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ABSTRACT
Motivation: A number of methods for detecting positive selection
in protein coding DNA sequences are based on whether each
site/region has a nonsynonymous to synonymous substitution rates
ratio ω greater than one. However, a site/region may show a
relatively large number of nonsynonymous mutations that conserve
a particular property. Recent methods have proposed to consider
as evidence for molecular adaptations how conserving, or radically
different, nonsynonymous mutations are with respect to some key
amino acid properties. While such methods have been useful in
providing a qualitative assessment of molecular adaptation, they rely
on independent statistical analyses for each amino acid property
and typically do not properly adjust for multiple comparisons when
selection needs to be assessed at several sites.
Results: We consider a Bayesian hierarchical model that allows
us to jointly determine if a set of amino acid properties are being
conserved or radically changed while simultaneously adjusting for
multiple comparisons at the codon level. We illustrate how this model
can be used to characterize molecular adaptation in two datasets:
an alignment from 6 class I alleles of the human MHC and a sperm
lysin alignment from 25 abalone species. We compare the results
obtained with the proposed hierarchical models to those obtained
with alternative methods. Our analyses indicate that a more complete
quantitative and qualitative characterization of molecular adaptation
is achieved by taking into account changes in amino acid properties.
Contact: raquel@ams.ucsc.edu
Availability: The R code for implementing the hierarchical models is
freely available at http://www.ams.ucsc.edu/∼raquel/software/.
Supplementary information: Supplementary Data is available at
Bioinformatics online.

1 INTRODUCTION
There are a variety of tests for detecting departures from neutrality.
Such tests could be classified into two groups: those based on
the distribution of allele frequencies and/or segregating sites (e.g.,
Tajima’s test, Tajima, 1989), and those that explicitly study
patterns of polymorphisms/divergence in genes encoding proteins.
In this second category, most methods compare nonsynonymous to

∗to whom correspondence should be addressed

synonymous substitution rates at some level. Such methods usually
estimate nonsynonymous to synonymous rates ratios to study intra-
specific variation (e.g., Li, 1993; Pamilo and Bianchi, 1993),
provide a formal comparison between intra- and inter-specific
genetic variation (e.g., McDonald and Kreitman, 1991; Sawyer and
Hartl, 1992), or investigate character evolution in a phylogeny by
using codon-based models (e.g., Suzuki and Gojobori, 1999; Yang
et al., 2000a; Yang and Nielsen, 2002; Yang and Swanson, 2002;
Suzuki, 2004). In all cases, an excess of nonsynonymous over
synonymous mutations is considered as indicative that some form
of positive selection may be taking place if a set of assumptions is
met (see e.g., Nei and Kumar, 2000; Anisimova and Kosiol, 2009).

Several investigators have tried to enrich the approaches listed
above by considering methods that take into account changes in the
physicochemical properties of the amino acids; the rationale behind
this is that a replacement between two amino acids with similar
physicochemical characteristics may not change the phenotype in
the same way that a replacement between two amino acids that
are radically different does (Hughes et al., 1990; Zhang, 2000).
While the value of comparing radical versus non-radical changes as
a formal test for positive selection is still under discussion (Dagan
et al., 2002; Sainudiin et al., 2005; Hanada et al., 2007), having
a flexible framework that allows us to explore changes in amino
acid properties can provide useful insight in comparative studies that
aim to assess the effect of positive selection (Hanada et al., 2007;
Popadin et al., 2007). Among the methods that take into account
amino acid properties are those in Xia and Li (1998) and McClellan
et al. (2005) that use calculations of expected random distributions
of possible amino acid changes based on fixed differences between
residues given a particular property. A related approach is that
of Pupko et al. (2003), which tests significant deviations of the
mean physicochemical distance from the random expectation along
a lineage or across a subtree. The idea is to detect significant
deviations from a process consistent with neutrality. For instance, a
trend toward radical changes in a particular property is, in principle,
inconsistent with neutrality. More recent methods also include
those in Sainudiin et al. (2005) and Wong et al. (2006) which
consider codon substitution models that incorporate changes in
physicochemical properties. These methods proceed by partitioning
the codons on the basis of a specific property, and then categorize
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substitutions as property-conserving or property-altering depending
on whether there is a change in the partition.

The methods listed above have been very useful in providing
a qualitative assessment of changes in amino acid properties that
may be indicative of selection acting on the divergence of a
protein-coding gene. However, such methods perform inferences
independently for each amino acid property or a prespecified
(property-driven) partition of the amino acids. In addition, some
of these methods do not properly adjust for multiple comparisons
when tests are performed at several sites. We propose a Bayesian
hierarchical model that allows us to determine if a set of amino acid
properties are being conserved or radically changed at the codon
level. This approach can be used to jointly analyze a set of properties
and automatically adjusts for multiple comparisons in cases where
several amino acid sites are considered.

2 METHODS
2.1 Bayesian hierarchical model
We develop a Bayesian hierarchical model that compares amino
acid distances inferred from ancestral sequences derived from a
given phylogeny to distances expected under neutrality for a given
set of amino acid properties. We treat the distances as continuous
variables, and so in this sense our model is more related to the
methods of Pupko et al. (2003) and McClellan et al. (2005),
than to the approaches of Sainudiin et al. (2005) and Wong
et al. (2006), since the latter require a predetermined partition
of the amino acids based on a property or a set of properties.
The proposed hierarchical model is site-specific, allowing us to
determine which sites show nonsynonymous mutations that either
conserve or radically change a particular property while properly
adjusting for multiple comparisons if several sites are considered.

More specifically, the “expected” distances (under neutrality) and
the “observed” distances — inferred from the ancestral sequences
derived from the observed DNA alignment and a given phylogeny
— are calculated for each property and for each site showing
nonsynonymous substitutions. Following Xia and Li (1998) we
assume that each codon can mutate to one of at most nine alternative
codons through a single nucleotide change. Some of these mutations
are nonsynonymous (changes to stop codons are ignored). The
number of nonsynonymous mutations possible through a single
nucleotide change, corresponding to a particular codon k, is denoted
by Nk (k = 1 : 61). The absolute difference in property j between
nonsynonymous codon pairs at site i differing at one codon position
is denoted by Di,j

k,l, with l = 1 : Nk. Let F ik denote the frequency
of codon k at site i in the alignment under study. Then, the expected
mean distance for site i and property j is defined by:

xi,j ≡ Di,j
E =

P61
k=1 F

i
k

PNk
l=1D

i,j
k,lP61

k=1 F
i
kNk

, (1)

which is the weighted average of the differences due to possible
nonsynonymous changes for a codon by looking at substitutions that
result from a single nucleotide mutation.

Once the ancestral sequences at all the internal nodes are obtained
under a specific substitution model and a prespecified tree, the
observed distances for each physicochemical property are calculated
as follows. First, nonsynonymous substitutions are counted by

comparing DNA sequences between two neighboring nodes in the
phylogeny. Then, the observed mean distance,yi,j ≡ Di,j

O , for
site i and property j is taken as the mean absolute difference in
property j due to all observed nonsynonymous substitutions at that
site. Only sites which show at least one nonsynonymous change at
the ancestral level are retained for further analysis. Then, equation
(1) is used to compute the xi,js only for such sites.

The hierarchical regression model relates xi,j to yi,j . The
underlying idea is that if site i is neutral with respect to property
j, then the observed mean distance at such site, yi,j , should not be
very different from the expected mean distance at the same site, xi,j .
On the other hand, if yi,j << xi,j , property j is being conserved at
site i, and if yi,j >> xi,j property j is radically changing at site i.
Additionally, in order to compare different properties and sites, xi,j
and yi,j are standardized by dividing them by the maximum possible
distance for each property. This allows us to use a common prior
distribution on the parameters associated to the properties as will
be described below. Let x∗i,j and y∗i,j be the standardized expected
and observed mean distances, respectively. Then, for each site i and
property j with i = 1 : I and j = 1 : J , we consider the model

y∗i,j = βi,jx
∗
i,j + εi.j ,

with

εi,j ∼


N(0, κ2) if βi,j = 0
N(0, σ2/nOi ) otherwise.

To understand why we use this mixture for the error distribution,
note that some of the y∗i,js can be equal to zero since some of the
nonsynonymous changes can result in no difference in the value
of the property being measured (for example, both Phenylalanine
and Isoleucine have the same value under Grantham Polarity). We
therefore approximate a point mass at zero with a suitably tight prior
on κ2 = Var(y∗i,j |βi,j = 0). Also, since the number of observed
nonsynonymous changes can be very different for different sites,
Var(y∗i,j |βi,j 6= 0) = σ2/nOi , where nOi is the observed number of
nonsynonymous changes at site i.

The next level of the hierarchy considers a mixture prior on βi,j
with point masses at 0 and 1, and a normal density. The point mass
at 0 is used to describe sites which are strongly conserved, i.e., those
whose observed mean distances are zero or very close to zero. The
point mass at 1 is used to model sites that are believed to be neutral
with respect to a particular property. Finally, those βi,js that are not
0 or 1 can be less than 1 or greater than 1, and so a normal density
is chosen to model such sites a priori. Thus, the structure on βi,j is

βi,j ∼ πi,01{βi,j=0} + πi,11{βi,j=1} + πi,2N(αj, τ
2
i ),

with πi,2 = 1 − πi,0 − πi,1. The mixture probabilities and the
variances on the Gaussian components are assumed to be the same
across properties but are site-specific, while the means are assumed
to depend exclusively on the properties. This structure is used for
two reasons. First, at least a priori and even under the assumption
of neutrality, the variability of the changes for a given amino acid
property may be viewed as site-dependent due to, for example,
functional constraints, while the mean of the Gaussian distribution
is thought as the average coefficient for a given property. Second,
using the same αj across sites for a given property and the same
mixture probabilities and variance, πi,0, πi,1, πi,2 and τ2

i , across
properties for each site allows us to borrow strength across sites and
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properties for estimation purposes, improving our ability to detect
changes. In other words, data from all the sites are used to obtain
estimates of αj and data from all the properties are used to estimate
the site-specific parameters. This allows us to consider several
properties within a single model instead of conducting separate
analyses for each one.

The final level of the model corresponds to the priors on the
mixture probabilities, the scale parameters, and the means of the
Gaussian priors. In order to simplify computations these priors
are chosen to be conditionally conjugate, i.e., (πi,0, πi,1, πi,2)
∼ Dirichlet(a0, a1, a2), αj ∼ N(mα, Cα), τ2

i ∼ IG(ατ , βτ ),
κ2 ∼ IG(ακ, βκ) and σ2 ∼ IG(ασ, βσ), with hyperparameters
a0, a1, a2,mα,Cα, ατ , βτ , ακ, βκ, ασ, and βσ set as follows. We
assume a priori that most of the sites are neutral (βi,j = 1), so we
assign a fairly large weight to this category, and equal weights to
the probabilities of βi,j being zero and being different from zero
and one. Thus, we use a Dirichlet(1, 4, 1) prior for the πs which
assigns about 67% weight to the probability of a site being neutral
and about 16.5% weight to each of the other two categories. We
also assume all the properties to be neutral a priori, so all the αjs
were given the same prior meanmα = 1 and the same prior variance
Cα = 0.25. κ2 was believed to be smaller a priori than σ2, so we
assign prior means of 0.01 and 0.1 and use IG(2,100) and IG(2,10),
respectively, as the priors for these parameters. The τ2

i s are given
IG(2,100) priors with prior means of 0.01.

An additional advantage of our hierarchical specification is that
it allows us to automatically control the error rate associated with
multiple comparisons. Two conditions need to be satisfied before
a Bayesian approach can claim that posterior inference adjusts for
multiplicities (Scott and Berger, 2003). In the context of our model,
these are the following: (i) The model needs to assign a positive
prior probability of site i showing βi,j = 0 or βi,j = 1 and (ii) These
prior probabilities cannot be fixed, rather they have to come from
some distribution. However, some care is necessary when eliciting
hierarchical priors. The results from our sensitivity analyses in
Section 3.2 suggest that the prior that affects the results most is the
prior on πs. Increasing the prior probability that a site is not neutral
(i.e., increasing the prior probabilities for πi,0 and πi,2) increases
the posterior probability of the site being not neutral. We suggest the
use of a prior that assigns most of the probability mass to each site
being neutral, such as the Dirichlet(1, 4, 1), unless there is strong
prior evidence suggesting otherwise. For the variance terms (σ2, κ2

and τ2
i ), we suggest using priors with small values for the mean,

since the variance in the data is usually small. Increasing the prior
mean for the variance terms means we add more uncertainty in our
model, which might not be feasible for all scenarios.

Posterior estimation of the model parameters is achieved via
Gibbs sampling (e.g., Gamerman and Lopes, 2006). Chains were
run for 20,000 burn-in iterations, followed by 200,000 sampling
iterations. The sampling iterations were thinned by a factor of
20 to reduce correlation, resulting in effective sample sizes of
10,000 posterior draws. Convergence was assessed by monitoring
parameter trace plots. No convergence problems were detected in
any of the runs. For details about the MCMC method please refer to
the Appendix.

2.2 Data and other methods
2.2.1 Data

We apply the proposed models to the following datasets:
an alignment of six class I alleles of the human major
histocompatibility complex (MHC) and an alignment of the sperm
lysin protein for 25 abalone species. In addition, a simulation
study and the analysis of lysozyme gene sequences in primates are
included in the Appendix.

MHC. These data comprise six class I MHC alleles from HLA-A
and HLA-B loci with 365 codons. Sites with gaps were removed,
finally resulting in 362 codons. These sequences were previously
shown to be under positive selection by Swanson et al. (2001).

Lysin. These data consist of cDNA from 25 abalone species with
135 codons. Several sites have been labeled as positively selected
using codon substitution models that allow ω to vary among amino
acid sites (Yang et al., 2000b). Sites with gaps were removed which
resulted in 122 codons for the analysis presented here.

We compare the results obtained via the Bayesian hierarchical
models to those obtained using TreeSAAP and the methods
of Sainudiin et al. (2005) and Wong et al. (2006). We
consider five properties: Hydropathy, Isoelectric Point, two
measures of Polarity (Grantham and Zimmerman) and Volume.
These were obtained from the amino acid index database at
http://www.genome.jp/aaindex. Many more properties can be
included, however, our aim is to illustrate the methodology using
a small number of properties.

In order to account for uncertainty in the tree and in the
ancestral sequences we analyze data derived from 25 neighbor-
joining (NJ) trees for each of the two alignments.The 25 NJ
phylogenies — obtained from the R package markovjumps —
are based on the methods of O’Brien et al. (2009) that calculate
labeled distances (e.g., synonymous and nonsynonymous distances)
between sequences by “robust counting”, i.e., by building on a
reversible continuous-time Markov chain model of substitution.
Robustness is achieved by conditioning on pairwise site patterns to
obtain the conditional mean numbers of labeled substitutions and
then by averaging the conditional expectations over the empirical
distribution of site patterns from the observed sequences. For
datasets with more sequences, one might need to look at a larger
number of trees. However, in our case, MHC and lysin have 6 and
25 sequences, respectively. Phylogenies obtained via the Bayesian
methods implemented in MrBayes (Ronquist and Huelsenbeck,
2003) were also considered. The Bayesian approach to phylogeny
estimation leads to samples from the posterior distribution of trees
and so, we considered the 5 phylogenies with the largest posterior
probabilities and the consensus tree reported by MrBayes. MHC
had only 6 different topologies out of the 25 NJ trees. Bayesian
phylogenetic inference in these data provided a single topology with
0.99 posterior probability. Furthermore, this topology is precisely
one the 6 different NJ topologies. For lysin, all the 25 NJ topologies
were different but a large number of them were very similar. The
5 trees with the highest posterior probabilities and the consensus
tree obtained from MrBayes were also similar to some of the
NJ trees. Given that the MrBayes phylogenies are identical or
very similar to the NJ phylogenies for the two data sets we only
report analyses based on the latter. The hierarchical models are
not tied to a particular method to estimate the phylogeny and the
ancestral sequences, and so the user can simply apply the models to
data derived from any prespecified set of phylogenies and ancestral
sequences.
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The NJ trees obtained from markovjumps (based on
nonsynonymous distances) were used to generate 25 sets of
ancestral sequences under model M8 in codeml implemented
in PAML, Version 3.15 (Yang, 1997). The 25 sets of ancestral
sequences were then taken as inputs for the hierarchical regressions,
i.e., observed distances were computed for each of the 25 sets
of ancestral sequences and separate regressions were fit. For each
of the two alignments we also performed regression analyses that
combined the observed distances by taking a weighted average
of the yi,js from the 25 sets of ancestral sequences. Finally,
hierarchical analyses of the ancestral sequences obtained using the
maximum likelihood (ML) phylogeny for the MHC data and the
phylogeny of Lee et al. (1995) (used in Yang et al., 2000b) for lysin
were also performed.

For both datasets, and for each set of ancestral sequences,
positively and negatively selected sites were identified using the
codon substitution model M8 in PAML, in which a discretized
beta distribution models ω values between zero and one with
probability p0, while an additional positive selection category
with ω > 1 and probability p1 models positive selection. Sites
were identified as positively selected if the Bayes-empirical-Bayes
posterior probability (Yang et al., 2005) of belonging to this last
category was greater than 0.95 and as negatively selected if Pr(ω >
1| data)< 0.5 and ω̂ < 0.3, where ω̂ is the estimated posterior mean.

2.2.2 Other methods

In addition to looking at results obtained via the Bayesian
hierarchical models for sites classified as positively selected using
ω-based methods, we also compare such results to two approaches
that take physicochemical properties into account. Specifically, we
applied the methods of McClellan et al. (2005) implemented in
TreeSAAP version 3.2 (Woolley et al., 2003) and the methods
of Sainudiin et al. (2005) and Wong et al. (2006) implemented in
codemlz in PAML, 3.14z and EvoRadical, respectively.
TreeSAAP implements the modified MM01 model of McClellan

and McCracken (2001), which is outlined in McClellan et al. (2005).
In model MM01 each nonsynonymous substitution is assigned to
one of M categories, with categories indexed by lower numbers
corresponding to sites with more conservative changes for a given
property, and those indexed by higher numbers corresponding to
sites displaying radical changes. In the analyses presented here we
considered M = 4 categories indicating, respectively, conservative
changes (m = 1), moderate changes (m = 2), radical changes (m =
3) and very radical changes (m = 4). Nonsynonymous changes were
inferred from the ancestral reconstruction obtained via the reversible
nucleotide substitution model in baseml (no codon substitution
models are implemented in the current version of TreeSAAP). The
ML phylogeny and the phylogeny of Lee et al. (1995) were used for
the MHC and lysin data, respectively. Each of the nonsynonymous
changes was assigned to one of the magnitude categories for
each of the five properties being considered. In order to test the
hypothesis of neutrality, McClellan et al. (2005) divide the number
of inferred amino acid replacements per magnitude category for a
given property by the number of evolutionary pathways assigned to
that category to obtain a set of proportions, pm for m = 1 : M .
Under neutrality, it is expected that these proportions are equal to
the overall mean. McClellan et al. (2005) test neutrality for each

Table 1. Posterior estimates of the proportion of sites with β = 0, β = 1,

0 < β < 1, and β > 1 for MHC data (combined distances).

Property Proportions
β = 0 β = 1 0 < β < 1 β > 1

Hydropathy (H) 0.183 0.652 0.001 0.164
Isoelectric Point (IP) 0.259 0.570 0.014 0.154
Polarity-G (PG) 0.161 0.658 0.001 0.180
Polarity-Z (PZ) 0.398 0.401 0.000 0.201
Volume (V) 0.095 0.717 0.064 0.124

property using z-scores. Site-specific z-scores are also provided,
however, they do not adjust for multiple comparisons.

More recently, Sainudiin et al. (2005) and Wong et al. (2006)
developed codon substitution models that incorporate changes in
amino acid properties. In these approaches amino acids are first
partitioned on the basis of a particular property. This partition
is then used to parameterize the rates of property-conserving and
property-altering codon substitutions using a maximum likelihood
framework. Sainudiin et al. (2005) divide substitutions into two
groups: synonymous and property-conserving nonsynonymous
substitutions, and property-altering nonsynonymous substitutions.
Wong et al. (2006) generalize the idea to allow three classes:
synonymous, property-conserving nonsynonymous, and property-
altering nonsynonymous substitutions. The latter model can
determine the type of selective pressure acting on a particular
property of interest, while accounting for the non-specific selective
pressure at the amino acid level. The results reported in both these
papers are based on posterior probabilities computed via the naı̈ve
empirical Bayes method (Nielsen and Yang, 1998).

3 RESULTS
3.1 MHC
Table 1 displays the posterior means of the proportions of sites
where each of the five properties are strongly conserved (β = 0),
conserved (0 < β < 1), neutral (β = 1) or radically changed
(β > 1). These results were obtained by fitting the hierarchical
model to the combined distances from the 25 sets of ancestral
sequences. Very similar results are obtained from fitting 25 separate
hierarchical models, one per set of ancestral sequences, and also
from fitting a hierarchical model to the ancestral sequences obtained
from the ML tree. For all the properties except Polarity-Z — which
shows essentially equal proportions in the first two categories — the
majority of the sites show substitutions that are neutral. In addition,
non-neglible proportions of sites either do not alter the property (β
= 0) or radically change it.

Table 2 lists the sites in MHC in domains I, II and III for which
Pr(βi,j 6= 0 and βi,j 6= 1|data) is maximized in at least one of
the 25 regression analyses. We choose to label sites according to
the categories for which the posterior probabilities are maximized
because it is the standard rule in classification problems and it leads
to good sensitivity and specificity rates (see the simulation study and
further discussion in the Appendix). Sites in bold also maximized
such probability in the combined regression. Furthermore, all of the
sites listed are such that Pr(βi,j > 1| data) was maximum. No sites
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Table 2. Sites for which Pr(βi,j 6= 0 and βi,j 6= 1|data) is maximized in at
least one of the 25 regressions for the MHC data. The numbers in parentheses
indicate for how many of the 25 data sets this was the case. Sites in bold
also had maximum probability of being in this category in the combined
data. Underlined sites were identified as property altering by Sainudiin et al.
(2005).

Property Sites
H 45(25), 76(25), 116(12), 152(25), 156(25)
IP 76(6), 163(12)
PG 45(25), 76(25), 90(25), 116(25), 152(25)
PZ 30(25), 45(25), 63(25), 76(25), 77(25), 90(25),

113(25), 127(25), 152(25), 163(25), 171(25), 253(25)

were found to maximize the probability of belonging to the third
category for Volume. Comparing Table 2 to the results in Sainudiin
et al. (2005) and Wong et al. (2006), we see that these authors found
the following sites to have significant probability of showing radical
changes: site 116 under their Polarity partition, and sites 63, 67 and
97 under their Volume partition. These were the sites identified by
the naı̈ve empirical Bayes method. However, on using the Bayes-
empirical-Bayes method only site 45 had a significant probability of
showing radical changes under the Polarity partition, and no sites
were significant under the Volume partition. In addition, sites 114
and 156 were found to be under positive selection using ω-based
methods. Using the hierarchical approach we find that sites 45, 63,
116 and 156 radically change Hydropathy, Polarity-G or Polarity-
Z. Therefore, even though there are similarities between our results
and those in Sainudiin et al. (2005) and Wong et al. (2006), there are
also some discrepancies. However, it should be emphasized that the
methods of Sainudiin et al. (2005) and Wong et al. (2006) strongly
depend on the partition chosen by the user and so, they are not
directly comparable to the hierarchical approaches presented here
since the latter use amino acid distances directly.

Analyzing the MHC data with TreeSAAP, which uses ancestral
sequences obtained from baseml and the ML phylogeny, we found
that the hypothesis of neutrality could not be rejected (i.e., none
of the z-scores were significant) for any of the five properties.
In order to compare our method to TreeSAAP we performed an
additional hierarchical regression analysis using distance data from
these ancestral sequences. Our results are very similar to those
obtained with the codon-based models and shown in Table 1, i.e., it
was found that although a majority of the sites show neutral changes,
each property has a considerable proportion of sites in the other
categories (β = 0, 0< β < 1 and β > 1) taken together. The fact that
TreeSAAP does not find any property to be conserved or radically
changing is probably related to the fact that the z-scores are based
on all the sites. In contrast, one of the advantages of the hierarchical
approach is that it is site-specific and so, even if the changes are
neutral or conserve a given property on average, some of the sites
may show mutations that radically change such property.

3.2 Lysin
Table 3 shows posterior estimates of the proportions of sites with β =
0, β = 1, 0 < β < 1 and β > 1, respectively, based on the combined
distances from the 25 sets of ancestral sequences. About 64%-70%
of the sites lie in the neutral category (β = 1) for Hydropathy,

Table 3. Posterior estimates of the proportion of sites with β = 0, β = 1, 0
< β < 1 and β > 1 for the lysin data (combined data).

Property Proportions
β = 0 β = 1 0 < β < 1 β > 1

Hydropathy (H) 0.164 0.702 0.000 0.134
Isoelectric Point (IP) 0.205 0.637 0.061 0.097
Polarity-G (PG) 0.166 0.672 0.069 0.093
Polarity-Z (PZ) 0.289 0.529 0.001 0.181
Volume(V) 0.147 0.676 0.163 0.014
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Fig. 1. Posterior summaries of αjs from the combined analysis for lysin.

Isoelectric Point, Polarity-G and Volume, while Polarity-Z has 53%
of sites in this category. Hydropathy, Isolectric Point, Polarity-G and
Volume are also fairly comparable in terms of the percentages of
sites (15%-20%) that show nonsynonymous mutations that strongly
conserve these properties (β = 0), while approximately 29% of the
sites are showing nonsynonymous mutations that strongly conserve
Polarity-Z.

The posterior densities of αj for the five properties are shown
in Figure 1. Recall that αj is mean of the Gaussian distributions
used to model the βi,js that are different from zero and one and
so, αj is a measure of the average behavior for the property
based on sites whose changes conserve it or radically change it
(0 < β < 1 or β > 1). The figure shows that the distributions
of αj for Isoelectric Point and Polarity-G are roughly centered at
one, and so on average changes are neutral with respect to these
properties. The distributions for Hydropathy and Polarity-Z have
most of the mass above 1, consistent with radical changes. Finally,
the distribution for Volume is skewed to the right, with more mass
below 1, consistent with changes that conserve the property. Results
from the analysis done using the ancestral sequences obtained
from model M8 in codeml and the tree of Lee et al. (1995) are
essentially the same as those summarized in Table 3 and Figure
1. Results obtained from the 25 separate regressions are also very
similar for Volume in that the proportions of sites in the different
categories are comparable to those shown in Table 3 and Figure
1. This suggests that tree uncertainty does not affect the overall
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Table 4. Sites that maximize Pr(βi,j 6= 0, 1|data) in at least one of the 25
regressions and the combined regression for the lysin data, with numbers
in parentheses indicating for how many of the 25 regressions this was the
case. Sites in bold were also identified as under positive selection by ω-based
methods.

Property Sites
H 15(10), 16(7), 21(11), 70(18), 82(9), 99(16),

127(17)
PZ 15(11), 16(11), 21(11), 57(11), 70(9), 75(7),

87(5), 91(6), 97(4), 99(10), 106(11), 119(11),
127(15)

● ● ● ● ● ● ● ● ● ● ● ● ●

Polarity(Z)

Sites

0
1

2
3

4

1
5

1
6

2
1

2
2

5
7

7
0

7
5

8
7

9
1

9
9

1
0

6

1
1

9

1
2

7
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0.53

0.56
0.96 0.62 0.86
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Fig. 2. Posterior summaries of all the sites in the lysin data that maximize
Pr(βi,j 6= 0 and βi,j 6= 1|data) in the combined data for Polarity-Z. The
intervals are 95% posterior intervals of the βi,js that are different from zero
and one; the medians are also highlighted. The numbers right at the top
of the intervals are the estimated posterior probabilities that the βi,js are
different from zero and one for the combined analysis. The numbers at the
very top (y = 4) correspond to the number of times the site maximized
Pr(βi,j 6= 0 and βi,j 6= 1| data) in the 25 regressions. Diamonds, squares
and triangles label, respectively, positively selected sites, neutral sites, and
negatively selected sites under the ω-based measure.

trends in lysin for Volume. For the remaining four properties, the
proportions of sites in the strongly conserved and neutral categories
remain fairly similar to the combined analysis for all 25 regressions.
However, the results for the categories describing conserved or
radical changes seem to be affected by phylogenetic and ancestral
sequence uncertainty. In particular, for Hydropathy 16 of the 25
regressions have results similar to Table 3 but in the remaining 9
regressions, it had 9%-11% of sites in the conserved category. In
the cases of Isoelectric Point and the two measures of Polarity, 9
and 11 of the 25 regressions respectively had results similar to the
combined analysis. For the remaining regressions, about 15%-16%
sites showed changes conserving Isoelectric Point, 14%-17% sites
showed changes conserving Polarity-G and 15%-18% sites showed
changes conserving Polarity-Z.

In terms of site-specific results, Table 4 lists the sites that
maximize the probability of βi,j being different from 0 or 1, in at
least one out of the 25 regressions and in the combined regression.

Fig. 3. Lysin crystal structure from the red abalone H.rufescens (Shaw et al.,
1993). The structure starts from amino acid 4. Positively selected sites using
model M8 in PAML and the phylogeny of Lee et al. (1995) are highlighted.
Sites 70, 87, and 127 display mutations that radically change Polarity-Z
(β > 1) and sites 33 and 64 strongly conserve the the property (β = 0).
The remaining green sites are neutral with respect to Polarity-Z (β = 1).

Isoelectric point, Polarity-G and Volume did not show any sites that
maximize such probability in the combined data. Sites identified as
positively selected using ω-based methods appear in bold. In this
case all the sites listed also maximize the probability of β > 1 and
so, these sites show substitutions that radically change Hydropathy
and Polarity-Z. It is also possible to obtain informative graphical
displays that summarize site-specific behavior for a particular
property. For instance, Figure 2 plots the information obtained
from the posterior samples of βi,j for the combined analysis under
Polarity-Z for those sites which had significant posterior probability
of being different from 0 or 1. The medians and the central 95%
credible intervals (vertical lines) from the posterior samples of
βi,j which are different from 0 and 1 are shown. All of the sites
show radical changes (posterior intervals are above 1) using the
hierarchical approach, but only sites 70, 87, and 127 — which are
clustered at the top of the molecule in Figure 3 — are identified as
positively selected by model M8 in PAML. Also, some of the sites
identified as positively selected using ω-based methods are neutral
or strongly conserve Polarity-Z. Specifically, Figure 3 highlights the
sites found to be under positive selection according to model M8
in PAML using the phylogeny of Lee et al. (1995). Among these
sites, sites 70, 87 and 127, show mutations that radically change
Polarity-Z. Sites 33 and 64 were found to show nonsynonymous
mutations that strongly conserve Polarity-Z, and the remaining sites
were identified as neutral with respect to this property.

Wong et al. (2006) also analyzed the lysin data using different
partitions for Polarity and Volume and identified sites that were
under specific selective pressures for the different properties. Once
again we emphasize that the results presented here and those
in Wong et al. (2006) are not directly comparable because the
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Table 5. TreeSAAP output for lysin. z-scores are compared to the cut-off
values from the right tail of a N(0, 1). The presence of * indicates that the
property is significant at the corresponding α value of testing.

Property Category Value .05 .01 .001

Hydropathy (H) 4 −2.892 * *
Isoelectric Point (IP) 3 −2.399 * *

Polarity-G (PG)
2 1.783 *
3 −2.645 * *
4 −3.888 * * *

Volume (V)
1 3.761 * * *
2 −5.336 * * *
4 −2.464 * *

latter approach uses partitions and the hierarchical models use
distances, and so, it is possible that a large difference in the actual
value of the property is ignored or a small difference magnified
while constructing the categories. For example, under the Volume
partition, Wong et al. (2006) classify both Glycine and Valine as
small and Glutamine as large, whereas for us their Volume scores
were 3, 84 and 85 respectively. Thus, Wong et al. (2006) would
say that a change between Glutamine and Valine alters the property
while a mutation between Glycine and Valine does not, even though
the difference between Glutamine and Valine Volume scores is much
smaller than the difference between the Glycine and Valine scores.

The lysin sequences were also analyzed using TreeSAAP. Table
5 shows a TreeSAAP output that lists the significant amino acid
properties based on z-scores. From this table we can conclude
that Hydropathy and Isoelectric Point show significantly smaller
proportions of very radical and radical changes, respectively.
Polarity-G shows a significantly higher proportion of moderate
changes, and lower proportions of radical and very radical changes.
Volume shows a significantly higher proportion of changes that
conserve the property, and lower proportions of moderate and very
radical changes. Therefore, Volume seems to be conserved. The
absence of a property (or category) implies that no significant
departures from neutrality are found, and so there is no significant
deviation from the assumption of selective neutrality for Polarity-
Z. To compare our results with those of TreeSAAP, we performed
a hierarchical analysis using data derived from the same ancestral
sequences used by TreeSAAP (obtained using baseml). Posterior
estimates of the proportions of sites with β = 0, β = 1, 0 < β < 1
and β > 1 for the five properties (not shown) are similar to those
in Table 3. Specifically, Volume shows the largest percentage of
sites (about 30%) lying in the strongly conserved and conserved
categories, and the smallest percentage of sites (about 1%) in the
radically changing category. These average results agree with those
obtained from TreeSAAP.

4 DISCUSSION
We present a Bayesian hierarchical regression model that allows
us to detect radical amino acid changes that could facilitate
the identification of adaptations by quantifying the magnitude of
changes in amino acid properties. The model is flexible, with the
following main features: (i) It provides global results, i.e., point

estimates and associated uncertainties of the posterior probabilities
of the proportions of sites that are neutral, highly conserved,
conserved or radically changing with respect to a particular property
can be obtained; (ii) It provides site-specific results, i.e., the
approach can identify sites showing mutations that radically change
or strongly conserve a particular property, even in cases where the
mutations are neutral on average. This is an important improvement
over models that detect selection only in cases where it leads to an
excess in the total number of radical changes, since essentially these
methods average over all sites; (iii) The hierarchical specifications
of the priors ensure that the models and methods presented here
properly account for multiple comparisons when a large number of
amino acid sites are analyzed. (iv) The prior specification allows
borrowing of information across sites and properties for estimation
purposes which leads to higher power with respect to approaches
that analyze sites or properties individually (Zhang and Cao, 2009).
(v) The hierarchical structure also preserves the parsimony of the
model; indeed, hierarchical priors induce correlations across model
parameters that reduce the number of effective parameters in the
model and prevent overfitting without hindering model flexibility
(for further discussion and two examples see Gelman et al., 1996
and Zhu and Hero, 2007).

The methods in Sainudiin et al. (2005) and Wong et al. (2006)
are also site-specific but, unlike those proposed here, they rely
on prespecified partitions of the amino acids according to some
physicochemical property and so, the results are highly dependent
on the partition being used. Our hierarchical models are more
similar to methods based on amino acid distances, such as
those of McClellan et al. (2005). However, as mentioned above,
the hierarchical models properly handle the multiple comparison
problem when several sites are considered.

The proposed hierarchical approach assumes that the phylogeny
underlying the sequences is known, and that a specific model of
sequence evolution is used to generate the ancestral sequences.
This is also true for the methods we compared to, such as those
implemented in TreeSAAP, or those in Pupko et al. (2003)
and Sainudiin et al. (2005). When there is uncertainty regarding
the phylogeny and/or the evolutionary model used to generate
the ancestral sequences, such uncertainty needs to be taken into
account. One way of doing so is by performing hierarchical analyses
with data obtained from several of the most likely phylogenies
and/or evolutionary models and seeing if the results are sensitive
with respect to these parameters. This was the route we took
here by considering hierarchical analyses of data obtained under
different phylogenies. A more robust way of dealing with this
would be extending the regression models to consider phylogenetic
uncertainty. This will be explored in the future, however, it is also
worth mentioning that such approaches would be computationally
intensive (Huelsenbeck et al., 2000).

The regression methods presented here complement traditional ω-
based methods for detecting molecular adaptation by providing a
qualitative assessment of the amino acid changing mutations with
respect to a specific set of physicochemical properties. When both
methods are combined, it is possible to determine which sites among
those labeled as positively selected using ω-based methods are
showing radical changes with respect to a given property. Based
on the analyses presented here we see that in some cases, sites
that have a large number of nonsynonymous substitutions, and are
therefore identified as positively selected, may conserve a given
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property. Conversely, sites showing a relatively small number of
substitutions, possibly classified as neutral or negatively selected,
may show substitutions that radically change a given property. If
such changes are advantageous to the protein function, then these
sites could be targets for natural selection (Sainudiin et al., 2005).
Thus, the regression methods can be viewed as complementary to
any codon-based methods, providing additional information about
putative molecular adaptations that could be further explored.

The analyses presented here use a small number of properties that
do not appear to be highly correlated in terms of the observed (and
expected) distances for the alignments considered. However, the
amino acid index database has a very large number of properties,
many of which are highly correlated. The hierarchical regression
framework can be extended to handle a large number of possibly
correlated amino acid properties by incorporating a factor structure.
Factor models explain the variability in the data in terms of
a smaller number of unobserved variables called factors. The
idea is similar to that of principal component analysis. We will
consider such extensions in the near future. For the time being,
we suggest using the hierarchical regression model with a small
number of relevant properties. The properties can be chosen based
on preliminary principal component analysis or other relevant
biological information.
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