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Abstract: We develop a Bayesian nonparametric mixture modeling framework for replicated

count responses in dose-response settings. We explore this methodology for modeling and risk

assessment in developmental toxicity studies, where the primary objective is to determine the re-

lationship between the level of exposure to a toxic chemical and the probability of a physiological

or biochemical response, or death. Data from these experiments typically involve features that

can not be captured by standard parametric approaches. To provide flexibility in the functional

form of both the response distribution and the probability of positive response, the proposed

mixture model is built from a dependent Dirichlet process prior, with the dependence of the

mixing distributions governed by the dose level. The methodology is tested with a simulation

study, which involves also comparison with semiparametric Bayesian approaches to highlight

the practical utility of the dependent Dirichlet process nonparametric mixture model. Further

illustration is provided through the analysis of data from two developmental toxicity studies.
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1 Introduction

1.1 Background

Birth defects induced by toxic chemicals are investigated through developmental toxicity studies.

In these studies, at each experimental dose level, a number of pregnant laboratory animals (dams)

are exposed to the toxin and the number of resorptions (i.e., undeveloped embryos or early fetal

deaths) and/or prenatal deaths, the number of live pups, and the number of live malformed

pups from each dam are typically recorded. Additional outcomes measured on each of the live

pups may include body weight and length.

The main purpose of developmental toxicity studies is to examine the relationship between

the level of exposure to the toxin (dose level) and the probability of malformation (or, in general,

response). The dose-response curve is defined by the probability of an outcome across the dose

levels. Also of interest is quantitative risk assessment, which evaluates the probability that

adverse effects may occur as a result of the exposure to the substance. While the objectives of

the studies are clear, the resulting data are a veritable gold mine of statistical challenges. Many

of these difficulties arise from the inherent heterogeneity in the data due to the clustering of

individuals within a group and the variability of the reaction of the individuals to the toxin.

Another challenging feature of the data is associated with the multiple related outcomes, both

continuous (e.g., body weight) and discrete (e.g., number of malformations).

A variety of approaches for the analysis of developmental toxicity studies have been sug-

gested in the statistical literature. Modeling approaches based on standard parametric response

distributions and/or customary parametric forms for dose-response curves include Chen et al.

(1991), Catalano and Ryan (1992), Ryan (1992), Zhu et al. (1994), and Regan and Catalano

(1999). However, due to the various sources of heterogeneity, data from many studies indicate

vast departures from parametric models. A different line of research has focused on classical

semiparametric or likelihood estimation for the joint distribution of the vector of binary responses

associated with each dam under the assumption of exchangeability (e.g., Bowman and George,
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1995; George and Bowman, 1995; Kuk, 2004; Pang and Kuk, 2005). Although such approaches

provide more general modeling for the response distribution than traditional parametric models,

dose-response relationships are still introduced through parametric forms. Moreover, inferential

challenges include interpolation at unobserved dose levels (a key objective for risk assessment)

as well as uncertainty quantification for point estimates.

By comparison to likelihood and classical semiparametric approaches, Bayesian methods

have not been widely used for the analysis of developmental toxicity studies. Examples of

parametric Bayesian hierarchical models for toxicology data, comprising joint discrete-continuous

outcomes, include Dunson et al. (2003) and Faes et al. (2006). To our knowledge, the only

Bayesian semiparametric model is presented by Dominici and Parmigiani (2001), using a product

of mixtures of Dirichlet process prior structure.

1.2 Data examples

In a Segment II developmental toxicity experiment, ni pregnant dams are exposed to dose level,

xi, i = 1, . . . , N . Dam j = 1, . . . , ni at dose xi has mij implants, of which the number of

resorptions (rij) and prenatal deaths (dij) are typically recorded as Rij = rij + dij , and the

number of live pups at birth with a certain defect are recorded as y′ij . Consequently, the litter

size (the number of viable fetuses) for dam j at dose xi is mij −Rij . The outcomes from the jth

dam at dose level xi may be recorded as {(mij , yij) : i = 1, . . . , N, j = 1, . . . , ni}, where yij =

Rij + y′ij , or, more generally, as {(mij , Rij , y
′
ij) : i = 1, . . . , N, j = 1, . . . , ni}. The prevailing

data structure found in the statistical literature appears to be of the first type, where the random

variables involved are the number of implants and the sum of all negative outcomes.

Thus, each triplet of data (m, y, x), comprising the number of implants, number of negative

outcomes, and dose level, defines a particular dam. Two data sets commonly considered in

the statistical literature for developmental toxicity experiments are shown in Figure 1. The

left panel plots a data set from a toxicity study regarding the effects of the herbicide 2,4,5-

trichlorophenoxiacetic (2,4,5-T) acid (Holson et al., 1991). We work with the version of the data
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given in Table 3 of Bowman and George (1995), where the number of combined endpoints consists

of the number of resorptions and prenatal deaths, and the number of fetuses with cleft palate

malformation. The experiment considers N = 6 doses, one control and 5 active dose groups.

The number of animals per dose level ranges from 25 to 97 dams. The number of implants

ranges from 1 to 21 across all dams and all dose levels, with 25th, 50th and 75th percentiles

given by 10, 12 and 13, respectively. Based on exploratory analysis, the data suggest varying

departures from the Binomial model across the dose levels, indicating the need for a flexible

model to capture the evolution of the response distributions over the range of dose levels.
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Figure 1: Plots of the 2,4,5-T data (left panel) and the DEHP data (right panel). Each circle
corresponds to a particular dam, the size of the circle is proportional to the number of implants,
and the coordinates of the circle are the dose level and the proportion of combined negative
outcomes. Shown at the top of each panel is the number of animals per dose level. The online
version of this figure is in color.

The second data set (Figure 1, right panel) is from an experiment that explored the effects

of diethylhexalphthalate (DEHP), a commonly used plasticizing agent. It is known that these

plasticizers may leak in small quantities from plastic containers with various solvents such as

food or milk. The possibility of toxic effects from these agents have been recognized and tested in
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developmental toxicity studies such as the one described in Tyl et al. (1983). The DEHP study

is also discussed by Molenberghs and Ryan (1999), although they consider a different version

of the data set than the one available from the database of the National Toxicology Program

(which is the version we work with). Here, the combined endpoints include resorption, prenatal

death, and malformation of a live fetus (external, visceral or skeletal malformation).

The number of dams per dose level is about a third of those found in the 2,4,5-T data; the

number of implants across all dams and dose levels ranges from 4 to 18, with 25th, 50th, and

75th percentiles equal to 11, 13, and 14, respectively. Particularly noteworthy is the drop in

the proportions of combined negative outcomes from dose 0 to 25 mg/kg ×1000, which may

indicate a hormetic dose-response relationship. Hormesis refers to a dose-response phenomenon

characterized by favorable biological responses to low exposures to toxins, and thus by opposite

effects in small and large doses. For endpoints involving disease incidence (e.g., mutation, birth

defects, cancer), hormesis results in a J-shaped dose-response curve. Although the possibility of

different low dose effects is accepted, the suggestion of positive low dose effect is debated, hence,

hormesis is a controversial concept in the toxicological sciences (e.g., Calabrese, 2005). Notwith-

standing the ultimate scientific conclusions, to be able to uncover non-standard dose-response

relationships, we need a modeling framework for the dose-dependent response distributions which

enables flexible inference for the implied, possibly non-monotonic, dose-response curve.

1.3 Objectives and outline

To overcome the limitations of parametric approaches, and at the same time retain a fully infer-

ential framework, we develop a Bayesian nonparametric mixture model that provides flexibility

in both the response distribution and the dose-response relationship. We seek mixture modeling

for response distributions that are related across doses with the level of dependence driven by the

distance between the dose values. To this end, we consider a dependent Dirichlet process (DDP)

prior for the dose-dependent mixing distributions. Inference and prediction under DDP prior

structures requires replication, which arises through the number of dams observed at each dose
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level. The replicated count responses in conjunction with a nonparametric mixture of Binomial

distributions, induced at each dose value by the DDP mixture model, enable flexible inference for

the response distribution at any observed dose level. And, importantly, the dependence of the

DDP prior across dose levels allows data-driven prediction for collections of response distribu-

tions, as well as inference for the implied dose-response relationship, through interpolation (and

extrapolation) over any range of dose values of interest. We develop properties of the DDP model

that are key for the application to developmental toxicity studies. We discuss various forms of

inference that are available under the model, and design a Markov chain Monte Carlo (MCMC)

posterior simulation method to implement such inference. Traditional parametric dose-response

models are shown to be special (limiting) cases of the nonparametric DDP mixture model, which,

using simulated data sets, is also compared with simpler semiparametric Bayesian methods. In

particular, in the context of the simulation study, we provide comparison of the semiparametric

model from Dominici and Parmigiani (2001) with the proposed DDP model.

The outline of the paper is as follows. Section 2 develops the DDP mixture model, including

study of model properties and of the dose-response relationship, and methods for prior spec-

ification, MCMC posterior simulation and risk assessment inference. Section 3 introduces a

simulation study to test the performance of the model and to compare with alternative semi-

parametric Bayesian approaches. In Section 4, we present applications to the 2,4,5-T and DEHP

data. Section 5 concludes with discussion, including possible extensions of the methodology.

2 Methods

2.1 DDP Binomial mixture model

Under the Segment II toxicity study design, exposure occurs after implantation. Thus, following

standard arguments from the literature (e.g., Zhu et al., 1994), we treat the number of implants,

m, as a random quantity containing no information about the dose-response relationship. That

is, we assume m | κ ∼ f(m;κ), where κ are parameters of the implant distribution, which do
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not depend on x. Here, we assume a shifted Poisson distribution with support on m ≥ 1, that

is, f(m;λ) = e−λλm−1/(m−1)!, although more flexible distributions can be readily utilized. We

focus on the data structure that involves the number of implants, mij , and the corresponding

number of combined negative outcomes, yij , for dam j = 1, . . . , ni at dose level xi, i = 1, . . . , N.

(In Section 5, we discuss the model extension for the multicategory classification (mij , Rij , y
′
ij)

considered in Section 1.2.) With the assumption of an implant distribution that does not depend

on dose level, the modeling for the number of implants and the number of negative outcomes is

decomposed to f(m, y) = f(m)f(y | m). Therefore, inference for the parameters of the implant

distribution is carried out separately from inference for the parameters of the model for f(y | m).

We propose nonparametric mixture modeling for the response distribution given the number

of implants, using an extension of Dirichlet process (DP) mixing to incorporate the dependence

on the dose level. We use DP(α,G0) to denote the DP prior (Ferguson, 1973) defined in terms of a

centering (base) distribution G0, and precision parameter α > 0. Using its constructive definition

(Sethuraman, 1994), the DP generates countable mixtures of point masses with locations drawn

from the base distribution and weights defined by a stick-breaking process. Specifically, a random

distribution, G, drawn from DP(α,G0) has an almost sure representation as G(·) =
∑∞

l=1 ωlδηl(·),

where δa denotes a point mass at a, the ηl are i.i.d. from G0, and ω1 = ζ1, ωl = ζl
∏l−1
r=1(1− ζr)

for l ≥ 2, with ζl i.i.d. from a Beta(1,α) distribution (independently of the ηl).

To achieve modeling for the response distribution that allows nonparametric dependence

structure across dose levels, we represent f(y | m) as a mixture of Binomial distributions with

dose-dependent mixing distribution. Placing a DDP prior on the collection of mixing distribu-

tions {Gx : x ∈ X} (where X ⊆ R+), which are indexed by dose level x, yields the desired

nonparametric prior model for the collection of dose-dependent response distributions.

To define the DDP prior used in this paper, the (almost sure) DP representation is extended

to

GX (·) =

∞∑
l=1

ωlδηlX (·) (1)
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where the ηlX = {ηl(x) : x ∈ X} are i.i.d. realizations from a stochastic process G0X over X . A

key feature of the DDP prior is that for any finite collection of dose levels (x1, ..., xk) it induces

a multivariate DP prior for the corresponding collection of mixing distributions (Gx1 , ..., Gxk).

Therefore, the DDP prior model involves a countable mixture of realizations from stochastic

process G0X with weights matching those from the standard DP; this prior structure is referred

to as “single-p” DDP prior (MacEachern, 2000; DeIorio et al., 2004; Gelfand et al., 2005; Kottas

et al., 2008; Rodriguez and ter Horst, 2008; Kottas and Krnjajić, 2009).

Hence, we propose the following DDP prior mixture model

f(y | m;GX ) =

∫
Bin

(
y;m,

exp(θ)

1 + exp(θ)

)
dGX (θ), GX | α,ψ ∼ DDP(α,G0X ) (2)

where DDP(α,G0X ) denotes the DDP prior for GX =
∑∞

l=1 ωlδηlX with precision parameter

α and base stochastic process G0X that depends on parameters ψ; the full Bayesian model is

implemented with hyperpriors on α and ψ. The logistic transformation for the probability of

the Binomial kernel is used to facilitate the DDP prior formulation, in particular, we take G0X

to be a Gaussian process (GP) with a linear mean function, constant variance, and isotropic

power exponential correlation function. Therefore, for all l, E(ηl(x) | β0, β1) = β0 + β1x,

Var(ηl(x) | σ2) = σ2, and Corr(ηl(x), ηl(x
′) | φ) = exp(−φ|x − x′|d), with φ > 0 and (fixed)

d ∈ [1, 2] (and thus ψ = (β0, β1, σ
2, φ)). The linear mean function is key for flexible inference

about the dose-response relationship implied by model (2) (see Section 2.3). Moreover, as

discussed in Section 2.2, it enables connections with standard parametric dose-response models,

which arise as limiting cases of the DDP mixture model.

Regarding nonparametric Binomial mixtures, an early reference is Berry and Christensen

(1979), where the following hierarchical model was considered: yi | πi
ind.∼ Bin(yi;mi, πi); πi |

G
iid∼ G, for i = 1, ..., n; and G ∼ DP(α,G0), with fixed α and G0, defined through a Beta

distribution. They obtained expressions for E(G | data) for n ≤ 3, and approximations to

E(G | data) and E(πi | data) for large n. Under the same model, albeit with random α,
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Liu (1996) developed sequential imputation techniques for empirical Bayesian inference (with

α estimated by its MLE) on: the number of clusters among the πi; the posterior mean and

variance of each πi; and the posterior mean of G. More recently, Zhang and Liu (2012) studied

an alternative nonparametric Binomial mixture model, using a Bernstein-DP prior for G. Model

(2) adds on existing methods for nonparametric hierarchical modeling of Binomial data, as it

involves dependent Binomial mixtures indexed by values in the (uncountable) space X .

2.2 Model properties

Hereinafter, π(u) = exp(u)/(1 + exp(u)), u ∈ R, will be used to denote the logistic function.

The DDP Binomial mixture model in (2) includes both the hierarchical Binomial-logistic-

normal model and the standard Binomial-logit model as special (limiting) cases. As α → ∞,

each response replicate has a distinct mixing parameter. If we also assume the GP for G0X

is a white noise process, we obtain the hierarchical Binomial-logistic-normal model, that is,

yij | mij , θij
ind.∼ Bin(yij ;mij , π(θij)), with θij | β0, β1, σ2

ind.∼ N(β0 +β1xi, σ
2). If we let σ2 → 0+,

we arrive at the standard Binomial-logit model as a further special limiting case. In the other

extreme, as α→ 0+, all the response replicates are assigned to a single mixture component. This,

along with the white noise process assumption, yields a Binomial-logistic normal model with a

common mean for each animal within a dose level, that is, yij | mij , θi
ind.∼ Bin(yij ;mij , π(θi)),

with θi | β0, β1, σ2
ind.∼ N(β0 + β1xi, σ

2). Again, with the additional restriction of σ2 → 0+, we

obtain the standard Binomial-logit model.

The DDP prior for GX =
∑∞

l=1 ωlδηlX allows for a flexible response distribution at each

dose level through a DP mixture of Binomial distributions, induced by the mixture model in (2).

Consider a realization θX = {θ(x) : x ∈ X}, which, given GX , arises from GX . Then, for any x, x′

∈ X , Cov(θ(x), θ(x′) | GX ) =
∑
ωlηl(x)ηl(x

′)− {
∑
ωlηl(x)}{

∑
ωlηl(x

′)}. Therefore, although

GX is centered around a GP with isotropic covariance function, it generates nonstationary

realizations with non-Gaussian finite dimensional distributions. Moreover, if Gx and Gx′ denote

the marginal distributions of θ(x) and θ(x′) under GX , then the continuity of the ηlX implies
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that, as the distance between x and x′ gets smaller, the difference between Gx and Gx′ gets

smaller; formally, for any ε > 0, lim|x−x′|→0 Pr(L(Gx, Gx′) < ε) = 1, where L is the Lévy

distance (MacEachern, 2000). Hence, the level of dependence between Gx and Gx′ , and thus

between f(y | m;Gx) and f(y | m;Gx′), is driven by the distance of the dose levels. The

practical implication is that in prediction for the probability mass function f(y | m;Gx) and

for the corresponding dose-response curve, we learn more from dose levels x′ nearby x than

from more distant dose levels, a desirable property for distributions that are expected to evolve

relatively smoothly with the dose level.

In studying certain properties of the DDP mixture model it is convenient to apply a finite

truncation approximation to GX in (1), and this will also provide the basis for MCMC posterior

simulation (see Section 2.4.1). Specifically, we will work with GLX =
∑L

l=1 plδZlX , where the

ZlX = {Zl(x) : x ∈ X} are i.i.d. realizations, given ψ, from G0X , and the weights pl arise

from a truncated version of the stick-breaking construction: p1 = V1, pl = Vl
∏l−1
r=1(1 − Vr),

l = 2, . . . , L − 1, and pL = 1 −
∑L−1

l=1 pl, with the Vl i.i.d., given α, from Beta(1, α). The

truncation level can be chosen using standard distributional properties for the weights arising

from the stick-breaking structure in (1). For instance, E(
∑L

l=1 ωl | α) = 1−{α/(α+1)}L, which

can be averaged over the prior for α to estimate E(
∑L

l=1 ωl). Given a tolerance level for the

approximation, this expression is solved numerically to obtain the corresponding value L.

Next, we discuss a useful connection of the DDP mixture model in (2), which is built from

the Binomial kernel for the number of combined negative outcomes within a dam, with a DDP

mixture model based on a product of Bernoullis kernel for the set of binary responses for all

implants corresponding to that dam. The mixture model using the underlying vector of binary

responses, y∗ = (y∗1, . . . , y
∗
m), for a generic dam with m implants at dose level x is given by

f∗(y∗ | m;GX ) =

∫ m∏
k=1

Bern(y∗k;π(θ))dGX (θ), (3)

where the same DDP prior as before would be assigned to GX . Note that the model formulation
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involves a common mixing parameter for all binary outcomes associated with the same dam.

Mixture models (2) and (3) are equivalent in the sense that the moment generating function

for the number of negative outcomes under (2), E(ety | m;GX ), can be straightforwardly shown

to be equal to the moment generating function for the sum of binary responses under (3),

E(et
∑m

k=1 y
∗
k | m;GX ). This result is used to study the dose-response curve implied by the DDP

Binomial mixture model (see Section 2.3).

We can also determine the correlation between two binary responses within the same dam

at a generic dose level x, i.e., Corr(y∗k, y
∗
k′ ;G

L
x ); we will refer to this as the intracluster correla-

tion (where the dam serves as the cluster). Suppressing the implicit conditioning on m = 1

or m = 2, the expectations needed to obtain the intracluster correlation are E(y∗k;G
L
x ) =

E(y∗k′ ;G
L
x ) =

∑L
l=1 plπ(Zl(x)), and E(y∗ky

∗
k′ ;G

L
x ) =

∑L
l=1 pl(π(Zl(x)))2. Moreover, Var(y∗k;G

L
x ) =

Var(y∗k′ ;G
L
x ) = {

∑L
l=1 plπ(Zl(x))}− {

∑L
l=1 plπ(Zl(x))}2, and thus

Corr(y∗k, y
∗
k′ ;G

L
x ) =

{
∑L

l=1 pl(π(Zl(x)))2} − {
∑L

l=1 plπ(Zl(x))}2

{Var(y∗k;G
L
x )Var(y∗k′ ;G

L
x )}1/2

. (4)

Developmental toxicity studies typically give rise to overdispersed binary responses, that is,

Corr(y∗k, y
∗
k′) > 0. Capitalizing on results for mixtures of exponential families, it can be shown

(see the Appendix) that the DDP mixture model supports positive intracluster correlations.

2.3 Dose-response relationship

Using the mixture model formulation in (3) for the underlying binary outcomes, we define the

dose-response curve through the probability of a negative outcome for a generic implant expressed

as a function of dose level. Therefore, under the DDP truncation approximation discussed in

Section 2.2, the dose-response curve is given by

Pr(y∗ = 1;GLX ) =

∫
π(θ)dGLX (θ) =

L∑
l=1

plπ(ZlX ). (5)
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Note that, although this is a conditional probability (given m = 1), we again suppress this

implicit conditioning in the notation.

Smoothness properties of prior realizations for the dose-response function emerge directly

from properties of prior realizations ZlX under the centering GP G0X . In particular, for choices

of d ∈ [1, 2) (d = 2) for the GP correlation function, the continuity (differentiability) of the ZlX

yields continuous (differentiable) dose-response curves under the DDP Binomial mixture model.

A key aspect of the model is that it does not force a monotonicity restriction to the dose-

response function, which is an assumption for standard parametric dose-response models. How-

ever, the prior expectation E(Pr(y∗ = 1;GLX )) is non-decreasing with x provided β1 > 0 (see the

Appendix), and this is crucial for practicable posterior inference. In particular, if the model is

applied using a constant mean function for the DDP prior centering GP (i.e., setting β1 = 0),

there is little hope to obtain meaningful interpolation and extrapolation results for the dose-

response curve. Even though we insist on the non-decreasing trend in its prior expectation, prior

(and thus posterior) realizations for the dose-response curve are not structurally restricted to be

non-decreasing. An illustration of this model feature is provided in Section 4.2, where the shape

of the estimated dose-response curve for the DEHP data is indicative of a possible hormetic

dose-response relationship, as discussed in Section 1.2. The fact that the DDP mixture model

allows non-monotonic dose-response relationships to be uncovered is an asset of the proposed

modeling approach, and, arguably, a practical advance relative to existing methods.

2.4 Implementation details for posterior inference

2.4.1 Hierarchical model and MCMC posterior simulation

To motivate the hierarchical model formulation for the data, we note that for the DEHP data,

discussed in Section 1.2, the dams are labeled and recorded in ascending numerical order across

dose levels; that is, the smallest ID number corresponds to data from the first dam at the

first dose level, the first dam at the second dose level has the next ID number, and so on.

(This is also the case for other data sets available from the database of the National Toxicology
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Program.) Therefore, the animals can be linked as a response vector across the dose levels with

the conditional independence assumption built for the replicated response vectors. Hence, the

data structure and corresponding hierarchical model is along the lines of the spatial DP (Gelfand

et al., 2005) rather than, for instance, the ANOVA DDP (DeIorio et al., 2004). Nevertheless, for

the data sets we considered results did not differ significantly under the alternative hierarchical

model for the data based on exchangeability both across and within dose levels.

More specifically, let yj = (y1j , . . . , yNj) be the jth response replicate with number of im-

plants vector mj = (m1j , . . . ,mNj), for j = 1, . . . , n (where n = maxi ni), and θj ≡ θj(x) =

(θj(x1), . . . , θj(xN )) be the latent mixing vector for yj , where x = (x1, . . . , xN ). We introduce

missing value indicators, sij , such that sij = 1 if the jth replicate at dose level i is present and

sij = 0 otherwise. (Note that the sij are fully specified for any particular data set.) Then, the

first stage of the hierarchical model for the data on combined negative outcomes is written as

{yij} | {mij}, {θj} ∼
∏n
j=1

∏N
i=1 {Bin (yij ;mij , π(θj(xi)))}sij . Here, the θj , given Gx, are i.i.d.

Gx, and Gx has a DP(α,G0x) prior implied by the DDP prior for GX . In particular, G0x =

NN ((β0 + β1x1, . . . , β0 + β1xN )T ,Σ), where Σ is induced by the GP covariance function, that

is, Σ = σ2H(φ) with H ij(φ) = exp(−φ|xi − xj |d).

Hence, the hierarchical model for the data is a DP mixture model induced by the DDP mix-

ture prior. For MCMC posterior simulation, we use blocked Gibbs sampling (e.g., Ishwaran and

James, 2001) based on truncation of Gx, which is induced by the finite truncation approximation

to GX discussed in Section 2.2. Although other MCMC methods could be considered, we are

drawn to the ready implementation of the blocked Gibbs sampler, and the ease with which it

can handle unbalanced response replicates.

Truncating Gx at a sufficiently large level L, the model includes GLx ≡ (p,Z) =
∑L

l=1 plδZl(x),

where the weights p = (p1, . . . , pL) are defined in Section 2.2, and Z = (Z1, . . . ,ZL), with

Zl ≡ Z l(x) = (Zl(x1), . . . , Zl(xN )). Hence, under the truncated version of mixing distribution

Gx, θj = Zl with probability pl. Introducing configuration variables w = (w1, . . . , wn), where

each wj takes a value in {1, . . . , L}, we have wj = l if and only if θj = Zl, for l = 1, . . . , L and
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j = 1, . . . , n. Then, we can write the hierarchical model for the yij as

{yij} | {mij},w,Z ∼
n∏
j=1

N∏
i=1

{
Bin

(
yij ;mij , π(Zwj (xi))

)}sij
wj | p

i.i.d.∼
L∑
l=1

plδl(wj), j = 1, . . . , n (6)

where, conditionally on ψ, the Z l(x), l = 1, . . . , L, are i.i.d. from G0x, and the prior density for

p is given by αL−1pα−1L (1−p1)−1(1− (p1 +p2))
−1×· · ·× (1−

∑L−2
l=1 pl)

−1, which is a special case

of the generalized Dirichlet distribution. The model is completed with (independent) priors for

the DDP hyperparameters, in particular, we place a gamma(aα, bα) prior on α, a N(m0, s
2
0) prior

on β0, an inverse gamma prior on σ2 with shape parameter aσ > 1 and mean bσ/(aσ − 1), and

a uniform prior on φ over (0, bφ). Moreover, an exponential prior is taken for β1 to incorporate

the non-decreasing trend in the prior expectation for the dose-response curve.

Denote the n∗ distinct values of vector w by w∗1, . . . , w
∗
n∗ , and let M∗k = |{j : wj = w∗k}|, for

k = 1, . . . , n∗, and Ml = |{wj : wj = l}|, for l = 1, . . . , L. Then, sampling from the posterior

distribution p(p,Z,w, α,ψ | data) corresponding to model (6) is based on simulation from the

following posterior full conditional distributions.

Z update: The full conditional for Zl depends on whether l corresponds to one of the distinct

components. If l /∈ {w∗k : k = 1, . . . , n∗}, then Zl is drawn from NN (β0jN + β1x,Σ), where jN

denotes a vector of dimension N with all elements equal to 1. For l ∈ {w∗k : k = 1, . . . , n∗},

Zw∗k | w,ψ, data ∝ NN (Zw∗k ;β0jN + β1x,Σ)
∏

{j:wj=w∗k}

N∏
i=1

{
Bin

(
yij ;mij , π(Zw∗k(xi))

)}sij

which is sampled with a Metropolis-Hastings step. We use an N -variate Gaussian proposal dis-

tribution, centered at the previous iteration. The covariance matrix of the proposal distribution

is of the same form as the GP prior, Dij = a exp(−b|xi− xj |), where a and b are tuning param-

eters. The acceptance rates for the data sets of Sections 3 and 4 were between 0.15 and 0.20.

w update: The conditional posterior for each wj , j = 1, ..., n, is a discrete distribution,
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∑L
l=1 p̃ljδl(wj), where p̃lj ∝ pl

∏N
i=1 {Bin (yij ;mij , π(Zl(xi)))}sij , for l = 1, ..., L.

p update: The conditional posterior of p is given by a generalized Dirichlet distribution with pa-

rameters (M1+1, . . . ,ML−1+1) and (α+
∑L

k=2Mk, . . . , α+ML). Hence, vector p can be sampled

by generating latent V ∗l , l = 1, ..., L− 1, independently from Beta(Ml + 1, α+
∑L

k=l+1Mk), and

setting p1 = V ∗1 , pl = V ∗l
∏l−1
r=1(1−V ∗r ), l = 2, . . . , L−1, and pL = 1−

∑L−1
l=1 pl =

∏L−1
r=1 (1−V ∗r ).

Hyperparameter updates: The full conditional for α is a gamma distribution with shape pa-

rameter L+aα−1 and rate parameter bα−log pL = bα−
∑L−1

l=1 log(1−V ∗l ). The posterior full con-

ditional of β0 is normal with mean
(
m0s

−2
0 + j′NΣ−1

∑n∗

k=1(Zw∗k − β1x)
)
/
(
s−20 + n∗j′NΣ−1jN

)
and variance

(
s−20 + n∗j′NΣ−1jN

)−1
. Moreover, σ2 has an inverse gamma full conditional with

shape parameter aσ + 0.5n∗N and rate parameter bσ+ 0.5
∑n∗

k=1(Zw∗k−β0jN−β1x)′H−1(φ)(Zw∗k−

β0jN − β1x). Parameter β1 is updated with a random-walk Metropolis-Hastings step based on

a normal proposal distribution on the logarithmic scale. And, parameter φ is sampled by dis-

cretizing its bounded support, induced by the Unif(0,bφ) prior.

Finally, note that inference for the implant distribution, using a gamma prior for λ, is

implemented independent of the DDP mixture, and is not discussed further except with regard

to posterior predictive calculations in the next section.

2.4.2 Inference for the dose-response relationship and risk assessment

Consider new responses (m0, y0) corresponding to a generic dose level x0. Under the assumed

formulation for the joint distribution, f(m, y;λ,GX ) = f(m;λ)f(y | m;GX ), the posterior pre-

dictive distribution for (m0, y0) can be separated into the conditional predictive for y0 and

the marginal predictive for m0. That is, p(m0, y0 | x0, data) =
∫
f(m0;λ)p(λ | data)dλ×

p(y0 | m0, x0,data). The expression for p(y0 | m0, x0, data) depends on whether x0 is among

the observed doses or a new dose level, and can be obtained as a special case of the general

form below. Therefore, to obtain inference for the joint posterior predictive distribution, at each

iteration of the MCMC algorithm, we draw m0 from a shifted Poisson with mean λ, then given

m0 and the current values of the DDP parameters, obtain a predictive draw for y0.
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Moreover, each posterior sample for (p,Z) provides a posterior realization for GLx directly

through its definition,
∑L

l=1 plδZl(x). Next, given the predictive draw for the number of implants

m0, for any vector y0 = (y10, . . . , yN0), f(y0 | m0;G
L
x) =

∑L
l=1 pl

∏N
i=1 Bin (yi0;m0, π(Zl(xi))) is

a posterior realization from the conditional response distribution at the observed doses.

To extend the inference beyond the N observed dose levels, we predict across M new doses,

x̃ = (x̃1, . . . , x̃M ), which may include values outside the range of the observed doses. To predict a

new vector of responses at all dose levels, (y0, ỹ0) = (y10, . . . , yN0, ỹ10, . . . , ỹM0), given the corre-

sponding number of implants m0, the mixing parameter vector is extended to (Z l(x), Z̃ l(x̃)), for

l = 1, . . . , L, where given model parameters and the Z l(x), the Z̃ l(x̃) are obtained through stan-

dard conditioning under multivariate normal distributions. Denoting Z̃ = {Z̃ l(x̃) : l = 1, ..., L},

the conditional predictive distribution for (y0, ỹ0) given m0 is given by

p((y0, ỹ0) | m0, x̃, data) =

∫ ∫ L∑
l=1

pl


N∏
i=1

Bin(yi0;m0, π(Zl(xi)))

M∏
j=1

Bin(ỹj0;m0, π(Z̃l(x̃j)))

×(
L∏
l=1

NM (Z̃ l(x̃); µ̃l, Σ̃)

)
dZ̃dp(p,Z, α,ψ | data).

Here, µ̃l = (β0jM+β1x̃)+HMN (φ)H−1(φ)(Z l(x)−(β0jN+β1x)), andHMN (φ) is theM×N ma-

trix withHMN
ij (φ) = exp(−φ|x̃i−xj |d). Moreover, Σ̃ = σ2{HMM (φ)−HMN (φ)H−1(φ)(HMN (φ))T },

where HMM (φ) is the M ×M matrix with HMM
ij (φ) = exp(−φ|x̃i − x̃j |d).

Using the posterior samples for the parameters, we can evaluate expression (4) to develop

inference for the intracluster correlation as a function of dose. Standard hierarchical extensions

of the Binomial model are limited with regard to such inference, e.g., the Beta-binomial model

involves the same (positive) correlation for all dose levels. The data of Section 4.1 illustrate the

capacity of the DDP mixture model to uncover dose-dependent intracluster correlation patterns.

Key to quantitative risk assessment is inference for the dose-response relationship. Using

the posterior samples for (p,Z, Z̃), we obtain the posterior distribution of Pr(y∗ = 1;GLx0) =∑L
l=1 plπ(Zl(x0)) arising from (5) for each x0 ∈ (x, x̃). These distributions can be summarized
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with posterior means and two percentiles to provide point and interval estimates for the dose-

response curve (as in Figures 8 and 9). It can be readily shown that the posterior expectation

of Pr(y∗ = 1;GLx0) is equal to the expectation of y0/m0 from the joint posterior predictive

distribution p(m0, y0 | x0, data), that is, E(y0/m0 | data) = E(Pr(y∗ = 1;GLx0) | data). As shown

in Figure 5, the posterior predictive samples for y0/m0 obtained across a range of dose levels

also provide useful inference for the dose-response relationship.

The expression of the posterior mean for the dose-response relationship can be elaborated to

elucidate the clustering induced by the DDP mixture structure. Consider the binary response y∗

for a generic implant at observed dose level x0 (for a new dose x̃0, we need to also average in the

following expressions over the normal distributions for the Z̃l(x̃0)). Then, Pr(y∗ = 1 | data) ≡

E(Pr(y∗ = 1;GLx0) | data) =
∫ {∑

w0
π(Zw0(x0))

∑L
l=1 plδl(w0)

}
dp(p,Z,w, α,ψ | data). Recall

from Section 2.4.1 that the vector of mixture weights p can be effectively replaced in the joint

posterior by the vector of latent parameters V∗ = {V ∗l : l = 1, ..., L − 1}, the posterior full

conditional distribution of which is given by p(V∗ | Z,w, α,ψ,data) ≡ p(V∗ | w, α, data) =∏L−1
l=1 Beta(V ∗l ;Ml + 1, α +

∑L
k=l+1Mk). Hence, we rewrite the pl in terms of the V ∗l , that is,

p1 = V ∗1 , pl = V ∗l
∏l−1
r=1(1− V ∗r ), l = 2, . . . , L− 1, and pL =

∏L−1
r=1 (1− V ∗r ). Then, by factorizing

the joint posterior into p(V∗ | w, α, data)p(Z,w, α,ψ | data) and marginalizing over the V ∗l ,

E(Pr(y∗ = 1;GLx0) | data) =

∫ {∑L

l=1
qlπ(Zl(x0))

}
dp(Z,w, α,ψ | data).

Here, q1 = (1+M1)/(1+α+n), ql = {(1+Ml)/(1+α+Sl)}
∏l−1
r=1{(α+Sr+1)/(1+α+Sr)}, for

l = 2, ..., L− 1, and qL = 1−
∑L−1

l=1 ql =
∏L−1
r=1 {(α+ Sr+1)/(1 +α+ Sr)}, where S` =

∑L
k=`Mk,

for ` = 1, ..., L (with S1 = n). The weights ql ≡ ql(α,w) make more explicit the partitioning

structure induced by the mixture model. In particular, note that for moderately large sample

sizes, (α+Sr)/(1+α+Sr) ≈ 1, for r = 2, ..., L−1, and we can thus write ql ≈ (1+Ml)/(1+α+n),

for l = 2, ..., L− 1, with q1 = (1 +M1)/(1 + α+ n). Hence, given a particular MCMC posterior

realization with the implied partition from w, the active mixture components (i.e., components
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withMl > 0) are the main contributors to the mixture representation for the dose-response curve,∑L
l=1 qlπ(Zl(x0)), with corresponding weights ql approximately proportional to the component

size. The weights for the empty components (whereMl = 0) will be typically small, but they yield

positive probability for “new” components to be explored in the posterior predictive sampling.

The posterior mean estimate for the dose-response curve arises by averaging the mixture form

discussed above over all MCMC posterior samples.

Finally, risk assessment can also be based on estimation of the dose level xq that corresponds

to a specified probability, q, of a negative outcome, that is, q = Pr(y∗ = 1;GLxq). For any set

of probabilities q, each posterior realization for Pr(y∗ = 1;GLX ) can be (numerically) inverted to

obtain the posterior distribution for the corresponding calibrated dose levels xq.

2.4.3 Prior specification

Regarding the base GP G0X , we have experimented with exponential and Gaussian correlation

functions (d = 1 and d = 2, respectively). For all data examples of Sections 3 and 4, inferences

were largely unaffected by the particular choice. To specify bφ, we consider the limiting case of

the DDP mixture model with α → 0+, which corresponds to a Binomial response distribution

with a GP prior for the dose-response function on the logistic scale. Then, under the exponential

correlation function, 3/φ is the range of dependence, i.e., the distance between dose levels that

yields correlation 0.05. The range is usually assumed to be a fraction of the maximum interpoint

distance over the index space. Let Dmax be the maximum distance between observed doses. Since

3/bφ < 3/φ, we specify bφ such that 3/bφ = rDmax for a small r. For all data analyses considered,

the posterior distribution for φ was concentrated on values substantially smaller than bφ.

We set the prior mean for β0 to 0, and the shape parameter of the inverse gamma prior for

σ2 to 2 (implying infinite prior variance). The prior variance for β0 and the prior means for

β1 and σ2 are chosen by studying the induced prior distribution for the dose-response curve for

which prior realizations can be readily sampled using (5). Specifically, under the prior choice

discussed below, the prior mean for Pr(y∗ = 1;GLX ) begins around 0.5 with a slight increasing

18



trend, and the corresponding 95% interval bands are essentially spanning the (0, 1) interval.

The DDP prior precision parameter, α, controls the number, n∗, of distinct mixture compo-

nents (e.g., Antoniak, 1974; Escobar and West, 1995). In particular, for moderate to large sample

sizes, a useful approximation to the prior expectation E(n∗ | α) is given by α log{(α+n)/α}. This

expression can be averaged over the gamma(aα, bα) prior for α to obtain E(n∗), thus selecting

aα and bα to agree with a prior guess at the expected number of distinct mixture components.

Note that this prior specification approach is fairly automatic as it only requires a range of

dose values along with a reasonable prior for α. In particular, since the range is comparable for

all data examples in Sections 3 and 4, we used the same prior setting for all analyses: a normal

prior for β0 with mean 0 and variance 20; an exponential prior for β1 with mean 0.1; an inverse

gamma prior for σ2 with shape parameter 2 and mean 25; a uniform prior for φ over (0, 10); and

a gamma(2, 1) prior for α. Prior sensitivity analysis revealed robust posterior inference under

less and more dispersed priors.

Finally, regarding the truncation level L for the DDP prior approximation, for the data

analyses in Sections 3 and 4, L = 50 is used; based on the result discussed in Section 2.2,

E(
∑50

l=1 ωl) ≈ 0.9999593 under the gamma(2, 1) prior for α.

3 Simulation study

Here, we consider two synthetic data sets to check the performance of our model and to compare

with simpler semiparametric and nonparametric Bayesian models.

3.1 Simulated data

We work with simulated data sets generated under two distinct settings. The first (Figure 2, left

panel) is based on a Binomial response distribution with a non-standard non-linear function for

the dose-response curve. In particular, we define the probability of a negative outcome at dose

x by π(h(x)), where h(x) = −2 + 0.04x − 0.25 sin(2.7x) − 1.1/(1 + x2). The second simulation
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Figure 2: Simulation study. Each circle corresponds to a particular dam, the size of the circle

is proportional to the number of implants, and the coordinates of the circle are the dose level

and the proportion of negative outcomes. The left panel corresponds to the first simulation

setting (Binomial with non-linear dose-response curve) and the right panel to the second setting

(three-component mixture of Binomial-logit distributions). In each panel, the solid line denotes

the true dose-response curve. The online version of this figure is in color.

example (Figure 2, right panel) is built from a mixture of three Binomial-logit distributions,∑3
i=1 piBin(y;m,π(qi(x))), where q1(x) = −2 + 0.02x, q2(x) = −10 + 0.20x, q3(x) = −4 + 0.15x,

and (p1, p2, p3) = (0.1, 0.4, 0.5). For both simulations, we use the values for the dose levels,

number of dams, and number of implants from the 2,4,5-T data (see Section 1.2).

3.2 Comparison models

For comparison, we analyze the two data sets with the semiparametric product of mixtures of

Dirichlet process (PMDP) model from Dominici and Parmigiani (2001). The PMDP approach

involves a different model structure than the DDP Binomial mixture. We also consider com-

parison with two models that can be viewed as special cases of the model developed in Section

2, a GP Binomial regression model, and a more structured DDP mixture model which ensures

monotonicity for the dose-response curve.
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PMDP model: We implement the PMDP model as in Dominici and Parmigiani (2001) with

dose-specific precision parameters and a Binomial-logit centering distribution for the number of

negative outcomes given a fixed number of implants. Under the PMDP model,

yij | Fij
ind.∼ Fij , j = 1, . . . , ni, i = 1, . . . , N (7)

Fij | {Ai}, (η0, η1)
ind.∼ DP (Ai,Bin (mij , π(η0 + η1xi))) , j = 1, . . . , ni, i = 1, . . . , N.

By integrating out the infinite dimensional parameters, Fij , MCMC posterior sampling involves

an N + 2 dimensional Metropolis-Hastings step for the regression coefficients and the N dose-

specific precision parameters. Conditional on the Ai and (η0, η1), the posterior distribution of

Fij is a DP with updated parameters, and inference can be obtained using the DP definition.

Following Dominici and Parmigiani (2001), we use independent normal priors for η0 and η1 with

mean 0 and variance 3, and independent priors for the Ai arising from uniform distributions

for the Ai/(10 + Ai). For both simulated data sets, there is significant learning for the Ai and,

especially, for η0 and η1, under this prior choice.

The PMDP model is restrictive for inference outside the observed dose levels as the distribu-

tions are dependent in a weak fashion being linked only through the common regression coeffi-

cients. In particular, the probability of a negative outcome at a new dose is problematic to define

under the version of the PMDP model in (7). Taking the precision parameter to be a function

of dose, this probability can be shown to follow a Beta(A(x)π(η0 + η1x), A(x)(1− π(η0 + η1x)))

distribution (obtaining a result for the PMDP prior analogous to the one on the connection

between DDP models (2) and (3)). Evidently, effective interpolation (or extrapolation) at new

dose levels requires an appropriate dose-dependent prior model for the DP precision parameter.

In general, such a specification does not seem straightforward, for instance, simple choices such

as log(A(x)) = γ0+γ1x (Carota and Parmigiani, 2002) may not be sufficiently flexible to capture

the degree to which the data deviate from the centering Binomial distribution.

GP Binomial regression model: This model retains the restrictive Binomial response dis-
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tribution, but is more flexible than the Binomial-logit model in inference for the dose-response

curve. The GP model is a limiting case of the DDP mixture model (as α → 0+), in particular,

it is based on a GP prior for the dose-response curve on the logistic scale,

yij | mij , {θ(xi)}
ind.∼ Bin (yij ;mij , π(θ(xi))) , j = 1, . . . , ni, i = 1, . . . , N

where (θ(x1), ..., θ(xN )) has a NN (ξ0jN+ξ1x,Λ) prior given hyperparameters (ξ0, ξ1, τ
2, ρ). Here,

Λ = τ2H(ρ), and H ij(ρ) = exp(−ρ|xi − xj |d), with fixed d ∈ [1, 2]. We use the exponential

correlation function (d = 1) for both GP and DDP mixture models. (Inference results are similar

under the Gaussian correlation function, although computing under the GP model is less stable

for d = 2.) The GP hyperparameters (ξ0, ξ1, τ
2, ρ) are assigned the same priors with the DDP

hyperparameters (β0, β1, σ
2, φ) given in Section 2.4.3. Note that the non-decreasing trend in

prior expectation can also be incorporated to the GP model provided ξ1 > 0.

Linear DDP mixture model: A distinguishing feature of the DDP mixture model of Section

2 is that it supports non-monotonic dose-response relationships. We argue that this is practically

relevant in the analysis of developmental toxicology data.

However, if one wishes to enforce monotonicity for the dose-response curve (with prior proba-

bility 1 rather than only in prior expectation), this can be accomplished within the DDP mixture

framework using a simplified version of the DDP prior. Specifically, setting ηl(x) = γ0l + γ1lx

in (1) yields the linear DDP prior (e.g., DeIorio et al., 2009). Here, the (γ0l, γ1l) are i.i.d.,

given hyperparameters, from a centering distribution, typically, with independent components.

Hence, the linear DDP reduces the centering stochastic process G0X in (1) to a linear function

over dose levels with random component-specific intercept and slope parameters. Now, with the

DP truncation approximation, the linear DDP Binomial mixture is given by

f(y | m;GLx ) =
L∑
l=1

plBin(y;m,π(γ0l + γ1lx)).
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It is straightforward to verify that, if γ1l > 0 for all l, then the corresponding dose-response

curve is non-decreasing in x. We implement this model assuming γ0l | δ0, σ20 i.i.d. N(δ0, σ
2
0),

and, independently, γ1l | ϕ i.i.d. gamma(c, ϕ). We fix c = 1 and assign hyperpriors to δ0, σ
2
0

and ϕ, specifically, a normal prior to δ0 with mean 0 and variance 20, an inverse gamma prior

to σ20 with shape parameter 2 and mean 25, and a gamma(10, 1) prior to ϕ.

3.3 Results

Under the first simulation case, Figure 3 gives the posterior mean and 90% uncertainty bands

for the probability mass function of the number of negative outcomes given m = 12 implants for

three dose levels. The GP and DDP mixture models provide similar inference, with slightly larger

uncertainty bands arising from the DDP model. The linear DDP model produces somewhat less

accurate point estimates with narrow interval estimates. While the PMDP model captures the

general shape of the mass function, there is substantial uncertainty in its interval estimates.

The mixture of Binomials simulation setting provides more striking differences between the

performance of the models, as seen in Figure 4. The GP model relies on a Binomial response

distribution and therefore can not pick up the bimodality at dose levels 30 and 45. The linear

DDP model attempts to capture the essence of the bimodal shapes of the probability mass

functions at doses 30 and 45; however its restrictive dependence structure limits the posterior

accuracy. Inference at dose level 75 resembles the actual probability mass function, yet fails

to include the true values within its narrow uncertainty bands. The PMDP model generally

includes the true probabilities within the large uncertainty bands it produces for all three dose

levels. However, the changes in the estimates across and within dose levels are quite drastic. In

the case of dose level 75, there are 8 data points associated with m = 12 implants (compared

to 15-20 observations for doses 30 and 45). Of these 8 observations, two animals had 5 negative

outcomes, which is apparent in the PMDP model results. Owing to the smoother evolution

of DDP realizations and to its mixture structure, the DDP model has the capacity to avoid

such sudden changes in the estimated probabilities. Moreover, the DDP model recovers the true
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Figure 3: Simulation case 1. Posterior mean (denoted by “o”) and 90% uncertainty bands for
the probability mass function of the number of negative outcomes, given m = 12 implants, at
three dose levels, using the PMDP, GP, Linear DDP, and DDP models (from top to bottom
row). In each panel, the values of the true probability mass function are denoted by “x”. The
online version of this figure is in color.

probability mass function shapes with notably tighter uncertainty bands than the PMDP model.

Contrasting the results from Figures 3 and 4 reveals an appealing feature of the proposed

modeling framework: the DDP mixture model can uncover non-standard distributional shapes

at different dose levels when such shapes are suggested by the data (Figure 4), but at the same

time, will recover simpler probability mass functions with a relatively small amount of additional

uncertainty relative to parametric models (Figure 3).

Because inference for the entire dose-response curve is not readily available under the PMDP
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Figure 4: Simulation case 2. Posterior mean (denoted by “o”) and 90% uncertainty bands for
the probability mass function of the number of negative outcomes, given m = 12 implants, at
three dose levels, using the PMDP, GP, Linear DDP, and DDP models (from top to bottom
row). In each panel, the values of the true probability mass function are denoted by “x”. The
online version of this figure is in color.

model, we focus this aspect of the comparison on the GP, linear DDP, and DDP mixture models.

For the first simulation setting, the DDP model represents more accurately the dose-response

curve across dose levels (Figure 5). While the GP model performs well at the observed dose

levels, it fares worse at the interpolated doses as indicated by the jumps at the observed doses

in the posterior mean dose-response curve. Under the linear DDP model, dependence across

dose x is built solely through the linear functions γ0l+γ1lx, and we thus expect roughly uniform

uncertainty in posterior inference results for the dose-response curve. This is reflected in Figure
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Figure 5: Simulation case 1. Boxplots of the posterior predictive samples of y0/m0 at the
observed and new dose levels, using the GP model (top), linear DDP (middle), and DDP mixture
model (bottom). In each panel, the posterior mean estimate for the dose-response curve and
the true curve are denoted by the dashed and solid line, respectively. The online version of this
figure is in color.

5, where we also note that the linear DDP posterior mean estimate tends to smooth out the

probability of response. This smoothing results in biased probability mass function estimates,

as discussed previously. For the second simulation example, the DDP model again produced a

more accurate estimate for the dose-response function (results not shown), although in this case

with larger posterior predictive uncertainty compared to the GP and linear DDP models.
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Table 1: Simulation study. Posterior mean and 0.05 and 0.95 percentiles (in parentheses) for the
probabilty of a negative outcome at the 6 observed dose levels, using the GP, linear DDP, DDP
mixture, and PMDP models. The true values of the dose-response curve are given in bold.

Simulation case 1
Dose GP Linear DDP DDP PMDP

0 (0.04) 0.04 (0.03,0.05) 0.08 (0.07,0.09) 0.04 (0.03,0.06) 0.09 (0.00,0.06)
30 (0.34) 0.35 (0.32,0.38) 0.28 (0.27,0.29) 0.36 (0.33,0.39) 0.30 (0.03,0.72)
45 (0.39) 0.41 (0.38,0.43) 0.45 (0.44,0.46) 0.40 (0.37, 0.43) 0.47 (0.08,0.89)
60 (0.66) 0.67 (0.63,0.70) 0.63 (0.62,0.64) 0.67 (0.62,0.70) 0.64 (0.24,0.95)
75 (0.68) 0.73 (0.69,0.76) 0.78 (0.77,0.79) 0.73 (0.69,0.76) 0.79 (0.34,0.99)
90 (0.86) 0.89 (0.86,0.92) 0.88 (0.87,0.89) 0.88 (0.83,0.91) 0.88 (0.45,1.00)

Simulation case 2
Dose GP Linear DDP DDP PMDP

0 (0.02) 0.03 (0.02,0.04) 0.04 (0.03,0.06) 0.03 (0.02,0.05) 0.09 (0.00,0.07)
30 (0.34) 0.34 (0.31,0.36) 0.27 (0.23,0.32) 0.33 (0.28,0.39) 0.34 (0.01,0.89)
45 (0.60) 0.61 (0.59,0.63) 0.65 (0.62,0.69) 0.60 (0.55,0.66) 0.58 (0.06,0.98)
60 (0.88) 0.87 (0.86,0.89) 0.87 (0.85,0.90) 0.87 (0.83,0.91) 0.79 (0.09,1.00)
75 (0.94) 0.93 (0.91,0.95) 0.94 (0.92,0.95) 0.92 (0.88,0.96) 0.89 (0.28,1.00)
90 (0.95) 0.97 (0.96,0.98) 0.97 (0.95,0.98) 0.96 (0.92,0.99) 0.97 (0.85,1.00)

Finally, we compare the four models with regard to inference for the probability of a negative

outcome at the six observed dose levels xi. Denoting as before by y∗ a generic binary outcome

at xi, this probability is given by
∑L

l=1 plπ(Zl(xi)) under the DDP model,
∑L

l=1 plπ(γ0l + γ1lxi)

under the linear DDP model, and π(θ(xi)) under the GP model; moreover, under the PMDP

model, it arises from a Beta(Aiπ(η0 + η1xi), Ai(1− π(η0 + η1xi))) distribution. Table 1 includes

point and 90% interval estimates based on the corresponding posterior distributions. Noteworthy

here are the results under the PMDP model, which produces interval estimates that are too wide

to be practical. This level of posterior uncertainty is consistent with the results in Figures 3

and 4. For the 2,4,5-T data considered in Section 4.1, we also obtained overly wide 90% interval

estimates from the PMDP model (with the same interquartile ranges in Table 1 of Dominici and

Parmigiani, 2001). Contrarily, for the first simulation case, the linear DDP model moderates the

irregularities of the actual dose-response function into a smooth curve (see Figure 5), resulting in

underestimation of the variability in the negative outcome probability. The model produces more
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realistic interval estimates in the second case, though it generally overestimates the probabilities.

As suggested by the posterior predictive results for y0/m0, the GP and DDP mixture models

yield relatively similar inference for the dose-response curve at the observed dose levels. The

DDP model produces wider interval estimates, especially under the second simulation setting,

which are more effective in capturing the true values at the largest dose.

4 Data illustrations

We illustrate the proposed nonparametric modeling approach with the 2,4,5-T data (Section

4.1) and the DEHP data (Section 4.2), which were introduced in Section 1.2.

4.1 Application to 2,4,5-T data

Focusing first on inference for conditional response distributions, Figure 6 plots the posterior

mean and 90% uncertainty bands for f(y | m = 12;GLxi) at all observed dose levels, and for

f(y | m = 12;GLx̃0) at two new doses, one (x̃0 = 50 mg/kg) within the observed range, and one

extrapolated at x̃0 = 100 mg/kg. The probability mass functions corresponding to low and high

dose levels depict shapes that could be captured by traditional parametric models. However, in

the mid-range of dose values, the DDP mixture model uncovers non-standard probability mass

function shapes, which suggest bimodality. The estimated mass functions at the new dose levels

have larger probability bands, and their shape highlights the smooth evolution of the DDP-based

response distributions across dose levels.

The posterior densities for the intracluster correlations at the observed dose levels are given

in the left panel of Figure 7. The correlations depict an increasing trend up to dose levels 60–75

mg/kg, with increasing uncertainty beyond dose 75 mg/kg consistent with the smaller number

of dams at the two higher dose levels. Using for illustration four probabilities, q = 0.1, 0.25, 0.4,

and 0.5, the right panel of Figure 7 shows the posterior densities of the corresponding calibrated

dose level xq, obtained as discussed in Section 2.4.2.

While results for response distributions are not shown here, we also fit the Binomial-logit and
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Figure 6: 2,4,5-T data. For the 6 observed dose levels and 2 new dose levels, the posterior
mean probability mass functions (denoted by “o”) and 90% uncertainty bands for the number of
negative outcomes conditional on m = 12 implants. The online version of this figure is in color.

Beta-Binomial models to the 2,4,5-T data. The Binomial-logit model is not flexible enough to

capture the non-standard distributions and estimates little variation. The Beta-Binomial model

also cannot deviate from unimodal probability mass functions, but attempts to compensate

for the data heterogeneity by increasing the variability in the probability of response, thereby

producing large uncertainty bands. This overcompensation is manifested in the overly wide

interval estimates for the dose-response curve under the Beta-Binomial model (Figure 8, middle

panel). On the other extreme, the Binomial-logit model underestimates the uncertainty in the

curve, and is also restricted to the logistic function shape (Figure 8, left panel). The posterior

mean estimate from the DDP mixture model (Figure 8, right panel) supports a non-decreasing
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Figure 7: 2,4,5-T data. The left panel plots the posterior densities for the intracluster correlations
at each of the six observed dose levels. The posterior densities for the calibrated dose level
corresponding to four probability thresholds are given in the right panel. The online version of
this figure is in color.

dose-response relationship with curvature that deviates at smaller doses from the logistic shape,

and with larger uncertainty at the interpolated values.

Widening uncertainty bands in interpolating/extrapolating regions is a general characteristic

of inference under nonparametric prior models. In our setting, it is intensified by the fact that

developmental toxicology data typically comprise a larger number of dams at the lower dose

levels. Although results are not reported in Section 3, we have also experimented with simulated

data involving the same number of dams per dose level. With balanced response replicates, we

again obtained widening uncertainty bands in the interpolating regions for the dose-response

curve, but the amount of narrowing was comparable at all observed dose levels.

The inference results for the 2,4,5-T dose-response curve provide an interesting illustration of

a nonparametric Bayesian model producing more realistic uncertainty quantification for posterior

estimates relative to simpler parametric models. In particular, in contrast to continuous mixing

that defines the Beta-Binomial model, the discrete nature of the DDP prior enables clustering of

the Binomial kernel latent mixing parameters, thus, controlling more effectively the variability

of the estimated conditional response distributions.
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Figure 8: 2,4,5-T data. The posterior mean estimate (solid line) and 90% uncertainty bands
(dashed lines) for the dose-response curve, using the Binomial-logit model (left panel), the Beta-
Binomial model (middle panel), and the DDP Binomial mixture model (right panel). The online
version of this figure is in color.

4.2 Application to DEHP data

Here, we present a brief analysis of the DEHP data, mainly to highlight the feature of the DDP

modeling framework with regard to recovering non-monotonic dose-response relationships.

First, we note that the data (Figure 9, left panel) appear to suggest a drop in the probability

of a negative outcome from the control level to level 25 mg/kg × 1000. In addition to the

graphical indication, the drop is suggested by an (admittedly crude) “data-based” analysis,

using independent Binomials with common probability for all dams at each dose. The resulting

(maximum likelihood) estimates of the probability of a negative outcome at doses 0 and 25mg/kg

× 1000 are equal to 0.200 and 0.116, with respective standard errors 0.0209 and 0.0179. As

discussed in Section 1.2, such a dose-response pattern may be associated with hormesis, and

thus, it is practically important to be able to quantify how well it is supported by the data.

Indeed, this particular non-monotonic dose-response shape is apparent in the posterior mean

estimate and corresponding uncertainty bands for Pr(y∗ = 1;GLX ) (Figure 9, right panel). Under
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Figure 9: DEHP data. The left panel shows the data, where each circle corresponds to a dam, the
size of the circle is proportional to the number of implants, and the coordinates of the circle are
the dose level and the proportion of negative outcomes. The right panel includes the posterior
mean estimate (solid line) and 90% uncertainty bands (dashed lines) for the dose-response curve.
The online version of this figure is in color.

essentially all standard models for developmental toxicology data, this dip in the dose-response

curve would not be captured. Moreover, the DDP Binomial mixture model was again able to

recover varying shapes for conditional response distributions across dose levels. In particular,

point and interval estimates for f(y | m = 12;GLx ) (not shown) support shapes that evolve with

increasing dose from right to left skewness, with bimodal probability mass functions uncovered

for values of x around observed dose 100 mg/kg × 1000.

5 Discussion

We have developed a Bayesian nonparametric mixture framework for modeling and risk assess-

ment in developmental toxicity studies. The impetus for the proposed modeling approach is

that for such studies it is critical to model flexibly both the dam specific distributions and the

probability of response to accurately account for the multiple sources of data heterogeneity. The

methodology is built from Binomial mixtures with a dependent Dirichlet process prior for the
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dose-dependent mixing distributions. The resulting nonparametric mixture model provides rich

inference for the response distribution as well as for the dose-response curve. Using a simulation

study, we have shown that, relative to simpler semiparametric Bayesian approaches, the DDP

mixture model is the only one that accomplishes both of the inferential goals above. Finally,

data from two toxicity studies were used to illustrate the variety of inferences that can be ob-

tained from the DDP mixture model, including its practical utility with regard to estimation of

non-monotonic dose-response relationships.

Note that in our nonparametric mixture model formulation, the choice of the single-p DDP

prior strikes a good balance between model flexibility and computational feasibility. Data from

traditional toxicology experiments have on the order of 5-10 dose levels and are not likely to

indicate drastic changes in distributional shapes between nearby dose levels. While the PMDP

model is heavily influenced by individual data points (e.g., Figure 4), the single-p DDP mix-

ture prior induces a smooth evolution across the dose levels. The small number of dose levels

may be problematic for learning about the parameters in more general models where the DDP

prior weights are also dose dependent. As the data examples have demonstrated, the single-

p DDP prior mixture model is sufficiently flexible to capture the dependence structure of the

distributions across dose levels, while remaining interpretable and manageable to implement.

Further simplification of the single-p DDP mixture model, based on the linear DDP prior as

developed in Section 3.2, sacrifices desirable flexibility in the context of developmental toxicology

data analysis. Although MCMC computing is simplified relative to the general DDP mixture

model, the restrictive functional dependence on the dose level may be too limited to capture the

complexity of the data, and the implied non-decreasing dose-response curve may be inappropriate

in some experiments (see Section 4.2). However, the linear DDP mixture approach is promising

for more traditional bioassay settings for which there is no nested structure in the data at

each dose level, and where the monotonicity assumption for the dose-response curve is more

universally accepted; results in this direction are reported in Fronczyk and Kottas (2012).

A practically important extension involves modeling developmental toxicology data with
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responses that include the multicategory classification (“dead”, “normal”, “malformed”) as in

the more general data structure discussed in Section 1.2. Now, the mixture model for a generic

dam with m implants at dose level x can be built from kernel Bin(R;m,π(γ))Bin(y′;m−R, π(θ)),

with DDP mixing on both γ and θ, where R is the number of non-viable fetuses (including

resorptions and prenatal deaths) and y′ is the number of malformations. Under this modeling

approach, of interest is inference for risk assessment associated with both the probability of

“death” and the probability of “malformation”. The DDP mixture modeling framework can

be further extended to include continuous responses (say, fetal weight) for each pup. Here, the

equivalent formulation in (3) for the DDP Binomial mixture is central as it enables modeling for

the data at the pup level. Key inferential objectives include study of the effect of the exposure

level to the toxin on fetal malformations, prenatal death rates, and fetal weight at term.

Appendix: Properties of the DDP mixture model

Monotonicity of the prior expectation for the dose-response curve: Denote by

D(x), x ∈ X , the prior expectation for the dose-response curve. As discussed in Section 2.3,

there is no explicit assumption of monotonicity for the dose-response curve under the DDP

mixture model. However, D(x) is a non-decreasing function provided β1 > 0.

Under the DDP truncation approximation, D(x) = E(Pr(y∗ = 1;GLx )) =
∑L

l=1 E(pl)E(π(Zl(x))),

since {Zl(x) : l = 1, ..., L} is independent of {Vl : l = 1, ..., L−1}, the collection of i.i.d. Beta(1, α)

variables that define the pl through stick-breaking. Therefore, for any x < x′, D(x) −D(x′) =∑L
l=1 E(pl){E(π(Zl(x))) − E(π(Zl(x

′)))}. Now, for any l = 1, ..., L, Zl(x) and Zl(x
′) follow

N(β0+β1x, σ
2) and N(β0+β1x

′, σ2) distributions, respectively. Hence, if β1 > 0, Zl(x) is stochas-

tically smaller than Zl(x
′), for each l = 1, ..., L. This in turn implies E(π(Zl(x))) ≤ E(π(Zl(x

′))),

for all l = 1, ..., L (since π(u) is an increasing function), and thus D(x) ≤ D(x′).

The above argument establishes the result for the form in (5), which is the one we work

with to obtain inference for the dose-response relationship. The result can also be obtained
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without the truncation approximation. In this case, we have D(x) = E(Pr(y∗ = 1;Gx)) =

E{
∫
π(θ)dGx(θ)} =

∫
π(θ)dG0x(θ), where G0x = N(β0 +β1x, σ

2). Therefore, D(x) is the expec-

tation of the (increasing) logistic function with respect to G0x, which is stochastically ordered

in x provided β1 > 0, and thus D(x) is a non-decreasing function of x.

Positive intracluster correlation: Consider the vector of binary responses, y∗ = (y∗1, . . . , y
∗
m),

for a generic dam with m (≥ 2) implants at dose level x. Let π∗ = Pr(y∗k = 1;Gx) =∫
π(θ)dGx(θ), and denote by γ = Corr(y∗k, y

∗
k′ ;Gx) the correlation between any pair of binary

outcomes within the same dam; γ is given by (4) under the DDP truncation approximation.

Under the implicit assumption of common π∗ and γ for all binary responses within the same

dam, the variance for the number of combined negative outcomes, y =
∑m

k=1 y
∗
k, is given by

Var(y | m;Gx) = mπ∗(1−π∗){1 + (m−1)γ}. (Note that this result does not rely on the specific

form of the mixture model for y in (2) or the equivalent model for y∗ in (3).) Now, consider

a random variable u, which has a Binomial distribution with the same mean as y arising from

f(y | m;Gx) =
∫

Bin(y;m,π(θ))dGx(θ), that is, u ∼ Bin(m,π∗). Then, using overdispersion

results for mixtures from exponential families (e.g., Shaked, 1980), we have Var(y | m;Gx) ≥

Var(u) = mπ∗(1− π∗), which yields γ ≥ 0.
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