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1. Introduction

Single Event Upsets (SEUs) are non-destructive errors caused by the interaction of a charged

particle with a circuit, resulting in a change of logic state (Dodd and Massengill, 2003). For

example, SEUs appear as bitflips in a storage element, and as transient voltage pulses in

arithmetic logic units. Characterizing the vulnerability of a spaceborne electronic device to

SEU is critical for the success of space missions. The fundamental quantity of interest is

the upset rate of the device for the space radiation environment specified by a particular

orbit.

It is known that the upset rate depends on the linear energy transfer (LET) of the

incident particles, the cross-section of interaction, and the fluence (Petersen et al., 1992).

LET is a measure of the energy transferred to a device per unit length when an ionizing

particle passes through it, and the common unit for LET is MeV · cm2/mg; fluence, given

in particles/cm2, is the number of particles that intersect a unit area; cross-section is a

measure of the device upset response to ionizing radiation – it is calculated as the number

of errors divided by fluence (Xapsos et al., 1993; Petersen, 1996).

To measure the susceptibility of an electronic device to SEUs, the device is subjected to

heavy ion tests in a particle accelerator. The results of such tests include the fluence and

the number of upsets recorded at each combination of ion and energy (and thus LET).

The prediction of on-orbit upset rates from test data typically proceeds in two stages.

The first stage of the analysis is to fit the cross-section vs. LET curve to the experimental

data. In the second stage of the analysis, the estimated cross-section vs. LET curve is

combined with the rectangular parallepiped approximation to the geometry of the sensitive

volume and a model of the space radiation environment to produce predictions of on-orbit

upset rates (Tylka et al., 1997). A number of codes have been developed to compute on-orbit

upset rates; in this work, we use CREME96 (Cosmic Ray Effects on Micro-Electronics), a

widely-used code for modelling radiation environments in near-Earth orbits to evaluate

radiation effects in spacecraft (Tylka et al., 1997). We note that some recent work uses

explicit Monte Carlo simulation of the space environment and of the interaction of the

charged particles with the device (Warren et al., 2005; Weller et al., 2009). However, this

approach requires detailed knowledge of the device geometry, which is often not available.

We do not pursue this approach in this paper.

Our focus is on flexible predictive inference for the cross-section vs. LET curve, which is

taken to be an increasing function of LET, ℓ, with a plateau related to the physical cross-

section of the device. Upsets are caused when the charge deposited in the device’s sensitive

volume exceeds a critical amount. Charge deposition is proportional to energy deposition, so

the cross-section vs. LET curve is monotonically increasing. In particular, the cross-section

vs. LET curve can be generically written as σ0G(ℓ), where σ0 is the limiting cross-section,

and G(·) is a cumulative distribution function (cdf) on R
+.

Standard practice is to assume G(·) is the cdf of a Weibull distribution (e.g., Petersen et

al., 1992; Pickel, 1996; Swift et al., 2008). The Weibull parameters are, typically, estimated

using (weighted) least squares, thus avoiding probabilistic modelling of the response distri-

bution for the upset counts. The use of the Weibull parametric form for the cross-section

vs. LET curve is conventional, with little physical justification to support it. Other mod-
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els (e.g., lognormal) can be used (Petersen, 1996), and, as we demonstrate in this paper,

the resulting model uncertainty may have a substantial impact on the accuracy and/or

uncertainty of the on-orbit upset rate predictions.

We address uncertainty in the cross-section vs. LET curve by treating the entire function

G(·) as the key unknown parameter of the model. Specifically, we work with a Dirichlet

process prior (Ferguson, 1973; Antoniak, 1974) for G(·), which, along with a parametric

prior for σ0, defines the prior probability model for the mean of the response distribution,

which is taken to be Poisson. Hence, from a methodological point of view, we develop a

Bayesian semiparametric isotonic regression model for count responses.

We apply the method to data obtained from two particle accelerator experiments. One of

the devices tested was a commercial microprocessor, and the other was a field-programmable

gate array (FPGA), a semiconductor device that can be configured by the designer after

manufacturing. To illustrate the utility of the semiparametric approach relative to existing

techniques, we compare it with the standard Weibull model, as well as with a lognormal

model. The Dirichlet process based semiparametric model allows the data to drive the

shape of the cross-section vs. LET curve, and can thus result in predictive inference that

is less sensitive to modelling choices than parametric models. This can further result in

more reliable inference for the upset rate distribution. Quantifying the uncertainty in the

predicted on-orbit upset rates can give valuable information regarding upset mitigation

needed when the part is used in space, and also when sufficient testing has been performed.

The outline of the paper is as follows. In Section 2, we provide a description of the data

sets from the two devices. Section 3 develops the semiparametric model for the cross-section

vs. LET curve, including methods for prior specification, posterior inference, and model

comparison with customary parametric approaches. Section 4 reports on the data analysis

results for the two devices. In Section 5, we extend the model to account for uncertainty

in the fluence values recorded, and Section 6 concludes with a discussion. The appendices

include technical details on implementation of inference under the semiparametric model.

2. The Data

The data used to illustrate the proposed methodology are obtained from two particle ac-

celerator experiments. The first dataset corresponds to tests performed on a Freescale

MC7447AT PowerPC (subsequently “Device A”). It records the errors in the data cache

bits. In these tests the number of distinct LET values is small (only 4 LET values are used),

but there are repeated measurements at each LET value. The second dataset corresponds

to tests conducted for a rare failure mode on a Xilinx XQR4VLX200 FPGA (subsequently

“Device B”). The failure mode considered is termed “POR SEFI” (Power-On Reset Single

Event Functional Interrupt). It is triggered by an upset to certain elements of the FPGA’s

control logic and is a global error, as opposed to the single-bit errors considered for De-

vice A. In this dataset, the number of upsets reported at any given LET is small. Due

to the sparsity of the data, we expect significant statistical uncertainty in the estimated

cross-section vs. LET response.

The data, D, for each device are obtained in the form D = {(ci, fi, ℓi) : i = 1, . . . , N},
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where ci is the upset count, fi is the fluence, and ℓi is the LET value. The two data sets

are given in Tables 1 and 2. Figure 1 shows a plot of the cross-section vs. LET from the

experimental data for both devices. For device A, the data are collected for the whole

device, but the fit is performed on a per-bit scale (σ0 is multiplied by the number of bits

when performing the fit). Thus, the observed cross-section per bit values are computed

as ci/(kfi), where k is the number of storage bits in the device. For device B the failure

mode is per-device, so the observed cross-section values are computed as ci/fi. Device B

has unique measurements recorded at 7 distinct LET values, while device A has repeated

measurements at 4 distinct LET values.

3. Methods

The semiparametric modelling approach is presented in Section 3.1. In Section 3.2, we

outline the method for posterior inference. In Section 3.3, we give the specification of the

prior distributions used, and model comparison is addressed in Section 3.4. Technical details

are provided in the appendices.

3.1. Bayesian semiparametric model
We model the upset counts, ci, assuming a Poisson distribution, Poisson(ci;µi), with mean

which, as a function of LET, ℓi, is given by

µi = fiσ0G(ℓi). (1)

Hence, the mean of the Poisson response distribution is specified by the cross-section vs.

LET curve, σ0G(·), adjusted by the observed fluences, fi. In Section 5, we develop a model

that allows for measurement error in the fluence values, which yields as a special case the

Poisson likelihood specification in (1).

As discussed in the Introduction, our key modelling objective is to avoid potentially

restrictive parametric assumptions regarding the form of cdf G(·), which specifies the shape

of the cross-section vs. LET curve. We thus employ a Dirichlet process (DP) prior for G(·)

with centering (base) distribution G0 and precision parameter α. Here, G0(ℓ) ≡ G0(ℓ;ψ)

is a parametric cdf on R
+ with parameters ψ. Moreover, α controls the variability of DP

realizations around G0; as α gets larger, cdf realizations from the DP prior get closer to the

centering cdf G0(ℓ). We write DP(α,G0) to denote the DP prior for G(·).

The semiparametric approach to modelling G(·) is more flexible than standard para-

metric techniques, since it obviates the need to specify a particular functional form for the

cross-section vs. LET curve, which may not be supported by the data. It thus enables

quantification of uncertainty due to the functional form of the random cdf G(·), which is

essential for accurate estimation of the upset rate distribution. At the same time, an ap-

pealing feature of the DP prior model is that it can be centered around familiar parametric

models. In our context, the commonly used Weibull parametric form is a natural choice for

G0, resulting in

G0(ℓ;w, s) = 1− exp (−(ℓ/w)s) . (2)
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Alternatively, the lognormal cdf can be used, giving

G0(ℓ;m,w) = Φ((ln(ℓ)−m)/w), (3)

where Φ(·) is the standard normal cdf. In the former case, we have ψ = (w, s) whereas, in

the latter, ψ = (m,w).

Denote by θi = G(ℓi), i = 1, ..., N , the parameters defining the cdf at the observed LET

values, ℓ1 < ℓ2 < ... < ℓN . Then, the DP(α,G0) prior for G(·) implies an ordered Dirichlet

prior distribution for θ = (θ1, . . . , θN ). Specifically,

p(θ | α,ψ) =
Γ(α)

∏N+1
i=1 Γ(di)

θd1−1
1 (θ2 − θ1)

d2−1 . . . (θN − θN−1)
dN−1(1 − θN )dN+1−1, (4)

where d1 ≡ d1(α,ψ) = αG0(ℓ1;ψ), di ≡ di(α,ψ) = α(G0(ℓi;ψ) − G0(ℓi−1;ψ)), for i =

2, . . . , N , and dN+1 ≡ dN+1(α,ψ) = α(1−G0(ℓN ;ψ)). The prior model forG(·) is completed

with hyperpriors for α and for ψ. Prior specification for the DP hyperparameters as well

as for σ0 is discussed in Section 3.3.

Regarding the first stage distribution of the model, in the case of device B, the data set

includes a single count ci for each distinct LET value ℓi, i = 1, . . . , N . Hence, based on the

conditionally independent Poisson responses with means in (1), the likelihood is given by

L(θ, σ0;D) ∝ σ
∑N

i=1
ci

0 exp

(

−σ0

∑N

i=1
fi θi

) N
∏

i=1

θcii . (5)

In the data set corresponding to device A, we have repeated measurements, with fluences

and counts (fij , cij), i = 1, ..., nj, corresponding to distinct LET value ℓj , j = 1, ..., p (with

N =
∑p

j=1 nj). In this case, the first stage distribution can be written as

L(θ, σ0;D) ∝ σ
∑p

j=1

∑nj

i=1
cij

0 exp
(

−σ0

∑p

j=1
θj
∑nj

i=1
fij

)

p
∏

j=1

nj
∏

i=1

θ
cij
j . (6)

Note that the number of DP induced parameters θj = G(ℓj), j = 1, ..., p, is smaller than N

in this case.

We note that the model developed here can be applied to more general isotonic regression

problems, where the DP prior will provide flexibility for the shape of the isotonic regression

function. For instance, the Poisson response distribution could be replaced with a nega-

tive Binomial distribution, and, in principle, more general mixture distributions for count

responses can be considered. A different Bayesian isotonic regression method for count

responses was developed in Dunson (2005), where the focus was on a prior that assigns

positive probability to flat regions for the regression function. The use of the DP prior for

isotonic regression functions with continuous responses was explored in Lavine and Mockus

(1995). The work on bioassay modelling with DP priors for the dose-response curve (e.g.,

Gelfand and Kuo, 1991; Mukhopadhyay, 2000; Kottas et al., 2002) is also related to the

approach developed here.
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3.2. Posterior predictive inference
The joint posterior distribution, p(σ0, θ, α,ψ | D), is obtained by combining the likelihood

in either (5) or (6), for the data from devices B or A, respectively, with the prior for θ in

(4) and the priors for σ0, α, and ψ. We use a hybrid Markov chain Monte Carlo (MCMC)

algorithm to sample from this distribution. The MCMC method comprises Metropolis-

Hastings steps for α and ψ and slice sampling steps for the components of θ; see Appendix

A for details.

The MCMC algorithm provides samples of the posterior distribution for the cross-section

vs. LET curve at the observed LET values. Full inference for the curve requires the pos-

terior distribution of G(ℓk) over a sufficiently fine grid of LET values ℓk. In particular,

extrapolating the random cdf G(·) beyond the largest and smallest observed LET values is

necessary for prediction of the upset rate distribution. Such inference can also reveal impor-

tant differences in the prediction of upset rates between customary parametric models and

the proposed semiparametric alternative. Appendix B provides the details on predictive

inference for G(·).

Once the cross-section vs. LET curve is available, it can be used to predict the SEU

rate for the device when used in a particular orbit (Pickel, 1996). A heavy-ion incident on

a device will cause the deposition of charge within the device. This charge is generated by

ionization as the ion loses energy. The charge is collected in certain areas of the device, due

to the electric fields present. If the charge collected on a sensitive node is sufficient, it will

cause an upset.

The sensitive volume is typically modeled as a rectangular parallelepiped (RPP). The

x− and y− dimensions are given by the square-root of the limiting cross-section (σ0), and

the z− dimension is termed the thickness. Here, z is not the device’s physical thickness, but

rather the depth of the region in which deposited charge is collected. The charge deposited

by an ion traversing the RPP is proportional to the ion’s LET multiplied by the path length

within the sensitive volume. The flux of ions in space is omnidirectional, so the distribution

of charge deposited depends on the flux of heavy ions and the distribution of chord lengths

within the sensitive volume.

Assuming a step threshold for producing an upset results in an upset rate as a function

of energy R(E). The cross-section vs. LET determined from heavy ion tests is then used

to weight R(E), giving the rate prediction as R =
∫

R(E)f(E)dE, where f(E) is the

normalized density function corresponding to the cross-section vs. LET curve. Clearly, the

accurate determination of G(·), and hence f(·), is vital for accurate rate prediction. The

computation of predicted rates as outlined here is performed by the CREME96 software,

available through the web interface at https://creme-mc.isde.vanderbilt.edu/.

Results on posterior inference for on-orbit upset rates are presented in Section 5.2 under

the practically important extension of the model to incorporate uncertainty in the recorded

fluence values.

3.3. Prior Specification
To complete the model developed in Section 3.1, we must specify priors on: α, the precision

parameter of the DP; σ0, the limiting cross-section; and ψ, the parameters of the DP
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centering distribution G0.

For the precision parameter we considered two different priors, a gamma prior centered

around 25 with moderate variance (see Figure 2, right panel), and a uniform prior on

(0, 100). (To avoid numerical instabilities in the MCMC algorithm implementation, the

gamma prior is truncated at 100.) The gamma prior favors moderate to large deviations

from G0 corresponding to moderate to small α values, respectively; note that α values in

(50, 100) yield prior realizations for G that get increasingly closer to G0.

The prior information for σ0 is different for the two devices. Device A is manufactured

using a radiation-hard-by-design methodology (Lacoe et al., 2000), and the test LET values

are known to cover the range that includes most or all of the rising portion of the cross-

section vs. LET curve. When the data covers the plateau, or comes close to the plateau, the

limiting cross-section, σ0, is typically well-determined by the data. Hence, for device A, we

placed a diffuse exponential prior on σ0. Device B is a radiation-tolerant device, and so it

is unknown a-priori whether the range of LET values used in the tests reaches the plateau

– the data may only cover the left tail of the distribution associated with the cross-section

vs. LET curve. This results in weak identifiability between σ0 and the scale parameter of

G0, which can be resolved by using an informative prior for σ0 chosen to be uniform up to

a maximum value σmax. An absolute upper-bound for σ0 is the physical size of the device.

This can be reduced, in consultation with a device expert, by considering the proportion of

the area of the device that is occupied by active circuit elements, and the fraction of the

active circuit area that can be considered to be sensitive to ion strikes. For device B we

based the choice of σmax on the values given in Swift et al. (2008). We note that a device

expert could have been consulted to give an informative upper bound for σ0 for device A

also, but, as explained above, this was not necessary.

Finally, we used independent exponential priors for the components of parameter vector

ψ, where ψ = (w, s) when G0 is Weibull, and ψ = (m,w) when G0 is lognormal (see expres-

sions (2) and (3), respectively). The parameters of the exponential priors were determined

by assuming a fairly noninformative range of LET values (twice the observed range), which

we use as an estimate of the difference between the 0.975 and 0.025 percentiles of G0, with

the midrange value used as a rough estimate of the median of G0. This results in two

equations with two unknowns, which are the elements of ψ. The solutions are taken to be

the means of the exponential priors for w and s, or for m and w. Note that this approach

requires only a plausible range of LET values, which, in general, can be obtained from a

device expert prior to conducting the experiment.

3.4. Model comparison
For each data set we study two versions of the DP-based semiparametric model (using the

Weibull and lognormal centering distributions), and for each model we have two different

priors (uniform and gamma) for the DP precision parameter.

We also consider the parametric Weibull and lognormal fits to the data, using the same

priors for σ0 and ψ specified earlier. The posterior distribution, p(σ0,ψ | D) (ψ = (w, s) or

(m,w)) under these parametric models can be sampled using straightforward Metropolis-

Hastings algorithms. Predictive inference under the two parametric models is similarly
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straightforward.

In Section 4, we perform empirical comparison of the two commonly used parametric

models with the more general semiparametric model. To supplement graphical comparison

with more formal model comparison, we use a cross-validation posterior predictive criterion

based on the log-pseudo marginal likelihood (LPML) statistic (Geisser and Eddy, 1979).

In general, let M1 and M2 be two models which are to be compared based on available

data D = {yj : j = 1, ..., N}, and denote by pr(· | D) the posterior predictive density under

model Mr, r = 1, 2. The conditional predictive ordinate (CPO) for observation yj under

model Mr is given by CPOr,j = pr(yj | D(j)), where D(j) denotes the (N − 1)-dimensional

data vector resulting from D with yj removed. The ratio CPO1,j/CPO2,j describes how

well model M1 supports the observation yj relative to model M2, based on the remaining

data D(j). The LPML statistic under model Mr is given by N−1
∑N

j=1 log{pr(yj | D(j))},

and it provides an aggregate “leave-one-out” cross-validation measure of model predictive

utility.

In our context, the LPML statistic offers a natural choice for model comparison, since

good predictive performance of a postulated model for the cross-section vs. LET curve is

essential for reliable inference of the upset rate distribution. In particular, given the avail-

ability of repeated measurements at each LET value for the data from device A, we also

consider “block” cross-validation. Under this approach, the LPML statistic is computed

from CPO∗
ij = p(cij | (fij , ℓj), D

∗
(j)), where D∗

(j) is the reduced data vector resulting from

removing the entire block of observations {cij : i = 1, ..., nj} for each LET value ℓj . Ar-

guably, the “block” cross-validation strategy provides a more general test for the models

under consideration, since it emphasizes predictive performance at new (unobserved) values

over the LET space.

Given the small sample sizes for our data, computing for the LPML statistic is feasible

using directly the definition of the CPOs. Alternatively, CPO computing is possible using

the MCMC output from the fit of the model to the full data vector. The relevant technical

details for the semiparametric model can be found in Appendix C. The latter approach is

more efficient, but requires careful implementation to avoid numerical instabilities.

The predictive performance of the parametric and semiparametric models is assessed in

Section 4 using the estimated CPO values and the corresponding LPML statistics.

4. Results

In Sections 4.1 and 4.2 we present inference results for cross-section vs. LET responses for

the two devices under the semiparametric model, discuss the sensitivity of the responses to

our modelling assumptions, and study how the semiparametric model compares with the

parametric models.

4.1. Device A
Figure 2 shows the DP fit of the cross-section vs. LET curve under the Weibull centering

distribution for both the gamma and uniform priors for α, together with the prior and

posterior densities for α. The posterior mean cross-section is very similar for the two
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priors for α, however, the 95% intervals differ – substantially when extrapolating above

the highest observed LET. We also note that the 95% intervals become wider between the

observations. There is a small amount of learning for α, with the posterior distribution

under the uniform prior favoring larger values (corresponding to less divergence from the

centering distribution). This is consistent with the extrapolation results. The cross-section

results were found to be insensitive to the priors on σ0 and ψ (= (w, s)).

Figure 3 (left panel) shows the parametric Weibull and lognormal fits. It can be seen

clearly that the choice of parametric function can have a large impact on the estimated cross-

section vs. LET curve. We note also that the parametric models underestimate the cross-

section uncertainty between the observed LETs. The semiparametric model is expected to

be much less sensitive to the choice of centering distribution. Figure 4 (left panel) shows

the estimated cross-section vs. LET for the semiparametric model based on the lognormal

centering distribution. While the posterior mean estimate for the cross-section vs. LET

curve is rising slowly for large LET values, the difference between the two semiparametric

models is much smaller than for the parametric models. Learning for α is again relatively

weak, although in this case, under both priors for α, the posterior densities (figure 4,

right panel) favor smaller values. This suggests that the data provide less support to the

lognormal parametric model than the Weibull model.

These observations are confirmed by the LPML values given in Table 3. Under each of

the “leave-one-out” or the “block” cross-validation approaches (discussed in Section 3.4),

the LPML values for all the semiparametric models are very similar, demonstrating the

insensitivity with respect to the centering distribution. Under both cross-validation settings,

the semiparametric modelling approach outperforms the parametric models. In particular,

its predictive power is highlighted by the “block” cross-validation LPML results, where the

lognormal parametric model fares significantly worse, as would be expected considering the

results in the left panel of Figure 3.

4.2. Device B
Figure 5 shows the semiparametric fits based on the Weibull and lognormal centering dis-

tribution for the two prior specifications for α. The inference for the cross-section curve is

very similar for the two α priors, and the two centering distributions; the only noticeable

difference is the somewhat larger posterior uncertainty in the extrapolation region under

the Weibull choice for G0. In general, inference is dominated by the sparsity of the data –

the small number of counts at each LET value results in wide posterior probability intervals.

As with the device A data, the posterior densities for α (not shown) depicted a relatively

small amount of learning for the DP precision parameter.

Figure 3 (right panel) shows the Weibull and lognormal parametric estimates of the

cross-section vs. LET curve. There is again a larger difference between the two parametric

estimates than the semiparametric models centered on the same parametric forms; however,

that difference is less emphatic than in the results for the device A data. The robustness

of the DP-based semiparametric predictive inference is confirmed by the LPML values in

Table 4. We note, however, that for this data set the parametric models yield slightly larger

LPML values, indicating that adequate prediction can be obtained from a simpler model,
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provided the parametric form for the cross-section curve is appropriate for the data.

5. Modelling Extension for Random Fluences

The model considered so far has assumed that the fluences, fi, are measured without error.

However, the dosimetry in heavy-ion accelerator facilities is not perfect. The traditional

assumption by practitioners was that up to 10% error in the dosimetry was to be expected

(e.g., Ladbury et al., 2004). A number of recent papers have shown, however, that this

may in fact be over-conservative. For instance, Morris and Foster (2010) analyse data sets

which show between 10% and 25% error in the fluence, and Petersen (2010) finds fluence

errors between 7.3% and 93%. On the other hand, Morris and Foster (2011) analyse data

for which the fluence is especially well controlled, and find an error of only 3%. It is useful

therefore to expand the statistical model of Section 3 to allow for random fluences. Section

5.1 presents such an extension, and in Section 5.2, we discuss the corresponding results for

the data from the two devices.

5.1. The modelling approach
We focus on the setting that involves a single count ci for each distinct LET value ℓi (as for

device B), and denote by f∗
i , i = 1, . . . , N , the corresponding unobserved (random) fluences,

which now become part of the parameter vector for the full model. The approach is similar

for the data set from device A, which includes repeated counts for each LET value and thus

additional parameters f∗
ij , i = 1, ..., nj, j = 1, ..., p, for the random fluences.

The extension of the modelling framework of Section 3.1 requires a joint likelihood spec-

ification for the (fi, ci), i = 1, ..., N . We retain the Poisson distribution for the upset counts,

ci, and add an inverse gamma distribution for the observed fluences, fi, with parameters

for both distributions that depend on the f∗
i . Specifically,

(fi, ci) | f
∗
i , σ0, G(·), φ

ind.
∼ inv-gamma(fi;φ, φf

∗
i ) Poisson(ci; f

∗
i σ0G(ℓi)), i = 1, ..., N (7)

where inv-gamma(a, b) denotes the inverse gamma distribution with mean b/(a− 1) (pro-

vided a > 1). The Poisson specification for the upset counts is similar to the one in Section

3.1, where now the means in (1) are specified through the random fluences. The choice of

the inverse gamma distribution for the observed fluences, along with gamma priors for the

random fluences, facilitates MCMC posterior simulation. Moreover, under the particular

parametrization for the distribution of the fi, given f∗
i and φ, we obtain the fixed fluence

model of Section 3.1 as a special limiting case. Note that E(fi | f
∗
i , φ) = f∗

i /(1− φ−1) and

Var(fi | f
∗
i , φ) = φ2(f∗

i )
2/{(φ − 1)2(φ − 2)}, and thus, as φ → ∞, the distribution for fi

reduces to a point mass at fi = f∗
i , for each i = 1, ..., N .

The part of the model that involves the cross-section vs. LET curve remains unchanged,

that is, we keep the same priors as before for σ0, G(·), and the DP parameters. Although

the first-stage inverse gamma distribution for fluence measurement uncertainty does not

depend on LET, we assign (independent) gamma(a∗i , b
∗
i ) priors to the f∗

i with parameters

specific to the LET value ℓi. Based on the discussion above regarding the range of values
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of fluence error observed in typical data sets, the prior for the fluence should be sufficiently

diffuse to support both moderate and large dosimetry errors. For the results reported in

Section 5.2, we specified the priors for the f∗
i using the observed fluences, but, in general,

eliciting from the device expert a rough LET-specific range of plausible fluence values would

suffice for the analysis. Finally, parameter φ controls the dispersion of the inverse gamma

distribution for the observed fluences. For a generally applicable prior choice for φ, it is

useful to note that the joint model for (fi, ci) and f∗
i , implied by (7) and the gamma(a∗i , b

∗
i )

prior for f∗
i , can also be written proportional to the Poisson(ci; f

∗
i σ0G(ℓi)) model with a

gamma(φ+ a∗i , b
∗
i +φf−1

i ) distribution for f∗
i . If we further consider the limiting version of

the gamma(a∗i , b
∗
i ) prior (with a∗i → 0+ and b∗i → 0+), we obtain a version of the standard

hierarchical Poisson model, that is, the negative Binomial response distribution for the ci
when the f∗

i are integrated out. This connection with hierarchical Poisson generalized linear

models facilitates the prior choice for the precision parameter φ; in particular, for the results

of Section 5.2, we used the prior p(φ) = (1 + φ)−2, φ > 0 (as in, e.g., Albert, 1988).

Under the above formulation for the DP-based model with random fluences, the joint

posterior distribution for σ0, (θ, α,ψ), φ, and {f∗
i : i = 1, ..., N} is proportional to

σ
∑

N
i=1

ci
0

N
∏

i=1

{

(f∗
i θi)

ci exp (−σ0f
∗
i θi)

(φf∗
i )

φ

Γ(φ)
f
−(φ+1)
i exp

(

−
φf∗

i

fi

)}

×

(

N
∏

i=1

gamma(f∗
i ; a

∗
i , b

∗
i )

)

× p(σ0)p(φ)p(θ | α,ψ)p(α)p(ψ),

where p(θ | α,ψ) is the DP induced prior for the θi = G(ℓi), i = 1, ..., N , given in (4), and

p(φ), p(σ0), p(α), p(ψ) denote the prior densities for the respective parameters.

The approach to MCMC posterior simulation follows closely the corresponding MCMC

method for the model with fixed fluences (given in Appendix A). Updating α and ψ pro-

ceeds exactly as before, and updating σ0 and the θi, given the f∗
i , involves replacing fi with

f∗
i . The additional sampling that is required is for the f∗

i , i = 1, ..., N , and for φ. The latter

parameter is sampled with a Metropolis-Hastings step; the former parameters can be sam-

pled directly, since the posterior full conditional of each f∗
i is given by a gamma distribution

with shape parameter a∗i + ci + φ, and rate parameter b∗i + σ0θi + φf−1
i . Finally, posterior

predictive inference for the cross-section vs. LET curve is again based on interpolation (and

extrapolation) for the random cdf G(·), which proceeds exactly as detailed in Appendix B.

5.2. Results

For the data illustrations, we consider only the gamma prior for α (predictive inference

for the cross-section function was similar under the uniform prior). Regarding the gamma

priors for the random fluence parameters, we used the observed fluence values to specify their

effective range. In particular, for device A, for each LET value ℓj, j = 1, ..., 4, the parameters

of the prior for the f∗
ij , i = 1, ..., nj, were chosen to yield a gamma distribution with most of

its probability mass in (0.25min{fij}, 2max{fij}). For device B, the gamma prior for f∗
i ,

corresponding to LET value ℓi, had most of its mass in (0.25fi, 2.5fi), i = 1, ..., 7. Again, we
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also report results under the parametric Weibull and lognormal models which were extended

to incorporate random fluences in the same fashion as with the DP semiparametric model.

Considering first device A, Figure 6 (left panel) includes the inference results for the

cross-section vs. LET curve under the semiparametric modelling approach. The model is

relatively invariant to the choice of the centering distribution, the main difference being in

the uncertainty bands between the second and third LET values and in the extrapolation

region. Posterior uncertainty is overall greater than the fixed fluence case, and there is also

a smaller amount of reduction in the uncertainty of the cross-section at the LET values

at which data was recorded (contrast with the left panel of Figures 2 and 4). Posterior

uncertainty has increased more significantly under the parametric models (Figure 6, right

panel), for which the main observation is that, as in the fixed fluence case, the parametric

lognormal estimate is substantially different from the parametric Weibull estimate. The

posterior densities for the random fluences were, in general, similar under the two different

centering distributions for the DP-based model. For all f∗
ij , the posterior density was

significantly concentrated relative to the corresponding prior density, thus suggesting a fair

amount of learning for the random fluence parameters. The majority of the observed fij
were near the mode of the posterior densities for the corresponding f∗

ij , but a few were

well into the tails. The left panel of Figure 8 shows, under the DP model with the Weibull

centering distribution, prior and posterior densities for a representative subset of the f∗
ij ;

the order of the observed fluences within each LET value follows from Table 1.

Turning to results for device B, due to the sparsity of the data, the difference between

the semiparametric and parametric estimates is smaller than for the device A data. This is

illustrated in Figure 7, which compares the estimated cross-section vs. LET for the semipara-

metric model with the Weibull or lognormal centering distributions with the corresponding

parametric models. Under the Weibull centering distribution for the DP-based model, Fig-

ure 8 (right panel) plots prior and posterior densities for the random fluences, all of which

include the observed fluences. Compared to the results for device A, there was a smaller

amount of prior to posterior learning for the f∗
i , although for all seven LET values the

posterior density was less dispersed than the prior density.

Regarding the precision parameter φ, inference under the DP semiparametric model was

very robust to the choice of the centering distribution. Under the Weibull choice for G0,

posterior mean and 90% interval estimates were given by 49.29 and (24.15, 81.80) for device

A, and by 25.78 and (3.36, 76.43) for device B. Note that under the (1 + φ)−2 prior for φ,

essentially all the prior probability mass is placed in (0, 25). Hence, there was substantial

prior to posterior learning for φ, which suggests that, even with sparse data, the magnitude

of the uncertainty in the fluences can be reasonably well determined.

Finally, we report results on predictive inference for on-orbit upset rates, following the

approach discussed in Section 3.2. We consider a nominal low-Earth orbit (450km altitude,

51.6 deg inclination, solar minimum, 100 mils aluminum shielding). In this orbit protons will

also contribute to the upset rate; here, we consider only the contribution due to heavy-ion

radiation. Under each of the models entertained in the earlier analyses, and for each of the

two devices, Figure 9 plots the posterior densities for on-orbit upset rates. For device A, the

semiparametric models give similar on-orbit upset distributions, with the posterior density
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based on the Weibull centering distribution having thicker right tail. The distributions from

the parametric models are both centered at larger values of on-orbit upset rate. However,

for device B, as expected from the inference results for the cross-section curve, there is

closer agreement in the estimated on-orbit upset rates between all the models.

6. Discussion

We have presented a Bayesian approach to modelling the cross-section vs. LET response of

microelectronic parts that are candidates for use in space. The methodology was based on

a semiparametric isotonic regression model for count responses, using a Dirichlet process

prior for the monotonically increasing regression function. We have expanded the modelling

approach in a hierarchical fashion to include uncertainty in the fluence measurements, and

showed the effect of this on the predicted on-orbit upset rate distributions.

Prediction of the on-orbit upset rate for the microelectronic device is the key engineering

problem that motivated this work. To improve upon standard practice in the parts testing

literature, we have focused on flexible statistical modelling for the cross-section vs. LET

responses. Physical modelling aspects have been limited to the monotonicity restriction for

the cross-section curve as well as device-specific information to guide prior choice for the

limiting cross-section parameter. As a consequence, a possible criticism for the approach

revolves around the posterior realizations for the cross-section vs. LET curve, which may be

physically implausible. In particular, the estimated responses for device A show inflexions

at the observed LET values (left panel of Figure 2 and 4) although their extent is reduced

under the more general model with random fluence (Figure 6, left panel). This aspect of the

posterior inference for the cross-section curve is an artifact of the DP prior, exacerbated by

the repeated measurements at each LET value. We note however that widening posterior

uncertainty bands between the observations is a general characteristic of nonparametric

priors and not specific to the DP prior. An improved model for the cross-section curve,

more strongly based on the physics of upsets, may help alleviate this issue.

The feature of the proposed semiparametric model for the cross-section curve is that it is

less sensitive to modelling assumptions than parametric methods. In particular, when one

of the commonly used parametric models is sufficient for the data, the nonparametric prior

will result in similar inferences, typically, at the expense of (somewhat) larger uncertainty

(compare the two panels in Figure 7). However, in general, the semiparametric model yields

more robust predictive inference, especially, for extrapolation (contrast the two panels in

Figure 6), including prediction for the scientifically relevant on-orbit upset rate.
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Appendix A: Posterior simulation method for the semiparametric model

Here, we provide details on MCMC posterior inference for the DP-based semiparametric

model of Section 3.1. We focus on the scenario where there is a single count ci for each

distinct LET value ℓi, i = 1, . . . , N (as in the data for device B). The extension to the

repeated measurements case (device A) is straightforward.

Therefore, based on the likelihood in (5) and the prior in (4), and under, say, the Weibull

centering distribution in (2), the joint posterior distribution can be expressed as

p(σ0, θ, α, w, s | D) ∝ σ
∑

N
i=1

ci
0 exp(−σ0

∑N

i=1
fi θi)

N
∏

i=1

θcii

×
Γ(α)

∏N+1
i=1 Γ(di)

θd1−1
1 (θ2 − θ1)

d2−1 . . . (θN − θN−1)
dN−1(1− θN )dN+1−1

× p(σ0)p(α) exp(−bww) exp(−bss),

where p(σ0) and p(α) are the prior densities for σ0 and α, respectively (the prior choices

for σ0, α and ψ = (w, s) were discussed in Section 3.3). Moreover, θi = G(ℓi), i = 1, ..., N ,

and the di, i = 1, ..., N +1, are defined in Section 3.1; note that the di depend on DP prior

hyperparameters α and ψ.

The posterior full conditional for σ0 is given by a gamma distribution under an exponen-

tial prior for σ0, and by a truncated gamma distribution over (0, σmax) under the uniform

prior on (0, σmax) for σ0.

The DP prior hyperparameters enter the expression of the posterior distribution in a

complex fashion that does not allow direct sampling. We update ψ = (w, s) with a random

walk Metropolis-Hastings step based on a bivariate normal proposal on the logarithmic

scale. We use an analogous Metropolis-Hastings step for the DP precision parameter α. Our

implementation resulted in acceptance rates between 25% and 30% for ψ and α, respectively,

with relatively low autocorrelation.

Updating the parameters in θ is the most challenging aspect of the posterior simula-

tion approach. Even with carefully chosen and tuned proposal distributions, a Metropolis-

Hastings step for the entire vector θ proved to be impractical. We instead use slice sampling

(e.g., Damien, Wakefield and Walker, 1999; Neal, 2003) for each component of θ. This ap-

proach yields readily implemented automatic updates for each θi as described below. The

resulting posterior samples are heavily correlated, but this can be controlled with appropri-

ate levels of thinning of the MCMC output.

The posterior full conditional for θ1 is given by

p(θ1 | θ2, σ0, α,ψ, D) ∝ θc1+d1−1
1 exp(−σ0f1θ1)(θ2 − θ1)

d2−1
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and, therefore, we can introduce latent variables u1 and u2, each defined on R
+, such that

p(θ1, u1, u2 | θ2, σ0, α,ψ, D) ∝ exp(−σ0f1θ1)I
{

u1 < θc1+d1−1
1

}

I
{

u2 < (θ2 − θ1)
d2−1

}

.

Now, the MCMC algorithm is extended to draw from the full conditionals for u1, u2, and θ1,

arising from p(θ1, u1, u2 | θ2, σ0, α,ψ, D). The full conditional distributions for u1 and u2 are

uniform over (0, θc1+d1−1
1 ) and (0, (θ2 − θ1)

d2−1), respectively. The full conditional for θ1 is

given by an Exp(σ0f1) distribution truncated such that u
(c1+d1−1)−1

1 < θ1 < θ2−u
(d2−1)−1

2 ,

if d2 > 1, or θ1 > max{u
(c1+d1−1)−1

1 , θ2 − u
(d2−1)−1

2 }, if 0 < d2 < 1. The truncated

exponential conditional for θ1 can be efficiently sampled using the inverse cdf method.

Next, for each i = 2, ..., N − 1, the posterior full conditional for θi,

p(θi | θi−1, θi+1, σ0, α,ψ, D) ∝ θcii exp(−σ0fiθi)(θi − θi−1)
di−1(θi+1 − θi)

di+1−1.

We now introduce R
+-valued latent variables v1, v2, and v3, such that

p(θi, v1, v2, v3 | θi−1, θi+1, σ0, α,ψ, D) ∝ exp(−σ0fiθi)I {v1 < θcii }×

I
{

v2 < (θi − θi−1)
di−1

}

I
{

v3 < (θi+1 − θi)
di+1−1

}

,

which leads to Unif(0, θcii ), Unif(0, (θi − θi−1)
di−1), and Unif(0, (θi+1 − θi)

di+1−1) full con-

ditionals for v1, v2, and v3, respectively. Moreover, the full conditional for θi is truncated

Exp(σ0fi), where:

• max
(

v
c−1

i

1 , θi−1 + v
(di−1)−1

2

)

< θi < θi+1 − v
(di+1−1)−1

3 , if di > 1 and di+1 > 1

• max
(

v
c
−1

i

1 , θi−1 + v
(di−1)−1

2 , θi+1 − v
(di+1−1)−1

3

)

< θi, if di > 1 and di+1 < 1

• v
c
−1

i

1 < θi < min
(

θi−1 + v
(di−1)−1

2 , θi+1 − v
(di+1−1)−1

3

)

, if di < 1 and di+1 > 1

• max
(

v
c
−1

i

1 , θi+1 − v
(di+1−1)−1

3

)

< θi < θi−1 + v
(di−1)−1

2 , if di < 1 and di+1 < 1.

Finally, the posterior full conditional for θN ,

p(θN | θN−1, σ0, α,ψ, D) ∝ θcNN exp(−σ0fNθN )(θN − θN−1)
dN−1(1− θN )dN+1−1

is augmented with R
+-valued latent variables z1, z2, and z3, to

p(θN , z1, z2, z3 | θN−1, σ0, α,ψ, D) ∝ exp(−σ0fNθN )I {z1 < θcNN }×

I
{

z2 < (θN − θN−1)
dN−1

}

I
{

z3 < (1− θN )dN+1−1
}

.

Here, the full conditionals for z1, z2, and z3 are Unif(0, θcNN ), Unif(0, (θN − θN−1)
dN−1),

and Unif(0, (1 − θN )dN+1−1), respectively, and the full conditional for θN is a truncated

Exp(σ0fN ) distribution, where

• max
(

z
c
−1

N

1 , θN−1 + z
(dN−1)−1

2

)

< θN < 1− z
(dN+1−1)−1

3 , if dN > 1 and dN+1 > 1
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• max
(

z
c
−1

N

1 , θN−1 + z
(dN−1)−1

2 , 1− z
(dN+1−1)−1

3

)

< θN , if dN > 1 and dN+1 < 1

• z
c
−1

N

1 < θN < min
(

θN−1 + z
(dN−1)−1

2 , 1− z
(dN+1−1)−1

3

)

, if dN < 1 and dN+1 > 1

• max
(

z
c
−1

N

1 , 1− z
(dN+1−1)−1

3

)

< θN < θN−1 + z
(dN−1)−1

2 , if dN < 1 and dN+1 < 1.

Appendix B: Predictive inference for the cross-section vs. LET curve

This section develops the approach to posterior predictive inference for the cross-section

curve at values within or outside the range of observed LET values.

Consider first prediction at new LET values, ℓ̃ = (ℓ̃1, . . . , ℓ̃M ), such that ℓi < ℓ̃1 < · · · <

ℓ̃M < ℓi+1, for any i = 1, . . . , N − 1. The full model, including the corresponding new θ̃m =

G(ℓ̃m), m = 1, ...,M , can be written as

p(σ0, θ̃, θ, α,ψ | D) ∝ p(θ̃, θ | α,ψ)p(σ0)p(α)p(ψ)
N
∏

i=1

Poisson(ci; fiσ0θi)

= p(θ̃ | θ, α,ψ)p(σ0, θ, α,ψ | D),

where θ̃ = (θ̃1, . . . , θ̃M ), and p(θ̃, θ | α,ψ) is the joint prior for (θ̃, θ) induced by the DP

prior for G(·), with density that extends the form for p(θ | α,ψ) in (4). Specifically,

p(θ̃, θ | α,ψ) =
Γ(α)

Γ(d′i+1)
∏N+1

n=1
n6=i+1

Γ(dn)
∏M

m=1 Γ(d̃m)
θd1−1
1 (θ2 − θ1)

d2−1 . . . (θi − θi−1)
di−1

× (θ̃1 − θi)
d̃1−1(θ̃2 − θ̃1)

d̃2−1 . . . (θ̃M − θ̃M−1)
d̃M−1(θi+1 − θ̃M )d

′

i+1−1

× (θi+2 − θi+1)
di+2−1 . . . (θN − θN−1)

dN−1(1− θN )dN+1−1, (8)

where d′i+1 = α(G0(ℓi+1;ψ) − G0(ℓ̃M ;ψ)), d̃1 = α(G0(ℓ̃1;ψ) − G0(ℓi;ψ)), and for m =

2, . . . ,M , d̃m = α(G0(ℓ̃m;ψ) − G0(ℓ̃m−1;ψ)). Moreover, the di, i = 1, ..., N + 1, are as

defined in Section 3.1.

Hence, p(θ̃ | D) =
∫

p(θ̃ | θ, α,ψ)p(σ0, θ, α,ψ | D) dσ0dθdαdψ, and therefore, using

Monte Carlo integration based on the posterior draws from p(σ0, θ, α,ψ | D), we can sample

p(θ̃ | D) by additional sampling from p(θ̃ | θ, α,ψ).

Using the expressions for p(θ | α,ψ) and p(θ̃, θ | α,ψ) in (4) and (8), respectively, and

the fact that di+1 = d′i+1 +
∑M

m=1 d̃m, the density for p(θ̃ | θ, α,ψ) can be obtained as

Γ(di+1)(θi+1 − θi)
−M

Γ(d′i+1)
∏M

m=1 Γ(d̃m)

(

θ̃1 − θi
θi+1 − θi

)d̃1−1

· · ·

(

θ̃M − θ̃M−1

θi+1 − θi

)d̃M−1(

θi+1 − θ̃M
θi+1 − θi

)d′

i+1−1

.

Hence, p(θ̃ | θ, α,ψ) can be readily sampled, since the density above corresponds to random

vector (θi + (θi+1 − θi)ω1, . . . , θi + (θi+1 − θi)ωM ), where (ω1, . . . , ωM ) follows an ordered

Dirichlet distribution with parameters (d̃1, . . . , d̃M , d′i+1).
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We next turn to extrapolation for the cross-section vs. LET curve beyond the largest ob-

served LET value. Consider prediction at new LET values ℓ′ = (ℓ′1, . . . , ℓ
′
M ), such that ℓN <

ℓ′1 < ··· < ℓ′M . The model augmented with ℓ′ and the corresponding θ′ = (θ′1, ..., θ
′
M ), where

θ′m = G(ℓ′m), m = 1, ...,M , becomes p(σ0, θ
′, θ, α,ψ | D) = p(θ′ | θ, α,ψ)p(σ0, θ, α,ψ |

D). In this case, p(θ′ | θ, α,ψ) can be recognized as the density for random vector

(θN + (1 − θN )ω1, . . . , θN + (1 − θN )ωM ), where (ω1, . . . , ωM ) has an ordered Dirichlet

distribution with parameters (d′1, . . . , d
′
M , d′M+1). Here, d′1 = α (G0(ℓ

′
1;ψ)−G0(ℓN ;ψ)),

d′m = α
(

G0(ℓ
′
m;ψ)−G0(ℓ

′
m−1;ψ)

)

, m = 2, . . . ,M , and d′M+1 = α (1−G0(ℓ
′
M ;ψ)), such

that dN+1 =
∑M+1

m=1 d′m.

Finally, extrapolation in the region below the smallest observed LET value is obtained

in a similar fashion. Consider prediction at new LET values ℓ′′ = (ℓ′′1 , . . . , ℓ
′′
M ), such that

ℓ′′1 < · · · < ℓ′′M < ℓ1. Let θ′′ = (θ′′1 , ..., θ
′′
M ), where θ′′m = G(ℓ′′m), for m = 1, ...,M , and

d′′1 = αG0(ℓ
′′
1 ;ψ), d′′m = α

(

G0(ℓ
′′
m;ψ)−G0(ℓ

′′
m−1;ψ)

)

, for m = 2, . . . ,M , and d′′M+1 =

α (G0(ℓ1;ψ)−G0(ℓ
′′
M ;ψ)), such that d1 =

∑M+1
m=1 d′′m. Then, the required conditional den-

sity, p(θ′′ | θ, α,ψ), corresponds to the distribution of random vector (θ1ω1, . . . , θ1ωM ),

where (ω1, . . . , ωM ) has an ordered Dirichlet distribution with parameters (d′′1 , . . . , d
′′
M , d′′M+1).

Appendix C: CPO estimation

Here, we develop an efficient approach to estimating the CPOs and the LPML statistic,

discussed in Section 3.4. We discuss the approach for the setting where there is a single

observation at each distinct LET value; only changes in notation are needed for the setting

that involves repeated measurements at each LET value.

CPO statistics can be estimated across a wide variety of hierarchical models, using

the MCMC output from the fit of the model to the full data vector (see, e.g., Chen,

Shao and Ibrahim, 2000). By definition, under the parametric Weibull model, CPOi =
∫

Poisson(ci; fiσ0{1−exp(−(ℓi/w)
s)})p(σ0, w, s | D(i)) dσ0dwds, whereD(i) = {(ci′ , fi′ , ℓi′) :

i′ 6= i}. It is straightforward to show that

CPOi =

{
∫

1

Poisson(ci; fiσ0{1− exp(−(ℓi/w)s)})
p(σ0, w, s | D) dσ0dwds

}−1

, i = 1, ..., N.

A similar expression can be obtained for the parametric lognormal model.

Turning to the DP-based model of Section 3.1, for any specified i = 1, ..., N , let

p(σ0, θ(i), α,ψ | D(i)), where θ(i) = {θi′ : i′ 6= i}, be the posterior distribution based

on reduced data vector D(i) = {(ci′ , fi′ , ℓi′) : i
′ 6= i}. Moreover, denote by J and K the nor-

malizing constants for posterior distributions p(σ0, θ, α,ψ | D) and p(σ0, θ(i), α,ψ | D(i)),

respectively.

Using a derivation similar to the one in Appendix B (the interpolation approach for ℓi
with i = 2, ..., N − 1, and the extrapolation approach for ℓ1 and ℓN ), the cross-validation
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predictive density for the i-th observation can be written as

p(zi | (fi, ℓi), D(i)) =

∫

Poisson(zi; fiσ0θi)p(θi | θ(i), α,ψ)p(σ0, θ(i), α,ψ | D(i))dσ0dθdαdψ,

where p(θi | θ(i), α,ψ) is a rescaled Beta distribution.

By definition, CPOi = p(ci | (fi, ℓi), D(i)), and therefore we have

CPOi = K−1
∫

Poisson(ci; fiσ0θi)p(θi | θ(i), α,ψ)
(

∏

{i′ 6=i} Poisson(ci′ ; fi′σ0θi′)
)

p(θ(i) | α,ψ)p(σ0)p(α)p(ψ) dσ0dθdαdψ

= K−1
∫

(

∏N

j=1 Poisson(cj ; fjσ0θj)
)

p(θ | α,ψ)p(σ0)p(α)p(ψ) dσ0dθdαdψ

= K−1J.

Next, for CPO−1
i = KJ−1, we obtain

CPO−1
i = J−1

∫

(

∏

{i′ 6=i} Poisson(ci′ ; fi′σ0θi′)
)

p(θ(i) | α,ψ)p(σ0)p(α)p(ψ) dσ0dθ(i)dαdψ

= J−1
∫

(

∏

{i′ 6=i} Poisson(ci′ ; fi′σ0θi′)
)

(∫

p(θ | α,ψ) dθi
)

p(σ0)p(α)p(ψ) dσ0dθ(i)dαdψ

= J−1
∫

(

∏

{i′ 6=i} Poisson(ci′ ; fi′σ0θi′)
)

p(θ | α,ψ)p(σ0)p(α)p(ψ) dσ0dθdαdψ

= J−1
∫

(Poisson(ci; fiσ0θi))
−1
(

∏N

j=1 Poisson(cj ; fjσ0θj)
)

p(θ | α,ψ)p(σ0)p(α)p(ψ) dσ0dθdαdψ

=
∫

(Poisson(ci; fiσ0θi))
−1p(σ0, θ, α,ψ | D) dσ0dθdαdψ.

Finally, noting that in the expression above all parameters other than σ0 and θi can be

marginalized from the joint posterior distribution, we obtain

CPOi =

{
∫

1

Poisson(ci; fiσ0θi)
p(σ0, θi | D) dσ0dθi

}−1

, i = 1, ..., N,

which can be computed using a Monte Carlo estimate from samples of the parameters

already generated by MCMC.
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Table 1. Test data for the MC7447AT PowerPC. The counts are of the
0 → 1 upsets in the cache bits. Data courtesy JPL.

LET (MeV · cm2/mg) fluence (×103) counts

1.7 3000, 10000,

30000

14, 66, 263

3.5 30000, 30000,

30000, 30000,

27600, 36000

1721, 1722, 1291,

1342, 1007, 1350

9.5 450, 300, 300,

300, 300, 300,

2000, 2000, 2000,

1750, 2000, 2000

161, 109, 114,

114, 118, 131,

696, 766, 632,

524, 690, 688

13.9 2000, 2000, 2000 800, 691, 748

Table 2. Test data for the XQR4VLX200 FPGA device.
The counts are for the POR SEFI failure mode. Data
courtesy Xilinx.

LET (MeV · cm2/mg) fluence (×103) counts

2 100000 6

4 100000 11

6.8 50000 11

16.9 19400 10

22 10000 6

30 13400 19

90.3 9180 28
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Table 3. Results for the LPML model comparison criterion for device A.
Device A, “leave-one-out” cross-validation Device A, “block” cross-validation

Model Specification LPML Model Specification LPML

Semiparametric, G0 = Weibull, p(α) ∼ Γ -12.56 Semiparametric, G0 = Weibull, p(α) ∼ Γ -6.50

Semiparametric, G0 = Weibull, p(α) ∼ U -12.53 Semiparametric, G0 = Weibull, p(α) ∼ U -6.44

Semiparametric, G0 = lognormal, p(α) ∼ Γ -12.79 Semiparametric, G0 = lognormal, p(α) ∼ Γ -6.39

Semiparametric, G0 = lognormal, p(α) ∼ U -12.59 Semiparametric, G0 = lognormal, p(α) ∼ U -6.26

Parametric Weibull -13.50 Parametric Weibull -12.69

Parametric lognormal -18.31 Parametric lognormal -103.45

Table 4. Results for the LPML model comparison criterion
for device B.

Device B

Model Specification LPML

Semiparametric, G0 = Weibull, p(α) ∼ Γ -2.89

Semiparametric, G0 = Weibull, p(α) ∼ U -2.85

Semiparametric, G0 = lognormal, p(α) ∼ Γ -2.99

Semiparametric, G0 = lognormal, p(α) ∼ U -2.99

Parametric Weibull -2.53

Parametric lognormal -2.84
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Fig. 1. Experimental data obtained from particle accelerator experiments performed on two different
devices. Note that the cross-section for device A is per-bit, whereas for device B it is per-device.
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Fig. 2. Point estimates and 95% probability intervals, overlaid on the data, for the cross-section
vs. LET curve for device A under the DP model with a Weibull centering distribution (left panel).
Prior and posterior densities for α (right panel). Γ and U denote the gamma and uniform prior for α,
respectively.
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Fig. 3. Point estimates and 95% probability intervals, overlaid on the data, for the cross-section vs.
LET curve under the parametric models for device A (left panel) and device B (right panel).
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Fig. 4. Point estimates and 95% probability intervals, overlaid on the data, for the cross-section vs.
LET curve for device A under the DP model using a lognormal centering distribution (left panel). Prior
and posterior densities for α (right panel).
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Fig. 5. Point estimates and 95% probability intervals, overlaid on the data, for the cross-section vs.
LET curve for device B based on the DP model with a Weibull and a lognormal centering distribution
(left and right panels, respectively).
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Fig. 6. Device A, random fluence case. Point estimates and 95% probability intervals, overlaid on the
data, for the cross-section vs. LET curve under the DP model with a Weibull or lognormal centering
distribution (left panel) and under the corresponding parametric models (right panel).
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Fig. 7. Device B, random fluence case. Point estimates and 95% probability intervals, overlaid on the
data, for the cross-section vs. LET curve under the DP model with the Weibull or lognormal centering
distribution (left panel) and under the corresponding parametric models (right panel).
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Fig. 8. Prior and posterior densities for random fluences under the DP semiparametric model with the
Weibull centering distribution for device A (left panel) and device B (right panel). Each plot includes
the observed fluence for the corresponding measurement.
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Fig. 9. Posterior densities of the predicted on-orbit upset rates for device A and B (left and right
panels, respectively), using the two semiparametric models and the two parametric models with
random fluences.


