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Abstract

In this paper we show that the matrix von Mises-Fisher (vMF) distribution is a
reasonable distribution upon which to build an online density estimation scheme for
rotation matrices. We also consider a special case, the unit circle, for initial experi-
mentation. The vector and matrix vMF distributions admit online algorithms in terms
of their expectation parameters as a direct result of their exponential family nature,
however proving regret bounds for these algorithms is arrested by the complexity of
the cumulant functions for these distributions. In closing, we volunteer hazards and
suggestions for immediate future work.

1 Introduction

The aim of this work is twofold. First, we aim to rigorously treat the machine learning
problem of online density estimation for rotation matrices. Second, we aim to uncover
general principles that lend intuition to the treatment of other matrix groups on compact
space.

The primary motivation for this work is that rotation matrices are largely ignored in ma-
chine learning and we would like to change this. Secondarily, solutions to problems in several
application domains could be greatly improved by proper treatment of rotations. For exam-
ple, in computer vision, the problem of pose estimation involves determining the position and
orientation of physical objects from noisy measurements. Solutions to this problem are often
based on kernel methods which, while simplifying calculation via linearization, ignore the
compact geometry of the space of orientations. In the realm of directional statistics, where
distributions respect the geometry of space of rotations, many problems are solved only in
batch-mode and by asymptotic analysis or other approximations. Finally, a major payoff for
intuition gained from working with rotation matrices could be had from treating members
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of the related balanced orthogonal group which can be used as a basis for representing many
more matrix groups of interest by an embedding [DHSA93].

Informally, the problem we wish to solve is to predict the best rotation, in an online
manner, given a stream of noisy orientation (rotation) estimates. This should be done in
such a way as to minimize the total regret of the algorithm with respect to the best fixed
rotation chosen offline.

Our approach is to adapt the online density estimation process from machine learning to
the matrix von Mises-Fisher (vMF) distribution from directional statistics, and identify the
space of rotation matrices with the space of n-frames. We will focus on the simplest case
possible, that of the unit circle S1 or SO(2), a well understood compact Lie group.

2 Related Work

A rigorous treatment of online density estimation should find a foundation in existing ma-
chine learning theory. Much of the online learning machinery required has already been
worked in general for distributions from the exponential family [AW01]. We will use this
work as a template later on. Distributions on compact Lie groups have previously been
considered in machine learning, however the general theory developed does not immediately
produce distributions in the exponential family [Pen04].

On the other hand, exponential family distributions for spaces like that of the rotations
have long been known in statistics. Downs introduced “orientation statistics” which deals
with vMF distributions on orientations in the generalized case of Stiefel manifolds (of which
SO(n) is one) [Dow72]. The primary distribution we borrow from this work is the vMF
distribution, for which maximum likelihood estimates are known to exist and are unique
[JM79]. Finally, recent work by Chikuse mentions direct representation of rotations, several
application areas for the vMF and related distributions as well as the relation to Procrustes
analysis, a related problem which is normally not addressed probabilistically [Chi03].

3 Von Mises-Fisher Distributions

The general matrix vMF distribution is defined over the Stiefel manifold O(n, p) of n × p
matrices such that for X ∈ O(n, p), XXT = In (the space of orthonormal p-frames). The
density of this distribution was given by Downs in the following manner for elements X ∈
O(n, p) and an n× p matrix parameter F [Dow72] (a(·) varies in structure according to the
dimensionality of F).

p(X) = a(F) exp (tr(FX′)) (1)

For the case of the unit circle, we can consider a vectorial representation of rotations
that makes the notion of the “length” and “direction” of the distribution’s parameter clear.
We expect the intuition developed here to extend to higher dimensions by way of the polar
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Figure 1: The cumulant of the vector vMF distribution on the unit circle as a function of
concentration parameter k becomes linear for large k.

decomposition for general F. For now, we will work with the vector vMF distribution on
elements x of the unit circle with the density for parameter vector θ given as follows (G(·)
is defined later).

p(x) = exp (θ · x−G(θ)) (2)

Clearly, this is an exponential family distribution. The parameter θ is a “natural parame-
ter” and may take values from all of R2 (despite data living on the unit circle). Traditionally
the parameter is factored into a scalar concentration parameter and modal direction (unit
vector) such that θ = kd.

The cumulant function of this distribution is rotationally symmetric about the origin,
depending only on the concentration parameter: G(kd) = H(k) = log(2πI0(k)) where Iν is
the modified Bessel function of the first kind (order ν). As Figure 1 illustrates, the cumulant
function begins quadratically at log(2π) but quickly approaches the line of unit slope as k
grows.

It is well known that the cumulant function can be used to compute the expectation
parameter from the natural parameter for a distribution. Consider the gradient of G(θ) with
h(k) = d

dk
H(k).
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Figure 2: The length of the expectation parameter approaches unity (corresponding vectors
on the boundary of the unit disk) as k grows.

g(θ) = ∇θG(θ) (3)

= ∇θH(k) (4)

= h(k)∇θk (5)

= h(k)d (6)

= md (7)

= µ (8)

From this we know that the expectation parameter shares the directional component of
the natural parameter, however instead of roaming all of R2, the expectation parameter lives
only within the unit disk. This restriction is apparent in the form of h(k) = I1(k)/I0(k) and
is illustrated in Figure 2. Intuitively, the average of several distinct points on the unit circle
will live closer to the origin than any of the individual points.

Armed with an understanding of the vector vMF distribution as an exponential family
distribution, we can proceed with the derivation of an online density estimation algorithm.

4 Divergence

The first step in developing an online density estimation algorithm for our case is to identity
a divergence between two distribution parameters that can be used in optimization. A
Bregman divergence can easily be constructed for an exponential family distribution following
previous work [AW01]. Recall the canonical form for Bregman divergences:

∆G(θ̃, θ) = G(θ̃)−G(θ)− (θ̃ − θ) · ∇θG(θ) (9)
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Figure 3: The divergence between two distributions with a common modal direction, the
first with arbitrary k̃ and the second with k = 1, is convex in k̃.

In our case, we make take G(θ) to be the cumulant function from the vector vMF dis-
tribution (as it is convex and defined for all R2). Plugging in the definitions, we have the
following divergence in terms of the factored parameters.

∆(k̃d̃, kd) = H(k̃)−H(k)− (k̃d̃− kd) · h(k)d (10)

The length and direction dependence of the divergence are illustrated in Figures 3 and
4. With the reader’s imagination, the divergence between arbitrary parameters can be
seen as a cone with a softened point that is always pointed at the reference parameter,
but is tipped toward the modal direction of the the reference parameter with the angle of
tipping controlled by the concentration. The cone-nature of the divergence comes from the
asymptotically linear behavior of G(θ) and the soft tip comes from the quadratic behavior
near k = 0. For the most part, the divergence encodes a tradeoff between accuracy of the
length and direction, with a preference for accuracy of the direction as the length increases.

Clearly, for a given length, the worst case loss divergence occurs when the two parameters
are opposite one another on the unit circle. For a given angular difference in direction, the
worst case divergence occurs when the length is as large as possible. The implications of this
behavior will be critical in the derivation for regret bounds in a later section.

5 Loss

This exponential family distribution comes with a natural loss function: the negative log-
likelihood. The loss of the parameter θ on example x is given by
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Figure 4: The divergence between two distributions that vary in modal direction, the first
with k̃ = 4 and the second with k = 1, is a shifted cosine with respect to the angle between
the modal directions. Note that the divergence with zero angular difference agrees with the
divergence for k̃ = 4 in Figure 3.

Lx(θ) = − logP (x|θ) (11)

= G(θ)− θ · x (12)

= log(2πI0(||θ||))− θ · x. (13)

The behavior of the loss for parameters with varying length and direction is illustrated
in Figure 5. It is worth noting the loss is convex on the parameter space, however it appears
periodic in the figure only because the curves illustrate the loss over the non-convex sets of
parameters on circles of varying radii.

6 Algorithm

With a divergence and a loss defined, the online algorithm for density estimation on the
vector vMF of the unit circle is straightforward. To begin, we need an initial parameter.
Setting θ0 = 0 is a suitable starting point as it uniquely identifies the uniform distribution
(with µ0 = 0 accordingly). From the general results for exponential family distributions, we
may immediately write down the update of the algorithm as follows, assuming a variable
learning rate of η−1

t = η−1
0 + t.

µt+1 = µt − ηt(µt − xt) (14)

This update can be seen as forming a convex combination of the old expectation pa-
rameter and the most recent example, and it will clearly never produce a µt outside of the
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Figure 5: The loss of a parameter on a particular example, as a function of angular difference
between the example and the modal direction, is flat for the uniform distribution but ap-
proaches zero for the case of no angular difference and diverges elsewhere as the concentration
grows.

unit disk. The current expectation parameter µt = mtdt = h(kt)dt = g(θ) can be readily
computed from the current natural parameter, however it is quite difficult to find the in-
verse after the update: θt+1 = f(µt+1) = g−1(µt+1). The difficulty in this computation was
first brought to light over one hundred years ago in Pearson’s problem of the random walk
which deals with resultant of fixed length steps in the plane with direction chosen at random
[Pea05]. Discouragingly, the form of G(θ) becomes more complicated as the dimensionality
of the problem increases (though asymptotic forms are known).

In exchange for the complexity of G(θ) the update in equation 14 comes with unexpected
generality. The update handles changes to both the modal direction and concentration of
the estimated distribution, whereas common density estimation for Gaussian distributions
assumes a known, fixed covariance.

7 Regret Bounds

The online algorithm is simple enough, but proving that it cannot be fooled is quite a different
story. Based on general results for exponential family distributions, we know that a bound
on the total regret of our algorithm with respect to the best offline parameter hinges on an
expression like the following:

Lalgorithm − Lbest =
T∑
t=1

ηt∆(θt, θt+1) (15)

Our aim is to replace the divergence between successive parameters by a constant upper
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bound. If we can do this, the O(1/t)-style learning rate ensures that the total regret of our
algorithm will have a bound that grows only logarithmically in the total number of trials T .

To bound the divergence in question, recall the worst-case setting. We should consider
the result of parameter update after seeing a single example opposite a run of examples all
in the same direction. In terms of the length of the expectation parameter in the update, the
worst case occurs with mt = t−1

t
(T−1 observations of xt = d) followed by mt+1 = t−2

t+1
(a final

observation of x′t = −d). Ideally, these parameters could just be plugged into the definition
of ∆, however we need to know the natural parameters that correspond to these expectation
parameters, which in turn requires a computable version of f(µ). For any particular µt we
can approximate θt by any number of root finding techniques, however it is not clear what
approximation will yield the desired bound.

Experimentally, the worst-case divergence appears to be an increasing function of t that
levels off as t goes to infinity. Using the find root function of the Maxima computer algebra
system to invert g(θ), the worst-case divergence can be seen to be bounded above by 1

4
for t

up to at least 100, but this is no proof.

8 Future Work

One aspect of this research is at an impasse and the another is open for immediate explo-
ration. In the first case, the difficulty in computing f(µ) halts progress in finding a regret
bound by the approach used above. In the second, the task of formally generalizing this
analysis to rotations in n dimensions has not been considered here.

To make progress on finding a regret bound by the approach given here, it would be
necessary to find suitable approximations for various functions involved. This is more in-
volved than one might expect because f(µ), which grows very quickly (as can be imagined
by the transpose of Figure 2), is used both positively and negatively in careful balance with
H(θ) which makes use of the exponential-like modified Bessel functions. Figure 6 illustrates
the m-dependence of F (µ) (plotted parametrically), with a derivative of 0 when m = 0 and
quickly sliding up to infinity as m approaches unity as expected.

Another approach is to consider a potential based bound. Intuitively, the length of the
parameter (natural or expectation) serves as a natural basis for the “cost” a target parameter.
If the best offline parameter has a long parameter vector, we can expect the algorithm to
make several high-cost mistakes before reaching the target. However, we would like the
algorithm not to be easily tricked for distributions which are close to uniform.

Regarding the task of generalization, it may seem initially straightforward to use existing
results for the vector vMF distribution to generalize the analysis presented here. In fact, the
general form of the cumulant function is known for n dimensions.

Gn(θ) = Gn(kd) = Hn(k) =
kn/2−1

(2π)n/2In/2−1(k)
(16)

Unfortunately, the vector vMF distribution in higher dimensions tells us only about the
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Figure 6: The dual function or convex conjugate F (µ) is convex on the expectation space
with the m-dependence shown above. The slope of this graph is given by the transpose of
the curve in Figure 2.

space of 1-frames, not the n-frames needed to represent rotation. On the unit circle, 2-frames
happened to have the same number of degrees of freedom (namely one) so the vectorial
representation was reasonable. This should not discourage the reader, however, because
the notions of length and direction can again be ascribed to parameters of the matrix vMF
distribution by means of the polar decomposition. In fact, in dealing with general members
of the Stiefel manifold, Downs identifies the parameter of the distribution as a product of a
diagonal matrix K encoding a generalized length and an orthonormal matrix M encoding a
generalized direction (now the direction of several basis vectors).

To guide exploration, we provide a few suggestions. For the representation of rotations,
K should take the form of kI because there is no preferred axis of observations (as there is in
the orientation statistics setup), so the scalar nature of Hn(k) is retained from the vectorial
case. This conveniently avoids the need to apply the Bessel functions to the parameter matrix
directly. However, the matrix nature of the examples should manifest itself as a replacement
of vector dot products by matrix trace products. Otherwise, the bulk of derivations involving
Bregman divergences should follow similarly. With luck, the worst case divergence needed in
regret bounds for an algorithm using this representation should also resolve into a co-linear
situation where only opposing directions (whatever that may mean in the matrix case) need
be considered.

Finally, a sketch other threads of the authors’ research that attempt a similar goal is
included in an appendix. Beyond this, good luck!
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APPENDIX

A Various Approaches

This section chronicles the development of the project from UCSC’s Advanced Topics in
Machine Learning graduate class (in 2007) through two quarters of independent study by
the first author. This paper is essientially the final report from this project.

A.1 Rotor Theory

(pursued during late Spring 2007 and early Winter 2008 quarters)

Problem: predict a rotated version of the input vector (a regression approach)

Parameter: a rotor from geometric algebra

Loss: Euclidean distance between output vectors

Divergence: rotor norm, “Euclidean distance between rotors”

Method: constant η, optimization via geometric calculus

Contribution: simple algorithm with geometric interpretation
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Solution: predict by applying best known rotor to input vector; update by lerping the old
rotor and shortest rotor explaining the data (simply the geometric product of input
and true output vectors)

Lessons: linear combination is possible in rotor-space; approach is related to quaternionic
methods in 3D

Issues: no probabilistic interpretation; no regret bounds; only explainable in terms of geo-
metric algebra

A.2 Lie Theory

(pursued during most of Winter 2008 and early Spring 2008 quarters)

Problem: predict a rotation transformation (an estimation approach)

Parameter: a rotation matrix

Loss: Riemann metric (geodesic distance)

Divergence: Riemann metric (geodesic distance)

Method: constant η, optimization via matrix calculus

Contribution: multi-valued algorithm with algebraic interpretation

Solution: predict with best known rotation directly; update with exp of lerp of logs of
old and observed rotation (logs of rotation matrices are skew-symmetric, thus linearly
combinable)

Lessons: manifold of rotations shares structure with many other Lie groups; Riemann mea-
sure on rotations on circle is like angle squared (geodesic distance); the only analytic
functions on the circle are constants (complex analysis)

Issues: no probabilistic interpretation; no regret bounds; log is multi-valued, requires se-
lection of “closest” log; log and exp have complicated form for balanced spaces; non-
deterministic behavior when “opposite” example is observed

A.3 Probability Theory

(pursued during late Spring 2008 quarter, reported in this paper)

Problem: density estimation for distribution over rotations

Parameter: vMF distribution parameter (not restricted to manifold)

Loss: negative log likelihood of distribution
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Divergence: Bregman divergence derived from cumulant of distribution

Method: O(1/t) η, optimization (in unit circle case) with vector calculus

Contribution: implicit algorithm

Solution: predict with rotation sampled from current distribution; update f of lerp of g of
old parameter and observation

Lessons: natural parameter lives in open, linear space; expectation space is contained in-
side the unit disk (or equivalent for higher dimensions); estimates exist and are unique;
worst case divergence and loss occur along a common line, keep observing one rota-
tion until the last step when the “opposite” is observed; expectation parameter is a
minimally sufficient statistic

Issues: nobody knows how to compute f exactly (with historical precedent); impossible to
ignore concentration in derivations; no regret bounds (though experiments are promis-
ing); finally we have a clear probabilistic interpretation for the problem!

12


