highest EI betrays that this decision is indeed a “close call”. In contrast, IECI suggests
taking the next sample from the right local minima, and with much greater decisiveness.
The lower concentration of samples nearby this right-minima lead to higher variance in that
region which may be pooled by the more globally-scoped IECI.

The right-hand panels in Figure 3 show a similar sequence of plots in the presence of
a known constraint C = [0, 2] ∪ [4, 7]. To illustrate EI and IECI in this scenario, consider
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the random realization and corresponding posterior predictive surface in the top-right panel.
Here the XN design locations all reside inside C. The bottom-right panel shows the EI
statistic over the entire (discrete) range for x ∈ X , as above. Those parts of the EI curve
corresponding to inputs which violate the constraint are dotted. The EI is maximized outside
of the constraint region near x = 2.75, with the maximal value inside C at the x = 4
boundary. The IECI statistic is also shown over the entire range, but the y(m) locations are
restricted to C. I.e., YM = X ∩ C. This is so that we may consider the extent to which
every location x ∈ X reduces the average conditional improvement y ∈ C. Observe that the
maximal IECI point is x = 3.75. This point gives the greatest reduction in improvement
averaged over the constraint region, even though it does not, itself, satisfy the constraint.

4 Dealing with Unknown Constraints

Here we extend the IECI to unknown constraints. Much of the necessary scaffolding has
already been built into the IECI via g(y), e.g., g(y) = P(C(y) = 1). It remains for us to flesh
out the Monte Carlo by incorporating the surrogate cN for C(y). We extend the parameter
vector θ to contain parameters for both surrogates: θ = (θf , θc); and the data to include the
class/constraint labels: DN = (XN , ZN , CN). Inference for unknown θ|DN is via samples
from the joint posterior. An appropriate choice of cN is discussed in Section 4.1.

For now, overload the generic classification surrogate notation to let cN(y(m)|θ(t)
c ) denote

the probability input y(m) satisfies the constraint given parameters θ
(t)
c . Then,

Ec{I(x)} ≈ −
1

T

T
∑

t=1

1

M

M
∑

m=1

E
(t){I(y(m)|x)} · cN(y(m)|θ(t)

c ). (14)

Note that in E
(t){I(y(m)|x)} there is an implicit dependence upon θ

(t)
f , unless these parame-

ters are taken as known. In that case we may drop the (t) superscript from the ECI expression
in Eq. (14), and re-arrange the order of summation to avoid unnecessarily re-calculating the
ECI for each t. Observe that Eq. (14) extends Eq. (13) rather than (12). Sampling from the
surrogate gN , rather than simply evaluating the related quantity cN , would not generally be
straightforward, and so we prefer to work with design-based candidates y ∈ X .

4.1 An Appropriate Constraint Surrogate, and Sequential Infer-

ence

An appropriate partner to the canonical GP (regression) surrogate fN for f is a classification
GP (CGP) surrogate cN for c. For details on CGP specification and corresponding Monte
Carlo inference based on MCMC, see Neal (1998). As in the regression case, the CGP model
is highly flexible and competitive with, or better than, the most modern models for non-
parametric classification. However, batch inference methods based on MCMC are at odds
with the sequential nature of the design strategy. Except to guide the initialization of the
new Markov chain, it is not clear how fits from earlier iterations may re-used in search of
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the next design point. So after each sequential design step the MCMC must be re-started
and iterated until convergence. The result is a slow algorithm.

So instead of taking the traditional, established, MCMC approach to C/GP inference
we follow a new sequential Monte Carlo (SMC) approach outlined by Gramacy and Polson
(2010). They show how GP and CGP models can be implemented in an online setting, by
quickly updating a discrete approximation to the posterior via particle learning (Carvalho
et al., 2008). This approach leads to fast online—and in some cases statistically superior (i.e.,
lower MC error)—posterior summaries compared to MCMC. Gramacy and Polson (2010)
go on to describe to how EI for optimization and entropy based boundary exploration for
classification can proceed efficiently with particles. This is easy to extend to IECI by coupling
the regression and classification models (fN and cN) via the Monte Carlo approximations
described earlier in this paper.

4.2 Illustrations and Examples

We provide two synthetic data examples where the constraint region is unknown. In both
cases we take the candidate and reference locations (identically: Ym = X ) as a LHD randomly
generated at the beginning of each round and then augmented with an oracle point (Taddy
et al., 2009b). We follow Gramacy and Taddy (2010) in taking the oracle point as the local
maximum obtained via numerical non-derivative minimization initialized at the last added
design point and searched over the the MAP predictive surface inferred in the previous round.
An implementation via particles is described by (Gramacy and Polson, 2010).

The objective function and constraint region for the first example was presented in Section
3.3. We initialize the optimization with a size 20 LHD, and then collect 60 points by IECI
with 100 fresh candidates/reference locations as described above. Figure 4 summarizes the
results after the 80 total samples were gathered. Observe from the plots in the top row
that most samples (after the 20 initial ones) were gathered in the two local minima, with a
few taken outside C. The oracle candidates (solid circles) indicate the most likely locations
of minima according to the posterior predictive distribution. The bottom panes show an
estimate of cN via the posterior mean probability of violating the constraint (P̂ (cN(x) = 1)),
and a progress meter showing the largest (log) expected reduction in average improvement
(7) at each round. Observe how the ability to improve upon the current minimum decreases
over time, giving a heuristic indication of convergence.

In our second example, the objective function for 2-d inputs x = (x1, x2) is given by

f(x1, x2) = −w(x1)w(x2), where (15)

w(x) = exp
(

−(x − 1)2
)

+ exp
(

−0.8(x + 1)2
)

− 0.05 sin (8(x + 0.1))

and observed without noise. The constraint (satisfaction) region is the interior of an ellipse
defined by the 95% contour of a bivariate normal distribution centered at the origin, with cor-
relation −0.5 and variance 0.752. The true global minimum is at (x1, x2) = (−1.408,−1.408),
which does not satisfy the constraint. There are, however, three other local minima—two
of which satisfy the constraint. The setup is as described above for the 1-d example except
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Figure 4: Progress in 1-d optimization after 80 samples: top-left shows the posterior mean
predictive surface (of fN); top-right shows sampled x-values (open circles) and oracle candi-
dates (closed) before and after the initial design, as separated by the vertical bar; horizontal
lines indicate the unknown constraint region; bottom-left posterior mean of constraint (vi-
olation) surface (cN); bottom-right the maximum of the log expected reduction in average
improvement (7) over time.

that the optimization is initialized with 25 LHD samples, after which 100 are gathered by
IECI with 100 fresh candidates in each round. Figure 5 summarizes the results after the
125 total samples were gathered. Observe that very few samples were gathered outside the
unknown constraint region, except near the local minima. It is sensible to sample heavily
on the boundary of the constraint region where the response is quickly changing and local
minima are likely to occur. This is in case the global minimum is on the boundary, and
also helps to extract the GP parameters in regions of highest importance. Notice that large
concentrations of samples occur for two minima well inside the constraint region. But the
bottom-right plot indicates that further progress can be made by additional sampling.
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Figure 5: Progress in 2-d optimization after 125 samples: top-left: posterior mean predictive
surface; top-right: sampled (x1, x2)-values (open) and oracle candidates (closed); bottom-left:
posterior mean of constraint surface; bottom-right: the progress meter (7).

5 Health Policy Optimization

Our motivating example involves a simulation of health care policy in the United States.
The COMPARE simulator (Girosi et al., 2009) was developed at the RAND Corporation
to predict the effect of various health care policies in terms of individual choices of health
insurance and the associated costs. It is an agent-based microsimulation model that uses a
maximum utility approach to predict the health insurance decisions of individuals, families,
and firms as a function of a wide range of inputs on available types of policies, and on
taxes, penalties, and regulations. The population is simulated based on Census Bureau
data. Additional datasets provide values for many of the parameters in the simulation, and
other parameters are set as part of the possible policy interventions. However, there are
several calibration parameters that are tuned so that when the simulator is run on current
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policies, it makes predictions as close as possible to the current observable situation in the
United States. Such a calibration can be viewed as a minimization problem, choosing the
values of the calibration parameters to minimize the discrepancy between predictions and
reality. This setup is common for computer simulators and has been investigated in the
unconstrained setting (e.g., Kennedy and O’Hagan, 2001). What differs from the standard
setup here is the presence of unknown constraints.

The simulator has a number of inputs and outputs, here we focus on a subset deemed
most important by our collaborators, the designers of the simulator. The inputs over which
we optimize are a set of six calibration parameters: utility tuning parameters for adults
on ESI programs, adults on individual programs, and adults on public programs, and an
analogous set of three parameters for children. The outputs of interest are the predicted
counts in each type of insurance (or the uninsured category) and the elasticities of response
for the key categories of adults in individual plans, adults in restricted individual plans,
uninsured adults, children in individual plans, children in restricted individual plans, and
uninsured children. The objective function specified by our collaborators is a combination
of the absolute errors in the predicted counts and the squares of the predicted elasticities:

Z(x) = α1

4
∑

j=1

|yaj − ŷaj| + α2

4
∑

j=1

|ycj − ŷcj| +
4

∑

k=1

α3ky
2
ekI{|yek|>1}

where α1, α2, and α3k are constants specified by our collaborators that weight the pieces
appropriately. Our goal is to minimize this objective function under the constraint that the
elasticities for the insured are negative and the elasticities for the uninsured are positive.
The elasticities can only be found by running the simulator, so this set of constraints fits
under our unknown constraints regime.
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Figure 6: Slices of the fitted response surface; dark shades are lower values.

Figure 6 shows pairwise slices of the fitted response surface. The left panel shows how the
fitted predicted surface varies as a function of the parameters for adult and child ESI, when
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the other four parameters are held fixed at a value around that which produces the minimum
response. The middle and right panels vary by the parameters for individual programs and
public programs respectively. Dark shades are lower values, so it can be seen that both ESI
parameters need to be relatively high, the child individual parameter needs to be low, and
the other three parameters are relatively less important. The points plotted in the figure are
the 550 total inputs sampled projected into the each of the three pairs of input coordinates.
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Figure 7: Slices of the fitted probability of constraint violation; dark shades are lower values;
sampled points violating the constraint are shown with asterisks.

Figure 7 shows the fitted probability of a constraint violation over the portions of the
space which were routinely sampled. As seen in Figure 6, some regions are not well-sampled
because they do not help in finding the minimum, the goal of the problem. These sparsely
sampled regions do not provide much information for estimating the probability of a con-
straint violation (which is not the primary goal of the problem), and so the estimated values
are overly influenced by the prior mean. Thus we only display parts of the regions in the
first two plots to better show the estimated probabilities. Sampled points which violated
the constraints are shown with asterisks. One can see that the largest probabilities of con-
straint violations occurred for large values of the ESI parameter, for jointly small values of
the individual and child individual parameters, and for values of the public and child public
parameters which are in the corners of the space.

Figure 8 shows the progress meter (7) over the 500 optimization rounds which can be
used as a heuristic check of convergence. As in previous examples, the noisiness in the meter
is due to the LHD predictive grid of 100 candidates at which the IECI is evaluated in each
round. After about 250 samples the IECI seems to have “bottomed-out”. However, further
progress can be made to reduce the frequency and magnitude of the “up-spikes” in the
remaining optimization rounds, and thereby obtain higher confidence that the constrained
global minimum has been obtained.
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Figure 8: Progress meter (7) for the health policy optimization.

6 Discussion

We have introduced a statistical approach to optimization under unknown constraints by
an integrated conditional expected improvement (IECI) statistic. The idea is consider how
the improvement at reference locations (y) conditional on candidates (x) may be used to
augment a design. Without considering constraints, the resulting statistic is a less greedy—
aggregated—version of the standard expected improvement (EI) statistic. Another way to
obtain a less greedy EI is to raise the improvement to a power g (Schonlau et al., 1998).
The IECI approach, by contrast, does not require such a tuning parameter. In the presence
of unknown constraints, IECI allows us to coherently consider how design candidates adjust
the improvement at reference locations believed to satisfy the constraint. Our method was
illustrated on two synthetic examples and a motivating problem from health care policy.

We envisage many ways that our methodology may be extended and improved. Under-
standing of convergence of statistical optimization algorithms is scant at best, and IECI is
no exception. While we provide a sensible heuristic that seems to work well in our examples,
much remains to be done in this area. It may also be sensible to model the constraint as a
function of the inputs (x) and the real-valued response (Z(x)). An example of where this
would be handy is when C = {x : Z(x) < k}, for some constant c. Our dual-GP modeling
framework may easily be extended to allow uncertainty in Z (real-valued) responses to filter
through, as predictors, into the surrogate model for the classification labels. A more difficult
extension to involves accommodating hidden constraints (Lee et al., 2010): where evaluation
of the real-valued response fails, e.g., due to a lack of convergence in a simulation. Finally, it
may be worthwhile to consider surrogate models beyond GPs. Dynamic trees for regression
and classification show considerable promise (Taddy et al., 2009a).
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