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Abstract

We present new methodology for constrained optimization based on building a com-

bination of models, one for the objective function and one for the constraint region.

We use a treed Gaussian process as a statistical emulator for the complex objective

function, and a random forest to model the probability of meeting the constraints. By

combining these models, we can guide the optimization search to promising areas in

terms of both the objective function and the constraint. This approach avoids the

problem of becoming stuck in a local mode, as well as being able to deal with uncon-

nected viable regions. We demonstrate our methodology on a simulated problem and

an example from hydrology.
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1 Introduction

Optimization of complex functions, where many separated local optima abound, is a chal-

lenging problem with a long history. Further complication arises when the function can only

be successfully evaluated over a subset of the input space, and this region is not known in

advance. In this case, it might also be of interest to learn about the feasibility region itself.

Our motivating example comes from hydrology, where we are using a computer simulation for

designing placement of a set of wells. We want to minimize the cost of the setup. However,

for most runs of the simulator, the response is that there has been a constraint violation,

and no further information about cost is provided. Thus we need to simultaneously learn

about the constraint region and solve the minimization.

We note that constraints come in several kinds. When the constraints are known restric-

tions on the valid set of inputs, it is reasonably straightforward to focus the optimization on

only the valid set. However when the constraints depend on the outputs, the problem be-

comes considerably more difficult (for example, Finkel and Kelley, 2009, and the references

therein). We further distinguish between physical or hidden constraints, where it is not

possible to get an output value, and policy constraints, where an output value is obtained

and then deemed not valid. In this paper we focus on the former case, where the computer

simulation fails to return a value for some runs. In that case, no information about the

objective function can be learned from a run outside the valid set, and one wants to learn

the boundaries of valid regions to avoid wasting runs on input settings outside that set.

Our approach is to use statistical emulation, where we build a statistical model as an

approximation to the complex simulator, and use this model to guide the optimization.

This model has two parts: one to predict the response surface when the simulator gives a

valid response, and one to predict whether or not the simulator will return a valid response

at all. We use treed Gaussian processes (Gramacy and Lee, 2008) for response surface

prediction, and random forests (Breiman, 2001) for constraint violation prediction. The
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former is becoming widely recognized as a flexible surrogate model, or emulator, for the

design and analysis of computer experiments. The latter is a powerful classification algorithm

from the machine learning literature.

In Section 2 we review the statistical emulation techniques. In Section 3 we apply the

statistical predictions to optimization using expected improvement. In Section 4 we then pro-

vide an illustrative example before finally applying our methods to the motivating example

in hydrology in Section 5.

2 Statistical Emulation

The use of stochastic or statistical models to approximate a complex function, such as the

output of a computer simulator, is now well established in the literature (Sacks et al., 1989;

Kennedy and O’Hagan, 2000; Santner et al., 2003; Fang et al., 2006). In particular, the

standard model used for emulation is a Gaussian process (GP). The functional response is

treated as a random variable Z(x) that depends on the input vector x such that the response

varies smoothly. The degree of smoothness is determined by the covariance structure of

the GP. GPs have the property that any finite set of locations has a joint multivariate

normal (Gaussian) distribution, thus the process is completely determined by its mean and

covariance function. If we have observations at a set of locations x1, . . . ,xn ∈ X , then

(Z(x1), . . . , Z(xn)) ∼ MVN(µ,Σ) , (1)

where µ = (µ(x1), . . . , µ(xn)) is a mean function and Σ is the variance-covariance matrix.

The mean function is typically taken as constant, linear, or a low-order polynomial. The

covariance is typically given a simple parameterization such that correlation decreases with

distance in the input space. More details on GPs are available in references such as Cressie

(1993) and Stein (1999). We take a fully Bayesian approach, allowing for estimation of
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uncertainty, which is critical when trying to determine the probability that an unsampled

location will be an improvement over the current known optimum.

In some cases standard GP models are adequate. But in others, their limitations, such

as strong assumptions of stationarity and poor computational scaling, can be problematic.

To reduce these problems, we instead use treed Gaussian process (TGP) models, wherein

the input space is partitioned using a recursive tree structure and independent GP mod-

els are fit within each partition. More details on TGP are available in Gramacy and Lee

(2008). Such models are a natural extension of standard GP models, and combine parti-

tioning ideas with Bayesian methods to produce smooth fitted functions (Chipman et al.,

2002). The partitions can be fit simultaneously with the parameters of the embedded GP

models using reversible jump Markov chain Monte Carlo (Green, 1995). There is soft-

ware available in the form of a tgp library for the open source statistical package R (see

http://www.cran.r-project.org/src/contrib/Descriptions/tgp.html).

In addition to emulating the simulator, we also need to predict whether the simulator will

return a valid response or whether there will be a constraint violation. For this task we turn

to a machine learning tool, random forests. A random forest is built from a collection of tree

models. Each tree model partitions the space into disjoint regions and gives a single class

probability for all points in that region. In our application, the classes are (1) “returns a valid

response”, or (2) “not”. A large number of CART trees (Breiman et al., 1984) are randomly

instantiated, and the random forest classifier is created by taking weighted votes across all

of the trees in the collection. It has been shown that this process converges asymptotically

as the number of trees grows large, but that in practice a relatively small number of trees

provides a good approximation. More details on random forests are available in Breiman

(2001). We use the R implementation from the randomForest library (Liaw and Wiener,

2002).
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3 Optimization

Our approach toward optimization is that of expected improvement (EI, Jones et al., 1998;

Taddy et al., 2009). We use the statistical emulator, or surrogate model, to guide the search

for a new optimum, sequentially investigating locations with the largest probability of being

an improvement. To be concrete, we focus on the case of minimization (but it can clearly

be applied to maximization as well). Herein we assume that the functional response is

deterministic, but the method can be generalized for stochastic response functions as well.

After N runs, denote the current minimum value observed as fmin = min{z1, . . . , zN}, where

zi = Z(xi). Define the improvement statistic at a proposed input location x by

I(x) = max{fmin − Z(x), 0}. (2)

Since the x of interest are previously unobserved locations, Z(x) is unknown and we rep-

resent its distribution using the posterior predictive distribution from the treed Gaussian

process emulator. A simple algorithm for optimization sequentially selects the points x′ that

maximize the expected improvement (EI)

x′ = argmax
x∈X

E{I(x)}. (3)

Conditional on a particular TGP parameterization, the expectation calculation is available

in closed form as a function of the mean and variance of the (Gaussian) posterior predictive

distribution of Z(x). For the particular parameterization, the EI provides a combined mea-

sure of how promising a candidate point is, balancing points where the emulator predicts a

minimal response with those points where the uncertainty in the emulator is large. For the

latter locations, there is a probability of a minimal response even though the mean predic-

tion may not be as small due to the emulator uncertainty. It is trivial to average over the

posterior EI by sampling from the TGP posterior and posterior predictive distributions and
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taking an average of the corresponding EI calculations that arise from each sample. Our

implementation takes advantage of the functionality of the tgp R library, which provides

an argument for evaluating the expected improvement, essentially automating the EI calcu-

lation as just described via Markov chain Monte Carlo (MCMC). MCMC is the standard

algorithm for fitting Bayesian statistical models, simulating realizations from the posterior

distribution via a Markov Chain to allow for Monte Carlo estimation of any desired posterior

quantities (Gelman et al. (1995)), which meshes well with our EI approach.

In the case where there are no constraints, one can just iteratively evaluate the next

point that maximizes the EI, and then update the statistical emulator and the improvement

function. There are several algorithms that may be used to aid in the search of the x input

that maximizes the EI. In the case of a simple (non-treed) GP surrogate model and maximum

likelihood inference, there is a branch and bound algorithm that may be used (Jones et al.,

1998). This leads to the so-called expected global optimization (EGO) algorithm. The more

sophisticated and fully Bayesian TGP model requires a more sophisticated search method.

Taddy et al. (2009) used the TGP EI calculations on random Latin hypercube candidate

designs (LHDs, McKay et al., 1979) as an “oracle” sub-routine within a direct/pattern-

search optimizer called APPS (Gray and Kolda, 2006; Kolda, 2005) and illustrate how these

tools may be used to obtain the optimal design for a circuit device. Gramacy and Taddy

(2010, Section 3) propose a simpler, R-centric variant via the opposite embedding—where

the LHD candidates are augmented by an oracle point obtained by searching the maximum a

posteriori TGP surface for minima via the optim function—that has been shown to perform

well in many examples.

In any case, the presence of constraints complicates the notion of expected improvement.

It does not make any sense to knowingly waste time evaluating the function in a region

expected to return a constraint violation. Thus we need to trade off between the EI and the

probability that a valid response will be returned. To do this, we simply multiply the EI

by the probability that we will get a valid response. At each tried location, we can record
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whether or not a valid response was returned by the simulator. This information can be used

to inform a random forest classifier. Let h(x) be the predicted probability of a valid response

at input x estimated by the random forest classifier. We extend the algorithm in Equation

(3) by now choosing the point x′ that maximizes the expected constrained improvement:

x′ = argmax
x∈X

E{I(x)}h(x). (4)

With this modification, we can focus our efforts where they are most likely to be fruitful.

Note that this approach takes a global view of the optimization problem, as both the function

emulator and the constraint probability map cover the full input space. As with vanilla EI,

there are several ways one can proceed to search for the x which maximizes the EI. All of the

techniques mentioned above would apply in the expected constrained improvement context.

Our approach is based on the R implementation described by Gramacy and Taddy (2010,

Section 3).

4 Illustrative Example

We provide a relatively simple example here to illustrate our methods. Suppose we want to

minimize the function

Z(x1, x2) = −w(x1)w(x2) (5)

w(x) = exp (−(x − 1)2) + exp (−0.8(x + 1)2) − 0.05 sin (8(x + 0.1)) . (6)

Figure 1 shows the negative of the surface (i.e., as a maximization problem) for visibility (it

is much easier to see the peaks than the valleys). There are four separated modal regions,

and local modes within each of the regions. The true global minimum is shown at x1 =

−1.0408, x2 = −1.0408. Now suppose that when we try to evaluate this function, it will only

return valid values inside of an ellipse, but that we don’t know anything about this valid
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Figure 1: The function to be optimized, shown without constraints and shown as a max-
imization problem for visibility. The optimum is shown with the dot on the right hand
plot.

region in advance and need to learn about it from the data.

To begin our search, we generate an initial design of 20 random points from a LHD and

evaluate the function at those points. We use this initial dataset to fit the treed Gaussian

process emulator and the random forest classifier. We then compute the EI at a fresh set

of 100 LHD locations, multiply it by the predicted probability of obtaining a valid response

at those candidate locations, and choose the maximum of that result as the next point to

evaluate. If we obtain a valid response, that completes the iteration. Otherwise, we sample

at the location with the next highest expected constrained improvement until we obtain

a valid response (note that until a valid response is obtained, there is no need to update

the emulator). We only retrain the random forests classifier and TGP emulator once per

iteration, i.e., only after a valid response is obtained. We do fifty iterations, which provides

us with the answer.

Figures 2 and 3 show the results from this implementation. Figure 2 shows an inter-

mediate stage after twenty iterations. The upper left plot shows the truth along with the
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bounding ellipse (only points inside the ellipse return a valid value) which we are treating

as unknown and arbitrarily-shaped. The lower left plot shows the current emulated surface,

which is a reasonable approximation of the truth within the valid region, although it will

continue to improve as more locations are sampled (and no data is available outside the valid

region, so we cannot expect a perfect match outside that region). The solid dots show the

locations that have been evaluated, and the open circles show a Latin hypercube over which

we conduct our search for the next point with highest expected constrained improvement.

The top middle plot shows the EI surface. The bottom middle plot shows the predicted

probability of returning a valid value obtained from fitting the random forest classifier. The

open circles are the locations which have been evaluated successfully, and the filled circles

are the locations which have been evaluated but produced a constraint violation. The upper

right plot shows the product of the EI and the probability of being valid, and it is this surface

that is maximized. The location shown at the crosshairs is the chosen point. The bottom

right plot shows the progress in minimization. As the process proceeds, the emulator and

the classifier better learn about their respective problems and seek out lower minima until

they cannot find anything better. Figure 3 shows the result after fifty iterations, at which

point we have found our minimum.

5 Hydrology Example

A key motivating example for this work is the hydraulic capture problem from the community

problems (Mayer et al., 2002). The goal of the problem is to find a configuration of up to four

wells to control the direction of groundwater movement to contain a contaminant plume, and

to do so at minimal cost. The constraints in this problem are in the form of specifications

on the hydraulic head differences at designated locations, and the objective function is the

monetary cost of installing and operating the wells. More details on this problem are available

in Mayer et al. (2002) and Fowler et al. (2004). A number of solutions have been proposed
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Figure 2: After 20 iterations: The function to be optimized with valid region, the fitted
emulator, the EI surface, the fitted probability of being valid, the expected constrained
improvement, and the progress in minimization. White shows high values and green shows
low values.

for this problem, and some comparisons and discussion of the difficulties are available in

references such as Fowler et al. (2008); Gray et al. (2009); Hemker et al. (2008). This

problem is particularly challenging for two reasons. First, the objective function is quite

irregular and difficult to predict. Second, the dimension of the space is not fixed, varying

from twelve dimensions if four wells are used, down to three dimensions if only one well is

used (the three parameters corresponding to each well are detailed below).

The hydraulic capture problem is described in Mayer et al. (2002) and the implementa-

tion details can be found in Fowler et al. (2008). Intuitively, the problem is illustrated in

Figure 4. The green oval shows the relative location of a contaminant plume in a rectangular

aquifer. The circles around the exterior of the plume represent the gradient constraints on
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Figure 3: After 50 iterations: The function to be optimized with valid region, the fitted
emulator, the EI surface, the fitted probability of being valid, the expected constrained
improvement, and the progress in minimization. White shows high values and green shows
low values.

the hydraulic head values, aligned so that flow will be forced towards the interior of the

plume to prevent migration. Groundwater flow in the natural system in the absence of wells

is towards the northeast, indicated by the arrow in the lower left corner. In this illustration,

we also use stars to show a reasonable configuration of four wells–two extracting water inside

the plume and two injecting water outside the plume. The inputs of the objective function

are the well locations (in x-y coordinates) and the flow rates of each of the wells, so that

there are three parameters corresponding to each well. The function output is the total

cost of installing and operating the wells. Note that the calculation of this cost requires the

results from the groundwater simulator.

Our first approach is to start with four wells and allow the search to work its way down
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Figure 4: Pictorial representation of the constrained optimization problem

to a single well iteratively. When the flow rate of a well is less than 1 ∗ 10−4, the well is

turned off and the flow rate is set to zero. The search is initialized by seeding the space

with a Latin hypercube to obtain some points to fit the emulator. We then propose a set of

candidate points from a Latin hypercube, but we augment the candidate set over which we

evaluate the expected improvement in two ways. First, following Taddy et al. (2009), we add

fifty points in a ball of small radius around the best point. Second, we add a candidate point

equal to the best point with the smallest well set to flow zero. We then fit the TGP emulator

and the random forest classifier, and rank the candidate points based on the product of their

expected improvement and probability of being valid, as per Equation (4). We evaluate the

points in rank order until one returns a valid output, then we move to the next iteration,

updating the statistical models and repeating. This algorithm is able to easily reduce the

number of wells from four to two, but it has more difficulty moving to a single well solution.

The best solution it finds is a cost of $36,389.83 using two wells. We note that this solution

is better than the solutions found by six of the nine methods used in a comparison study of

techniques on this problem by Fowler et al. (2008).

However, this two well solution is not the best solution. We take a second approach

to searching the space, using our expected improvement approach for each of one-, two-,

three-, and four-well spaces separately. With this fixed-dimension approach, we find a best

one-well solution of $22,952.77, which is better than all of the solutions found in Fowler

12



et al. (2008), with the best solution reported there being $23,421. We note that the set up

of the experiment here is different than in the alternatives; our method requires more than

one initial valid point to initialize the statistical models. The comparison methods might

perform differently under the same initial conditions we used here.

6 Conclusions

In conclusion, we have proposed a new approach for constrained optimization based on

statistical models. By simultaneously learning about both the objective function and the

boundary of the constraints, we are able to better focus our efforts on the valid regions.

Some areas for further work include the consideration of other classification models. For

example, when the constraint boundary is relatively smooth, a Gaussian process classifier

may learn it more quickly. Another approach is to move beyond expected improvement

at a point and consider a more global improvement function, such as one that integrates

improvement over the whole space. Convergence diagnostics could also be better explored,

such as those along the lines of Gramacy and Taddy (2010, Section 3).
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