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Abstract

This paper presents a model that describes spatial variations of the intensity of events

that occur at random geographical locations. An inhomogeneous Poisson process is

used to model the intensity over a spatial region with multiplicative spatial and tem-

poral covariate effects. Dynamic temporal effects are incorporated into the model

allowing changes in the intensity structure over time. Additionally, anomaly detection

in the event rates is developed based on exceedance probabilities. The methods are

demonstrated on data of major crimes in Cincinnati during 2006.

1 Introduction

We consider the problem of inference for time evolving point patterns. We focus on sequences
of inhomogeneous Poisson processes with time-varying intensities using a Bayesian approach,
proposing a model-based flexible tool and illustrating its use for anomalies detection. As a
motivating example we analyze a dataset of major crimes (those involving serious violence
against another person) in Cincinnati during 2006. These are depicted by the blue points
in Figure 1. We can see that crimes are more concentrated just above the river (where we
refer as the downtown area) than they are at other locations. Even at locations where crimes
are sparse, small clusters of occurrences are noticeable. Clearly, there is an inhomogeneous
underlying structure for the intensity of crimes over Cincinnati and our task is to design
and implement a model to describe such intensity. Since each crime occurs at a specific
location over the spatial region, the collection of these occurrences can be described by a
spatial point process (PP). In general, a spatial PP is a random collection of events occurring
in a spatial region where each event is referenced by the location at which it occurs. For
example, the arrival of buses on a street, occurrence of mountain fires, and incidence of
diseases can all be described by a spatial PP. Typically, the spatial locations are recorded
in longitude, latitude, and elevation, though sometimes only one coordinate is of interest.
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For concreteness we will we will work with PPs on two-dimensional domains, but the results
clearly generalize to other dimensional spaces. Moreover, the crimes shown in Figure 1 occur
not only at different locations but also at different times. Hence, we consider a spatial PP
indexed by time.

In this paper we focus on inhomogeneous Poisson processes, for which specification of the
intensity function is required. The intensity function defines the rate of occurrence for the
Poisson process. This is assumed to vary smoothly in space and time. We use an innovative
convolution of a time-varying discrete gamma process. To reduce the computational burden
we use compactly supported kernels for the convolution. The result is a model that is flexible
but computationally tractable, is able to realistically capture the space and time evolution
of observed data, and is able to incorporate information from covariates.

In the next section, we give a brief overview of the basics of spatial-temporal point
processes, references to some of the existing inferential procedures, and the properties of
a Poisson process. In Section 3, we specify the intensity function of the Poisson process,
covariates, and priors for the model parameters. In Section 4, extension to the dynamic
model and inference based on Forward Filtering Backward Sampling is revealed. Detection
of anomalous events based on exceedance probabilities is developed in Section 5. In Section
6, plotting of the results on the crime data and discussions are given.
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Figure 1: Major crime locations in Cincinnati in 2006.
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2 Inhomogeneous spatio-temporal Poisson process

A spatio-temporal point process N is defined as a random measure over a region {S × T },
where S ⊆ R

p and T ⊆ R
+. Each point in the process is referenced by a spatial location s ∈ S

and time t ∈ T . In this paper, we focus on developing an inhomogeneous spatio-temporal
Poisson process model on a two-dimensional spatial domain. Following the description by
Kottas and Sansó (2007), an inhomogeneous spatial Poisson process is a random countable
subset Π of S ⊆ R

2. It has the property that for any finite collection A1, · · · , Ak of pairwise
disjoint subsets of S, the random variables N(A1), · · · , N(Ak), i.e., the number of points
of Π lying in each Aj , are independent and each follows a Poisson distribution with mean
∫

Aj
λ(s)ds. Here, λ(·) is the intensity function of the inhomogeneous Poisson process. Denote

the observation locations by s1, · · · , sn ∈ S. The likelihood of λ(·) is

L(λ) ∝ exp{−Λ(S)}
n
∏

i=1

λ(si) ,

where Λ(S) =
∫

S
λ(s)ds. This model can be extended to allow the intensity to change over

time. Suppose that the data corresponds to T different time intervals. In each time interval t
we have an intensity function λ(s, t). Let ti be the time that corresponds to the observation
at location si and assume that the intensity is constant within each time interval. The
likelihood of this extended model is

L(λ) ∝
n
∏

i=1

exp
{

−
∫

S

λ(s, ti)ds
}

n
∏

i=1

λ(si, ti) . (1)

Covariate information (spatial and/or temporal) can be incorporated into λ(s, t) and their
effects can be estimated along with other parameters of λ based on observed data. Ripley
(1981, 1988), Diggle (1983, 1985), Guttorp and Thompson (1990); Guttorp (1995), Stoyan,
Kendall and Mecke (1995), Stoyan and Stoyan (1995) give details of spatial point process in
which stationarity or homogeneity is assumed and inference based on non-parametric meth-
ods is the focus. For likelihood-based, including simulation-based, inference (e.g., MCMC
methods), see Mφller (1999), Lieshout (2000), Diggle (2003), Mφller and Waagepetersen
(2003, 2004), Baddeley, Gregori, Mateu, Stoica and Stoyan (2006), and Waagepetersen and
Guan (2009). These recent texts often relax the restrictive assumption of stationarity or
homogeneity. For spatial-temporal point processes, the papers by Diggle (2005) and by
Jensen, Jónsdóttir, Schmiegel and Barndorff-Nielsen (2006) provide introductions to the
subject and some likelihood-based inference methods. Kottas and Sansó (2007) propose a
Bayesian non-parametric approach to modeling the intensity of an inhomogeneous Poisson
process using mixtures of Dirichlet processes (DPM). Taddy (2009) extends the model to
consider temporally-varying intensities. The DPM is computationally efficient and offers a
lot of flexibility, however it can not be easily adapted to handle covariates without substantial
loss of computational efficiency.

3



3 A nonparametric model

Based on the above Poisson process likelihood, we need to specify the intensity function
λ(s, t), which depends only on (s, t). In our model, it is decomposed as λ(s, t) = τλ(s)µ(s)ν(t),
where τ is a scalar parameter, τλ(s) is the baseline intensity, µ(s) is the effect due to spatially
varying covariates, and ν(t) is the effect due to temporal covariates. The decomposition as-
sumes that spatial and temporal effects due to covariates have a multiplicative effect on the
baseline intensity of the process.

3.1 Specification of the baseline intensity

A flexible and computationally efficient way of specifying spatial processes is given by process
convolutions (Higdon, Swall and Kern, 1999; Higdon, 2001). While these are mostly used in
the context of inhomogeneous Gaussian processes, see for example Lemos and Sansó (2009),
Lee et al. (2008) have used them to model spatial processes with positive values. Following
these ideas λ(s), is specified

λ(s) =

∫

k(s− u|ψ)z(u)du,

where z(·) is a gamma process and k(·|ψ) is a kernel function with parameter vector ψ. A
discrete approximation can be obtained by considering a grid of regularly spaced background
points u1, · · · ,um ∈ S and the intensity can be approximated as

λ(s) =

m
∑

j=1

k(s− uj |ψ)z(uj). (2)

Assuming that z(uj) follows a gamma distribution ensures a nonnegative intensity.
The use of a convolution as defined Equation (2) within the likelihood in Equation (1)

entails a computational problem. In fact computing the likelihood requires the evaluation
of n products of sums. To tackle this problem we assume that the kernel k(·) is a function
with compact support. More specifically we define

k(s− uj|ψ) =
kB(s− uj |ψ)

∑m
j=1 kB(s− uj |ψ)

,

where kB(·|ψ) is a bivariate anisotropic Bézier kernel (Brenning, 2001) function with param-
eter vector ψ. Denote s = (s1, s2), u = (u1, u2), and ψ = (l1, l2, w), the form of the kernel
is

kB(s− u|ψ) =

[

1 −
(s1 − u1

l1

)2

+
(s2 − u2

l2

)2
]w1(√

((s1−u1)/l1)2+((s2−u2)/l2)2)≤ 1
) ,

where u is the center of the kernel, l1 and l2 are the ranges of the support in the s1 and
s2 directions such that the kernel is strictly zero beyond these ranges, 1A is the indicator
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function of the set A, and w is a parameter that governs the smoothness of the resulting
process. A Bézier kernel has a compact elliptical support, which ensures that z(uj)s are
more directly associated to the local crime intensity. Moreover, the effective number of
terms in the sum of Equation (2) is substantially smaller than m. For n observations, we
let λ = (λ(s1), · · · , λ(sn))

′, z = (z(u1), · · · , z(um))′, and K a n × m matrix such that
Kij = k(si − uj |ψ). Then we have the conditionally linear representation of Equation (2),
λ = Kz. Thanks to the use of a Bézier kernel we can use sparse matrix computations in
this expression.

3.2 Specification of covariates

Let X(s) be a vector of spatial covariates, such as topographical features, population density
or spatial income distribution, and let F(t) be a vector of temporal covariates, such as
seasonal effects, typically given as

F′(t) =
(

sin
(2πt

T

)

, cos
(2πt

T

))

, t ∈ {1, · · · , T}.

The spatial and temporal effects on the process intensity are given by

µ(s) = exp{X′(s)β}, β ∈ R
p

ν(t) = exp{F′(t)φ}, φ ∈ R
q ,

where p and q denote the number of spatial and temporal covariates, respectively. The full
likelihood for λ(s, t) can be written as

L(λ) ∝ exp{−τΛT Λ0}τn
n
∏

i=1

µ(si)ν(ti)

m
∑

j=1

k(si − uj |ψ)z(uj)

where

ΛT =

T
∑

t=1

exp{F′(t)φ}

Λ0 =

m
∑

j=1

z(uj)

∫

S

k(s − uj |ψ) exp{X′(s)β}ds

≈
m
∑

j=1

z(uj)
∑

s∈S

k(s− uj |ψ) exp{X′(s)β}∆s .

The above approximation follows from the idea that the observation window can be dis-
cretized and the intensity within each grid cell is assumed to be constant. The area of a grid
cell is denoted by ∆s.
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3.3 Bayesian inference

We follow a Bayesian approach to estimate the parameters of the model. To proceed, the
following priors are imposed on the parameters: z(uj) ∼ Γ(Az, Bz), P (τ) ∝ 1

τ
, βv ∼ N(0, σ2

βv
)

and φl ∼ N(0, σ2
φl

), where Az, Bz, σβv
, and σφl

are constants. The resulting posterior distri-
butions are given in the Appendix. Markov Chain Monte Carlo (MCMC) is used to explore
the posterior distributions of these parameters. Specifically, Gibbs sampling is used to obtain
samples of τ since its posterior distribution can be obtained in closed form. The Metropolis-
Hastings algorithm is used to obtain posterior samples of z(uj), βv, and φl with the following
proposal distributions:

z∗(uj) ∼ zh−1(uj)

bz
Beta

(

azbz

2
,
az(1 − bz)

2

)

,

β∗
v ∼ N(βh−1

v , σ2
β∗v

),

φ∗
l ∼ N(φh−1

l , σ2
φ∗

l
),

where az, bz , σβ∗v , σφ∗
l

are constants, and h denotes the MCMC iteration index. The multi-
plicative beta proposal is implemented to improve the acceptance rate of z(uj) and it seems
to induce a fast convergence of the MCMC.

4 A Dynamic approach

4.1 Model specification

The model specified in Section 3 incorporates a multiplicative temporal effect on the intensity
of the Poisson process using the function F(t) . This implies that temporal covariates can
only re-scale the baseline intensity, but not its shape. In other words, the shape of the
intensity at any time strongly depends on the entire data set, with little influence of events
occurring at the time being considered. Changes in the shape of the space-time intensity
due to time can only be captured using a non-separable model. To this end we modify the
baseline intensity by making the convolved gamma process z(uj) time dependent. Given
that the convolving kernel has compact support, we expect that the time evolution of the
latent process will be determined mostly by the occurrences of events close to the nodes. To
obtain a simple yet flexible model for the time evolution of zt(uj) we use the methods of West
and Harrison (1997) and fit a first-order polynomial DLM for the log of zt(uj). This will
account for smooth time variations in the shape of the intensity. Let yt(uj) = log(zt(uj)).
Then

Yt = θt + vt,

θt = θt−1 + wt ,
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where

Yt = (yt(u1), · · · , yt(um))′, vt ∼ N(0,Vt),

θt = (θt(u1), · · · , θt(um))′, wt ∼ N(0,Wt) ,

vt and wt are the observational error and evolution error, respectively. More elaborate
dynamics that include, for example, seasonalities or additional covariates, can be accounted
for by using observational and evolution matrices other than the identity. For the observation
error variance we take Vt = σ2Im. For the evolution error variance we use a discount
factor approach (Section 6.3, West and Harrison (1997)). A discount factor is a parameter,
δ ∈ (0, 1] that determines the amount of information loss between consecutive time steps in
the evolution equation.

4.2 Model fitting

The model specified in the previous section is fitted using an elaboration of the Monte Carlo
method developed for the model of Section 3. The full conditionals for the convolution
parameters are modified by noting that

p(zt(uj)) =
1

zt(uj)

1

σ
√

2π
exp

(

− 1

2σ2
(log(zt(uj)) − θt(uj))

2
)

,

which leads to the expression

π(zt(uj)| · · · ) ∝ exp{−τΛ}
T
∏

t=1

nt
∏

i=1

m
∑

j=1

k(si − uj |ψ)zt(uj)p(zt(uj)) ,

where

Λ =
T
∑

t=1

exp{F′(t)φ}
m
∑

j=1

zt(uj)
∑

s∈S

k(s− uj |ψ) exp{X′(s)β}∆s .

Following is a rough sketch of the MCMC procedure at each iteration.

1. Sample zt(uj) from (20) via the Metropolis-Hasting algorithm.

2. Based on the most recently sampled zt(uj)s, compute Yt and sample θt using the
Forward Filtering Backward Sampling algorithm.

3. Sample all other parameters based on the most recently sampled θt and treating exp(θt)
as a sample of the underlying discretized gamma process at time t.

4. Repeat steps 1 through 3 for the next MCMC iteration.

The proposed dynamic model can be used for predictions of the intensity at any time given
data up to the previous time. For example, if we have data from January to November, we
can predict the intensity for December using the one-step ahead forecast distribution. For
details, refer to Chapter 4 of West and Harrison (1997).
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5 Anomaly Detection

The proposed model can be used to detect events which are anomalous relative to either its
spatial or temporal structure. Following the general approach of Cressie (1991) for examining
residuals, we impose a grid over the spatial domain. We consider the number of events in a
grid cell in a particular month to be anomalous if it is much larger than would be expected
under the Poisson process model. This expected value could either be from data including
the month in question (i.e., finding anomalous residuals) or from predictions (checking if
new data match predicted values). We typically focus on one-sided tests because of the non-
negative character of counts. We compute a measure of anomaly via exceedance probabilities
(EP) based on the Poisson model. A one sided EP is calculated as

P = Pr(Nt(s) > λt(s)) ,

where Nt(s) is the observed crime count over region s at time t and λt(s) is the expected
number of crimes at time t over region s as fitted or predicted by the poisson process model.
A two-sided EP can be defined analogously. Nt(s) is identified as anomalous if P < α, where
α is a pre-specified significance level. Typical values of α include 0.01, 0.05, and 0.1. We
define two types of anomalies as follows.

• Spatial Anomaly: A spatial anomaly occurs when the number of observations is
significantly larger than the expected number of counts in a grid cell for all times.
This is caused by changes in the intensity function that are not properly modeled by
the kernel grid, where the kernel smoothing estimate of the crime intensity function is
unable to account for the nonlinear changes in the underlying crime intensity function.
This is an indication that the assumed spatial continuity is not present in the observed
data, i.e., a particular grid cell is very unlike its neighbors. Spatial EP’s are calculated
as

Pr(N(s) > λ(s)) =
∑

λ

Pr(N(s) > λ(s)|λ) × Pr(λ) .

• Temporal Anomaly: A temporal anomaly occurs when the observed event count in
a grid cell is significantly larger than the expected number at a particular time while
other time intervals show no significant divergence from model assumptions. Temporal
EP’s are calculated as

Pr(Nt(s) > λt(s)) =
∑

λt

Pr(Nt(s) > λt(s)|λt) × Pr(λt) .

6 Example

We now apply the models to the crime data shown in Figure 1. This dataset is publicly
available at http://www.cincinnati-oh.gov/police/pages/-4258-/. We discretize the observa-
tion window S using a 20 × 20 grid. The center of each grid cell represents the coordinate
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of the grid cell and also serves as a background location u of the gamma process. One
additional row of u is placed outside the observation window on each side to eliminate edge
effects. The covariates being considered are the population density and vacancy rates over
the observation window. The spatial covariate vector is constructed as

X′(s) = (x1(s), x2(s)) , (3)

where x1(s) represents population density and x2(s) represents vacancy rate at location s.
Vacancy rates can be used as a proxy for the economic health of the neighborhood. The
given covariate values vary in different parts of S and they have been pre-processed so that
each of the covariates has a fixed value within each grid cell. As we are interested in monthly
effects, the temporal covariate vector is constructed as

F′(t) =
(

sin
(2πt

12

)

, cos
(2πt

12

))

, t ∈ {1, · · · , 12} . (4)

Using the priors defined in Section 3.3, the parameter values are chosen as following. The
standard deviation (SD) of the spatial effect prior, σβv

, is chosen to be 0.05, for both popu-
lation density and vacancy rate effects. The posterior mean of the population density effect
is estimated to be 4.5%, and that of the vacancy rate effect is estimated to be 6.8%, which
seem fairly reasonable. The SD of the multiplicative temporal effect prior, σφl

, is chosen to
be 0.5 and 4 for the sine and cosine terms, respectively. This ensures that this temporal
effect is higher in the middle of the year (when it is warmer and more people are out) than
at the beginning and end of year, and when averaged, is around 1. The prior shape and
rate parameters, Az and Bz of z(u), are chosen to be 75 and 13000, respectively, to ensure
a reasonable posterior mean (around 320) for τ under the assumption that τ represents the
monthly baseline counts over the entire spatial domain, and τλ(s)µ(s) represents the pro-
portion of τ that corresponds to grid s. For the dynamic model, the discount factor δ and
the observational SD σ are chosen to be 0.95 and

√
0.5, respectively. They should ideally be

treated as unknown parameters and estimated via MCMC. But after trying different values
of δ within [0.9, 1] (this is the range of values in which a discount factor almost always takes),
model results stayed about the same. So, for the purpose of a simpler model, we decided to
use the median value, 0.95. The value of σ is chosen to retain the same general structure
in the intensity across all months while allowing some shape changes without significantly
affecting the convergence of the spatial and temporal effects parameters. The proposal dis-
tribution parameters are chosen as az = 2, bz = 0.5, σβ∗

1
= σβ∗

2
= 0.1, σφ∗

1
= 0.07, and

σφ∗
2

= 4, to ensure good mixing of the posterior samples. The following sections summarize
the results obtained from the nonparametric model and the dynamic model.

6.1 Results of the nonparametric model

In Figure 2, the posterior samples of τ are shown in the first row. It has a posterior mean of
approximately 320, which is close to the observed average number of crimes per month. The
second row displays histograms for the population density and vacancy rate effects. Based
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on these histograms, the interpretation is that on average, every increase of 1000 people per
square mile would raise the intensity by 4.5%, and every increase of 10% in the vacancy rate
would raise the intensity by 6.8%. The third row shows the monthly effect, which suggests
that there are more crimes during the middle of the year than near the start and end of the
year. Figure 3 displays the baseline intensity, the baseline intensity multiplied by spatial
effects (population density and vacancy rates), and the estimated intensity for June. Notice
that their shapes look roughly the same, with the difference being in the scale.

6.2 Results of the dynamic model

Under the dynamic model using data from January to December, the posterior mean of
τ decreases from its previous value of 320 (under the nonparametric model) to 1.40, and
the spatial effects also decrease slightly compared to their previous values. This is because
some of the mean and spatial effects that were described by these parameters are now being
captured by the zt(uj)s. On the other hand, the multiplicative temporal effect stays about
the same. The estimated intensities of February, June and December are shown in Figure 4.
The shapes of these intensities are quite noticeably distinct, however, they still have some
resemblance, due to the fact that the number and location of crimes are fairly similar across
the months. In Figure 5, we show the results of dynamic fitting. For each month, we
show the fit using only the data from January up through that month, but not the data
from later in the year, as would be done in practice (fitting the model based on the current
data, not waiting until the end of the year to fit everything). In the figure, the posterior
means of {zt(uj), j = 73, 77, 145, 188} are plotted v.s. month in blue, and the number of
observations within the support of the Bézier kernel centered at the corresponding ujs are
included in red. These zt(uj)s are picked arbitrarily for illustration, but are representative
of the spatial variability. Notice that zt(u73), zt(u145), and zt(u188) are learned very quickly,
and each roughly follows the trend of the number of observation from January to December,
while it takes about 5 months for zt(u77) to learn the trend. Nevertheless, the behaviors
of the picked zt(uj)s conform to our initial assumption that they depend on the number
of observations around them, and are good indications that our dynamic model is working
properly. Figure 6 displays the estimated intensities for February and June, and a predicted
intensity for December under the dynamic model using data from January to November.

6.3 Anomaly detection results

Anomaly detection is applied the the dynamic model using data from January to December.
The left panel of Figure 7 shows an example of a spatial anomaly, where the observed crime
counts are nearly all above the upper level of the 95% interval of expected counts. This grid
cell is cell number 30, which is in the lower middle part of the downtown area (the place
where the intensity has the highest peak). The middle panel shows an example of a temporal
anomaly, where all of the observed crime counts are within or near the boundary of the 95%
interval of expected counts except for July whose count is way above the upper level of the
interval. This grid cell is cell number 109, which is in the upper left part of the downtown
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Figure 2: Results of the nonparametric model. First row: posterior samples of τ . Second
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Figure 4: Intensities of February (top), June (middle), and December (bottom) estimated
from the dynamic model using data from January to December.
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Figure 5: Results of the dynamic model, fitting each month using data from January through
that month. Blue: {zt(uj), j = 73, 77, 145, 188} is plotted separately v.s. time t (month).
Red: number of observations within the support of the Bézier kernel centered at zt(uj).

area. The right panel shows a histogram of the EP for all of the grid cells over all months.
Note that most values are above the significance level of 0.01, 0.05, and even 0.1, indicating
that most data are consistent with the model, and then there is a secondary mode near zero
for the locations and times that are anomalous. The left panel of Figure 8 provides an image
plot of which areas show the most spatially anomalous behavior, consistently over time,
under the dynamic model using data from January through December. The color of a grid
cell represents the EP level such that red, brown, and yellow correspond to EP values within
[0, 0.01), [0.01, 0.05), and [0.05, 0.1), respectively. The middle panel shows anomalies for the
month of December under the dynamic model using data from January through December
(anomalous residuals). The right panel shows the December EP when December is predicted
under the dynamic model (observations not matching predictions).

7 Conclusions

In this paper, we develop a methodology for modeling the intensity of events that occur
at random geographical locations. Specifically, we use a Poisson process model with an
intensity function constructed by convolution of a gamma process with a bivariate Bézier
kernel and allow dependence on spatial and temporal covariates. A dynamic temporal effect
is incorporated into the model to allow changes not only in the height but also in the shape
of the intensity over time. A Bayesian approach is used to estimate the parameters of the
model. Additionally, we illustrate how to detect spatial and/or temporal anomalies via
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Figure 6: Estimated intensities of February (top), June (middle), and predicted intensity of
December (bottom) under the dynamic model using data from January to November.
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Figure 7: Left and middle panels: Plots of observed crime counts (green dots), expected
crime counts (blue curve), and 2.5% and 97.5% percentiles (red curves) v.s. time (month)
for grid cell 30 and 109. Right panel: Histogram of EPs for all grid cells over all months
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Figure 8: Left panel: an image plot of spatial EP under the dynamic model using the January
- December data. Middle panel: an image plot of temporal EP for December under the
dynamic model using the January - December data. Right panel: an image plot of predicted
temporal EP for December under the dynamic model using the January - November data.
Red, brown, and yellow correspond to EP values within [0, 0.01), [0.01, 0.05), and [0.05, 0.1),
respectively.
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excceedance probabilities.
While we applied the methods herein on a crime dataset, the methodology is more widely

applicable to spatio-temporal point processes. Part of the initial motivation was to develop
methods for analysis and prediction of improvised explosive device attacks in Iraq, another
spatio-temporal point process (although that data is highly classified). In that setting, there
are also patterns over space and time, with important covariate information.
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Appendix - Full conditional distributions

π(z(uj)| · · · ) ∝ z(uj)
Az−1 exp{−(τΛT Λ0 + Bzz(uj))}

n
∏

i=1

m
∑

r=1

k(si − ur|ψ)z(ur)

π(τ | · · · ) ∝ τn−1 exp{−τ(ΛT Λ0)}

π(βv| · · · ) ∝ exp{−τΛT Λ0 + βv

n
∑

i=1

X′
v(si) − β2

v/(2σ2
βv

)}

π(φl| · · · ) ∝ exp{−τΛT Λ0 + φl

n
∑

i=1

F′
l(ti) − φ2

l /(2σ2
φl

)} ,

where X′
v(si) denotes the vth component of X′(si) and F′

l(ti) denotes the lth component of
F′(ti).
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