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Summary. We discuss functional clustering procedures for nested designs, where mul-
tiple curves are collected for each subject in the study. We start by considering the
application of standard functional clustering tools to this problem, which leads to group-
ings based on the average profile for each subject. After discussing some of the short-
comings of this approach, we present a mixture model based on a generalization of the
nested Dirichlet process that clusters subjects based on the distribution of their curves.
By using mixtures of generalized Dirichlet processes, the model induces a much more
flexible prior on the partition structure than other popular model-based clustering meth-
ods, allowing for different rates of introduction of new clusters as the number of obser-
vations increases. The methods are illustrated using hormone profiles from multiple
menstrual cycles collected for women in the Early Pregnancy Study.

Keywords: Nonparametric Bayes; Nested Dirichlet Process; Functional Clustering; Hi-
erarchical functional data; Hormone Profile.

1. Introduction

The literature on functional data analysis has seen a spectacular growth in the last
twenty years, showing promise in applications ranging from genetics (Ramoni et al.,
2002; Luan & Li, 2003; Wakefield et al., 2003) to proteomics (Ray & Mallick, 2006),
epidemiology (Bigelow & Dunson, 2009) and oceanography (Rodriguez et al., 2008a).
Because functional data are inherently complex, functional clustering is useful as an
exploratory tool in characterizing variability among subjects; the resulting clusters
can be used as a predictive tool or simply as a hypothesis-generating mechanism that
can help guide further research. Some examples of functional clustering methods in-
clude Abraham et al. (2003), who use B-spline fitting coupled with k-means clustering;
Tarpey & Kinateder (2003), who apply k-means clustering via the principal points
of random functions; James & Sugar (2003), who develop methods for sparsely sam-
pled functional data that employ spline representations; Garćıa-Escudero & Gordaliza
(2005), where the robust k-means method for functional clustering is developed; Ser-
ban & Wasserman (2005), who use a Fourier representations for the functions along
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Fig. 1. Comparison of hormone profiles for three women in the Early Pregnancy Study.
Frames (a) to (c) show multiple profiles for each woman, while frame the (d) shows the average
profile for each woman.
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with k-means clustering; Heard et al. (2006), where a Bayesian hierarchical clustering
approach that relies on spline representations is proposed; Ray & Mallick (2006), who
build a hierarchical Bayesian model that employs a Bayesian nonparametric mixture
model on the coefficients of the wavelet representations; and Chiou & Li (2007), where
a k-centers functional clustering approach is developed that relies on the Karhunen-
Loève representation of the underlying stochastic process generating the curves and
accounts for both the means and the modes of variation differentials between clusters.

All of the functional clustering methods described above have been designed for
situations where a single curve is observed for each subject or experimental condition.
Extensions to nested designs where multiple curves are collected per subject typically
assume that coefficients describing subject-specific curves arise from a common para-
metric distribution, and clustering procedures are then applied to the parameters of
this underlying distribution. The result is a procedure that generates clusters of sub-
jects based on their average response curve, which is not appropriate in applications
in which subjects vary not only in the average but also in the variability of the repli-
cate curves. For example, in studies of trajectories in reproductive hormones that
collect data from repeated menstrual cycles, the average trajectory may provide an
inadequate summary of a woman’s reproductive functioning. Some women have reg-
ular cycles with little variability across cycles in the hormone trajectories, while other
women vary substantially across cycles, with a subset of the cycles having very differ-
ent trajectory shapes. In fact, one indication of impending menopause and a decrease
in fecundity is an increase in variability across the cycles. Hence, in forming clusters
and characterizing variability among women and cycles in hormone trajectories, it is
important to be flexible in characterizing both the mean curve and the distribution
about the mean. This situation is not unique to hormone data, and similar issues
arise in analyzing repeated medical images as well as other applications.

This paper discusses hierarchical Bayes models for clustering nested functional
data. We motivate these models using data from the Early Pregnancy Study (EPS)
(Wilcox et al., 1998), where progesterone levels were collected for both conceptive
and nonconceptive women from multiple menstrual cycles. Our models use splines
bases along with mixture priors to create sparse but flexible representations of the
hormone profiles, and can be applied directly to other basis systems such as wavelets.
We start by introducing a hierarchical random effects model on the spline coefficients
which, along with a generalization of the Dirichlet process mixture (DPM) prior
(Ferguson, 1973; Sethuraman, 1994; Escobar & West, 1995), allows for mean-response-
curve clustering of women, in the spirit of Ray & Mallick (2006). Then, we extend the
model to generate distribution-based clusters using a nested Dirichlet process (NDP)
(Rodriguez et al., 2008b). The resulting model simultaneous clusters both curves and
subjects, allowing us to identify outlier curves within each group of women, as well
as outlying women whose distribution of profiles differs from the rest. To be best of
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our knowledge, there is no classical alternative for this type of multilevel clustering.
In order to provide some insight into the challenges associated with functional

clustering in nested designs, consider the hormonal profiles from the EPS depicted
in Figure 1. Frames (a) to (c) depict the hormone profiles for 3 women, while frame
(d) shows the mean profile corresponding to each one of them, obtained by simply
averaging all available observations at a given day within the cycle. When looking
at the mean profiles in (d), women 43 and 36 seem to have very similar hormonal
responses, which are different from those of woman 3. However, when the individual
profiles are considered, it is clear that most of the cycles of woman 43 look like those
of woman 3 and that the big difference in the means is driven by the single abnormal
cycle.

The use of Bayesian nonparametric mixture models for clustering has a long history
(Medvedovic & Sivaganesan, 2002; Quintana & Iglesias, 2003; Lau & Green, 2007),
and presents a number of practical advantages over other model-based clustering
techniques. Nonparametric mixtures induce a probability distribution on the space of
partitions of the data, therefore we do not need to specify in advance the number of
clusters in the sample. Once updated using the data, this distribution on partitions
allows us to measure uncertainty in the clustering structure (including that associated
with the estimation of the curves), providing a more complete picture than classical
methods. In this paper, we work with a generalized Dirichlet process (GDP) first
introduced by Hjort (2000) and study some of its properties as a clustering tool.
In particular, we show that the GDP generates a richer prior on data partitions
than those induced by popular models such as the Dirichlet process (Ferguson, 1973)
or the two parameter Poisson-Dirichlet process (Pitman, 1996), as it allows for an
asymptotically bounded number of clusters in addition to logarithmic and power law
rates of growth.

The paper is organized as follows: Section 2 reviews the basics of nonparametric
regression and functional clustering, while Section 3 explores the design of nonpara-
metric mixture models for functional clustering. Building on these brief reviews, Sec-
tion 4 describes two Bayesian approaches to functional clustering in nested designs,
while Section 5 describes Markov chain Monte Carlo algorithms for this problem. An
illustration focused on the EPS is presented in Section 6. Finally, Section 7 presents
a brief discusson and future research directions.

2. Model-based functional clustering

To introduce our notation, consider first a simple functional clustering problem where
multiple noisy observations are collected from functions f1, . . . fI . More specifically,
for subjects i = 1, . . . , I and within-subject design points t = 1, . . . , Ti, observations
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consist of ordered pairs (xit, yit) where

yit = fi(xit) + εit, εit ∼ N(0, σ2
i ).

For example, in the EPS, yit corresponds to the level of progesterone in the blood of
subject i collected at day xit of the menstrual cycle, and fi denotes a smooth trajectory
in progesterone for woman i (initially supposing a single menstrual cycle of data from
each woman), and clusters in {fi}Ii=1 could provide insight into the variability in
progesterone curves across women, while potentially allowing us to identify abnormal
or outlying curves.

If all curves are observed at the same covariate levels (i.e., Ti = T and xit = xt for
every i), a natural approach to functional clustering is to apply standard clustering
methods to the data vectors, yi = (yi1, . . . , yiT )′. For example, in the spirit of Ramsay
& Silverman (2005), one could apply hierarchical or K-means clustering to the first
few principal components (Yeung & Ruzzo, 2001). From a model-based perspective,
one could instead suppose that yi is drawn from a mixture of k multivariate Gaus-
sian distributions, with each Gaussian corresponding to a different cluster (Fraley &
Raftery, 2002; Yeung et al., 2001). The number of clusters could then be selected
using the BIC criteria (Fraley & Raftery, 2002; Li, 2005) or a nonparametric Bayes
approach could be used to bypass the need for this selection, while allowing the num-
ber of clusters represented in a sample of I individuals to increase stochastically with
sample size (Medvedovic & Sivaganesan, 2002). However, in many studies, including
the EPS, there are different numbers and spacings of observations on the different
subjects.

More generally, we can represent the unknown function fi as a linear combination
of pre-specified basis functions {bk}pk=1, i.e., we can write

fi(xit) = θi0 +
p∑
k=1

θikbk(xit)

where θi = (θi0, θi1, . . . , θip) are basis coefficients specific to subject i, with variability
in these coefficients controlling variability in the curves {fi}Ii=1. A common approach
to functional clustering is to induce clustering of the curves through clustering of
the basis coefficients (Abraham et al., 2003; Heard et al., 2006). Then the methods
discussed above for clustering of the data vectors {yi}Ii=1 in the balanced design case
can essentially be applied directly to the basis coefficients {θi}Ii=1.

Although the methods apply directly to other choices, our focus will be on splines,
which have been previously used in the context of hormone profiles (Brumback & Rice,
1998; Bigelow & Dunson, 2009); given a set of knots τ1, . . . , τp, the k-th member of
the basis system is defined as

bk(x) = (x− τi)q+
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where (·)+ = max{·, 0}. Given the knot locations, inferences on θi and σ2
i can be

carried out using standard linear regression tools, however, selecting the number and
location of the nodes τ1, . . . , τp can be a challenging task. A simple solution is to
use a large number of equally spaced knots, together with a penalty term on the
coefficients to prevent overfitting. From a Bayesian perspective, this penalty term
can be interpreted as a prior on the spline coefficients; for example, the maximum
likelihood estimator (MLE) obtained under an L2 penalty on the spline coefficients is
equivalent to the maximum a posteriori estimates for a Bayesian model under a normal
prior, while the MLE under an L1 penalty is equivalent to the maximum a posterior
estimate under independent double-exponential priors on the spline coefficients.

Instead of the more traditional Gaussian and double exponential priors, in this
paper we focus on zero-inflated priors, in the spirit of Smith & Kohn (1996). Priors
of this type enforce sparsity by zeroing out some of the spline coefficients and, by
allowing us to select a subset of the knots, provides adaptive smoothing. In their
simpler form, zero-inflated priors assume that the coefficients are independent from
each other and that

θik|γ, σ2
i ∼ γN(0, ωkσ2

i ) + (1− γ)δ0, σ2
i ∼ IGam(ν1, ν2), (1)

where δx denotes the degenerate distribution putting all its mass at x, ωk controls the
overdispersion of the coefficients with respect to the observations and γ is the prior
probability that the coefficient θik is different from zero. In order to incorporate a
priori dependence across coefficients, we can reformulate the hierarchical model by
introducing 0-1 random variables λi1, . . . , λip such that

yi|θi, σ2
i ,Λi ∼ N(B(xi)Λiθi, σ

2
i I), θi|σ2

i ∼ N(0, σ2
iΩ), σ2

i ∼ IGam(ν1, ν2),

where yi = (yi1, . . . , yini) and xi = (xi1, . . . , xini) are, respectively, the vectors
of responses and covariates associated with subject i, B(xi) is the matrix of ba-
sis functions also associated with subject i with entries [B(xi)]tk = bk(xit), and
Λi = diag{λi1, . . . , λip} and λi equals 1 independently with probability γ. Note that
if Ω is a diagonal matrix and [Ω]ii = ωi we recover the independent priors in (1). For
the single curve case, choices for Ω based on the regression matrix B(xi) are discussed
in DiMatteo et al. (2001), Liang et al. (2005) and Paciorek (2006).

Although the preceding two-stage approach is simple to implement using off-the-
shelf software, it ignores the uncertainty associated with the estimation of the basis
coefficients while clustering the curves. In the spirit of Fraley & Raftery (2002), an
alternative that deals with this issue is to employ a mixture model of the form

yi|{θ∗k}, {σ∗2k }, {Λ
∗
k} ∼

K∑
k=1

wkN
(
B(xj)Λ∗kθ

∗
k, σ
∗2
k I
)
,

K∑
k=1

wk = 1, (2)
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where θ∗k is the vector of coefficients associated with the k-th cluster, Λ∗k is the
diagonal selection matrix for the k-th cluster, σ∗2k is the observational variance asso-
ciated with observations collected in the k-th cluster, wk can be interpreted as the
proportion of curves associated with cluster k, and K is the maximum number of clus-
ters in the sample. From a frequentist perspective, estimation of this model can be
performed using expectation-maximization (EM) algorithms, however, such EM algo-
rithm leaves the issue of how many mixture components to use unanswered. Alterna-
tively, Bayesian inference can be performed for this model using Markov chain Monte
Carlo (MCMC) algorithms once appropriate priors for the vector w = (w1, . . . , wK)
and the cluster-specific parameters (θ∗k,Λ

∗
k, σ
∗2
k ) have been chosen, opening the door

to simple procedures for the estimation of the number of clusters in the sample.

3. Bayesian nonparametric mixture models for functional data

Note that the model in (2) can be rewritten as a hierarchical model by introducing
latent variables {(θi, σ2

i ,Λi)}Ii=1 so that

yi|θi, σ2
i ,Λi ∼ N

(
B(xi)Λiθi, σ

2
i I
)
θi, σ

2
i ,Λi|G ∼ G G(·) =

K∑
k=1

wkδ(θ∗k,σ∗2k ,Λ∗
k)(·).

(3)

Therefore, specifying a joint prior on w and {(θ∗k, σ∗2k ,Λ
∗
k)}Kk=1 is equivalent to specify-

ing a prior on the discrete distributionG generating the latent variables {(θi, σ2
i ,Λi)}Ii=1.

In this section we discuss strategies to specify flexible prior distribution on this mixing
distribution in the context of functional clustering. In particular we concentrate on
nonparametric specifications for G through the class of stick-breaking distributions.

A random probability measure G on Rp is said to follow a stick-breaking prior
(Ishwaran & James, 2001; Ongaro & Cattaneo, 2004) with baseline measure G0 and
precision parameters {al}Ll=1 and {bl}Ll=1 if

G(·) =
K∑
k=1

wkδϑk
(·) (4)

where the atoms {ϑk}Kk=1 are independent and identically distributed samples from
G0 and the weights {wk}Kl=1 are constructed as wk = uk

∏
s<k(1− us), with {uk}Kk=1

another independent and identically distributed sequence of random variables such
that uk ∼ Beta(ak, bk) for k < K and uK = 1. For example, taking K =∞, ak = 1−a
and bk = b+ ka for 0 ≤ a < 1 and b > −a yields the two-parameter Poisson-Dirichlet
process (Pitman, 1995; Ishwaran & James, 2001), denoted PY(a, b,G0), with the
choice a = 0 resulting in the Dirichlet Process (Ferguson, 1973; Sethuraman, 1994),
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denoted DP(b,G0). In mixture models such as (3), G0 acts as the common prior for
the cluster-specific parameters {ϑk}Kk=1, while the sequences {ak}Kk=1 and {bk}Kk=1

control the a priori expected number and size of the clusters.
The main advantage of nonparametric mixture models such as the Poisson-Dirichlet

process as a clustering tool is that they allow for automatic inferences on the number
of components in the mixture. Indeed, these models induce a prior probability on all
possible partitions of the set of observations, which is updated based on the informa-
tion contained in the data. However, Poisson-Dirichlet processes have two properties
that might be unappealing in our EPS application; firstly, they place a relatively large
probability on partitions that include many small clusters, and secondly, they imply
that the number of clusters will tend to grow logarithmically (if a = 0) or as a power
law (if a > 0) as more observations are included in the data set. However, priors that
favor introduction of increasing numbers of clusters without bound as the number of
subjects increase have some disadvantages in terms of interpretability and sparsity in
characterizing high-dimensional data. For example, in applying DP mixture models
for clustering of the progesterone curves in EPS, Bigelow and Dunson (2009) obtained
approximately 32 different clusters, with half of these clusters singletons. Many of
the clusters appeared similar, and it may be that this large number of clusters was
partly an artifact of the DP prior. Dunson (2009) proposed a local partition process
prior to reduce dimensionality in characterizing the curves, but this method does not
produce easily interpretable functional clusters. Hence, it is appealing to use a more
flexible global clustering prior that allows the number of clusters to instead converge
to a finite constant.

With this motivation, we focus on the generalized Dirichlet process (GDP) in-
troduced by Hjort (2000), denoted GDP(a, b,G0). The GDP corresponds to a stick-
breaking prior with K =∞, ak = a and bk = b for all k. When compared against the
Poisson-Dirichlet process, the GDP has quite distinct properties.

Theorem 1. Let Zn be the number of distinct observations in a sample of size n
from a distribution G, where G ∼ GDP(a, b,G0) . The expected number of clusters
E(Zn) is given by

E(Zn) =
n∑
i=1

iaΓ(a+ b)Γ(b+ i− 1)
Γ(b)Γ(a+ b+ i)− Γ(a+ b)Γ(b+ i)

The proof can be seen in appendix A. Note that for a = 1, this expression
simplifies to E(Zn) =

∑n
i=1

b
b+i−1 ∼ o(log n), a well known result for the Dirichlet

process (Antoniak, 1974). Letting Wn = Zn−Zn−1 denote the change in the number
of clusters in adding the n-th individual to a sample with n − 1 subjects, Stirling
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approximation can be used to show that

E(Wn) =
naΓ(a+ b)Γ(b+ n− 1)

Γ(b)Γ(a+ b+ n)− Γ(a+ b)Γ(b+ n)
≈ C(a, b)n−a.

where C(a, b) = {aΓ(a + b)/Γ(b)} exp{−2(a + 1)}. Hence, E(Wn) → 0 as n → ∞
and new clusters become increasingly rare as the sample size increases. Note that
for a ≤ 1, the number of clusters will grow slowly but without bound as n increases,
with E(Zn) → ∞. The rate of growth in this case is proportional to n1−a, which is
similar to what is obtained by using the Poisson Dirichlet prior (Sudderth & Jordan,
2009). However, when a > 1 the expected number of clusters instead converges to
a finite constant, which is a remarkable difference compared with the Dirichlet and
Poisson-Dirichlet process. As mentioned above, there may be a number of practical
advantages to bounding the number of clusters. In addition, a finite bound on the
number clusters seems to be more realistic in many applications, including the original
species sampling applications that motivated much of the early development in this
area (McCloskey, 1965; Pitman, 1995).

In order to gain further insight into the clustering structure induced by the
GDP(a, b,G0), we present in Figure 2 the relationship between the size of the largest
cluster and the mean number of clusters in the partition (left panel), and the mean
cluster size and the number of clusters (right panel) for a sample of size n = 1000.
Each continuous line correspond to a combination of shape parameters such that
a/(a+ b) is constant, while the dashed line in the plots corresponds to the combina-
tions available under a Dirichlet process. The plots demonstrate that the additional
parameter in the GDP allows us to simultaneously control the number of clusters and
the relative size of the clusters, increasing the flexibility of the model as a clustering
procedure.

The previous discussion focused on the impact of the prior distribution for the mix-
ture weights on the clustering structure. Another important issue in the specification
of the model is the selection of the baseline measure G0. Note that in the functional
clustering setting ϑk = (θ∗k, σ

∗2
k ,Λ

∗
k), and therefore a computationally convenient

choice that is in line with our previous discussion on basis selection and zero-inflated
priors is to write

G0(θ, σ2,Λ) = N(θ|0, σ2Ω)× IGam(σ2|ν1, ν2)×
p∏
s=1

Ber(λs|γ) (5)

A prior of this form allows differential adaptive smoothing for each cluster in the data;
the level of smoothness is controlled by γ (the prior probability of inclusion for each
of the spline coefficients), and therefore it is convenient to assign to it a hyperprior
such as γ ∼ Beta(η1, η2).
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Fig. 2. Clustering structure induced by a GDP(a, b, G0) for a sample of size n = 1000. Panel
(a) shows the relationship between the size of the largest cluster and the mean number of
clusters for different GDPs, where each curve shares a common E(uk) = a/(a + b). Panel (b)
shows the relationship between the average cluster size and the mean number of clusters. The
dashed lines corresponds to the combinations available under a standard Dirichlet process.
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4. Functional clustering in nested designs

Consider now the case where multiple curves are collected for each subject in the
study. In this case, the observations consist of ordered pairs (yijt, xijt) where

yijt = fij(xijt) + εijt,

where fij is the jth functional replicate for subject i, with i = 1, . . . , I, j = 1, . . . , ni
and t = 1, . . . , Tij . For example, in the EPS, fij is the measurement error-corrected
smooth trajectory in the progesterone metabolite PdG over the j-th menstrual cycle
from woman i, with t indexing the sample number and xijt denoting the day within
the i, j menstrual cycle relative to a marker of ovulation day.

A natural extension of (3) to nested designs arises by modeling the expected
evolution of progesterone in time for cycle j of woman i as fij = B(xij)θij and
using a hierarchical model for the set of curve-specific parameters {θij} in order to
borrow information across subjects and/or replicates. In the following subsections,
we introduce two alternative nonparametric hierarchical priors that avoid parametric
assumptions on the distribution of the basis coefficients, while inducing hierarchical
functional clustering.

4.1. Mean-curve clustering
As a first approach, we consider a Gaussian mixture model, which characterizes the
basis coefficients for functional replicate j from subject i as conditionally independent
draws from a Gaussian distribution with subject-specific mean and variance, in the
spirit of Booth et al. (2008):

yij |θij , σi ∼ N(B(xij)θij , σ2
i I) θij |θi,Λi, σ

2
i ∼ Gi Gi = N(Λiθi, σ

2
iΣ) (6)

where Λi,θi, σ
2
i are as described in expression (3). In this model, the average curve

for subject i is obtained as E{fij(x) |Λi,θi, σ
2
i } = B(x)Λiθi, with Λi providing a

mechanism for subject-specific basis selection, so that the curves from subject i only
depend on the basis functions corresponding to non-zero diagonal elements of Λi. The
variability in the replicate curves for the same subject is controlled by σ2

iΣ, with the
subject-specific multiplier allowing subjects to vary in the degree of variability across
the replicates. The need to allow such variability is well justified in the hormone curve
application.

In order to borrow information across women, we need a hyperprior for the woman
specific parameters {(Λi, σ

2
i ,θi)}Ii=1. Since we are interested in clustering subjects, a

natural approach is to specify this hyperprior nonparametrically through a generalized
Dirichlet process centered around the baseline measure in (5), just as we did for the
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single curve case. This yields

(θi, σ2
i ,Λi)|G ∼ G G ∼ GDP(a, b,G0)

with G0 given in (5). Since the distribution G is almost surely discrete, the model
identifies clusters of women with similar average curves. This is clearer if we marginal-
ize out the curve-specific coefficients {θij} and the unknown distribution G to obtain
the joint likelihood of the data from subject i

yi1, . . . ,yini
|{wk}, {θ∗k}, {σ∗2k }, {Λ

∗
k} ∼
K∑
k=1

wk


ni∏
j=1

N
(
B(xij)Λ∗kθ

∗
k, σ
∗2
k (I + Σ)

) (7)

By incorporating the distribution of the selection matrices Λ1, . . . ,ΛI in the ran-
dom distribution G, this model allows for a different smoothing pattern for each
cluster of curves. This is an important difference with a straight generalization of
the model in Ray & Mallick (2006), who instead treat the selection matrix as a hy-
perparameter in the baseline measure G0 and therefore induce a common smoothing
pattern across all clusters.

The model is completed by assigning priors for the hyperparameters. For the
random effect variances we take inverse-Wishart priors.

Ω ∼ IWis(νΩ,Ω0) Σ ∼ IWis(νΣ,Σ0)

In the spirit of the unit information priors (Paciorek, 2006), the hyper-parameters
for these priors can be chosen so that Ω0 and Σ0 are proportional to

I∑
i=1

ni∑
j=1

B(xij)′B(xij)

Finally, the concentration parameters a and b are given gamma priors a ∼ Gam(κa, τa)
and b ∼ Gam(κb, τb) and the probability of inclusion γ is assigned a beta prior,
γ ∼ Beta(η1, η2).

4.2. Distribution-based clustering
Because the subject-specific distributions {Gi}Ii=1 were assumed to be Gaussian and
the nonparametric prior was placed on their means, the model in the previous section
clusters subjects based on their average profile. However, as we discussed in Section
1, clustering based on the mean profiles might be misleading in studies such as the
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EPS in which there are important differences among subjects in not only the mean
curve but also the distribution about the mean. In hormone curve applications, it is
useful to identify clusters of trajectories over the menstrual cycle to study variability
in the curves and identify outlying cycles that may have reproductive dysfunction.
It is also useful to cluster women based not simply on the average curve but on the
distribution of curves. With this motivation, we generalize our hierarchical nonpara-
metric specification to construct a model that clusters curves within subjects as well
as subjects.

To motivate our nonparametric construction, consider first the simpler case in
which there are only two types of curves in each cluster of women (say, normal and
abnormal), so that it is natural to model the subject-specific distribution as a two-
component mixture where

yij |$i,Λ1i,θ1i, σ
2
1i,Λ2i,θ2i, σ

2
2i ∼

$iN(B(xij)Λ1iθ1i, σ
2
1iI) + (1−$i)N(B(xij)Λ2iθ2i, σ

2
2iI) (8)

where πi can be interpreted as the proportion of curves from subject i that are in
group 1 (say, normal), and (Λ1i,θ1i, σ

2
1i) are the parameters that describe curves from

a normal cycle and (Λ2i,θ2i, σ
2
2i) are the parameters describing the curves from an

abnormal cycle. Note that in this case we have not one but two variance parameters
for each individual, which provides additional flexibility by allowing each cluster of
curves to present a different level of observational noise. This feature is desirable in
the EPS because, for a given woman, observational noise in abnormal cycles tends to
be larger than in normal cycles.

Under this formulation, the subject-specific distribution is described by the vector
of parameters ($i,Λ1i,θ1i, σ

2
1i,Λ2i,θ2i, σ

2
2i), and clustering subjects could be accom-

plished by clustering these vectors. We can accomplish this by using another mixture
model that mimics (2) and (7), so that

yi1, . . . ,yini
|{πk}, {$k}, {θ∗1k}, {σ∗21k}, , {Λ

∗
1k}, {θ

∗
2k}, {σ∗22k}, {Λ

∗
2k} ∼

K∑
k=1

πk

ni∏
j=1

{
$kN(B(xij)Λ∗1kθ

∗
1k, σ

∗2
1kI) + (1−$k)N(B(xij)Λ∗2lθ

∗
2k, σ

∗2
1kI)

}
(9)

As with the simpler model-based functional clustering model we introduced at the
end of Section 2, we could generate ML estimators for the parameters of this model
using an EM algorithm. However, such an approach still leaves open the question of
how many mixture components should be used, both at the subject and curve level.
For this reason, we adopt a Bayesian perspective and generalize the model using the
nonparametric priors discussed in Section 3. To do so, we start by rewriting (9) as a
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general mixture model where

yij |θij , σ2
ij ,Λij ∼ N

(
B(xij)Λijθij , σ

2
ijI
)

θij , σ
2
ij ,Λij |Gi ∼ Gi (10)

and Gi is a discrete distribution which is assigned a nonparametric prior. Note that
this is analogous to the formulation in (6), but by replacing the Gaussian distribution
with a random distribution with a nonparametric prior we are modeling the within-
subject variability by clustering curves into groups with homogeneous shape.

Now, we need to define a prior over the collection {Gi}Ii=1 that induces clustering
among the distributions. For example, we could use a discrete distribution whose
atoms are in turn random distributions, for example,

Gi ∼
∞∑
k=1

πkδG∗
k

where πk = vk
∏
s<k(1 − vs), vk ∼ Beta(a1, b1) and G∗k ∼ GDP(a2, b2, G0) indepen-

dently. This implies that

G∗k =
∞∑
l=1

$lkδ(θ∗lk,σ2∗
lk ,Λ

∗
lk) (θ∗lk, σ

2∗
lk ,Λ

∗
lk) ∼ G0.

with $lk = ulk
∏
s<l(1 − usk) and ulk ∼ Beta(a2, b2) and G0 as in (5). Therefore,

if we were to replace the collection {G∗k}∞k=1 with random discrete distributions with
only two atoms, and we were to integrate over the random distributions {Gi}Ii=1, this
model would be equivalent to (9) with K =∞.

This model on the collection {Gi}Ii=1 is a generalization of the nested Dirichlet
process introduced in Rodriguez et al. (2008b) and, as with other models based on
nested nonparametric processes, interesting special cases can be obtained by consid-
ering the limit of the precision parameters. For example, letting b2 → 0 while keeping
a2 fixed induces a model where all menstrual cycles within a woman are assumed to
have the same profile, and subjects are clustered according to their mean cycle. Such
a model is equivalent to the one obtained by taking Σ→ 0 in (6). On the other hand,
by letting b1 → ∞ while keeping a1 constant, we obtain a model where all subjects
are treated as different and menstrual cycles are clustered within each women. In
this case, information is borrowed across the menstrual cycles of each women, but not
across women.

Again, the model is completed by specifying prior distributions on the remaining
parameters. As before, we let Ω ∼ IWis(νΩ,Ω0), ν2 ∼ Gam(ρ, ψ) and γ ∼ Beta(η1, η2),
providing a conditionally conjugate specification amenable for simple computational
implementation. Finally, for the precision priors of the GDPs we set

a1 ∼ Gam(κa1 , τa1) b1 ∼ Gam(κb1 , τb1)
a2 ∼ Gam(κa2 , τa2) b2 ∼ Gam(κb2 , τb2)
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5. Computation

As is commonplace in Bayesian inference, we resort to Markov chain Monte Carlo
(MCMC) algorithms (Robert & Casella, 1999) for computation in our functional
clustering models. Given an initial guess for all unknown parameters in the model,
the algorithms proceed by sequentially sampling blocks of parameters from their full
conditional distributions. In particular, we design our algorithms using truncated
versions of the GDP and the nested GDP, where a large but finite number of atoms is
used to approximate the nonparametric mixture distributions; the well known results
on the convergence of truncations as the number of atoms grows that were originally
presented in Ishwaran & James (2001) and Rodriguez et al. (2008b) can be directly
extended to this problem (see Appendix B). In this section we briefly describe the
blocked Gibbs sampling algorithms associated with the two models discussed in Sec-
tion 4, further details can be seen in Appendix C.

5.1. Sampling in the mean-based clustering model

For the purpose of sampling the parameters of the mean-based clustering model we
truncate the stick-breaking construction of the random distribution G so that it has
K atoms, i.e,

G(·) =
K∑
k=1

wkδ(θ∗k,σ∗2k Λ∗
k)

where wk = uk
∏
s<k(1−us) with uk ∼ Beta(a, b) for k < K and uk = 1, which ensures

that the weights of all components add up to 1. Also, we introduce a sequence of
latent indicator variables ζ1, . . . , ζI , where ζi = k if and only if subject i is assigned
to cluster k, (θi, σ2

i ,Λi) = (θ∗ζi
, σ∗2ζi

,Λ∗ζi
). After introducing these latent indicators,

the posterior distribution of the model parameters can be written as:

p({θij}, {θ∗k}, {σ∗2k }, {Λ
∗
k}, {ζi}, {wk},Σ,Ω, a, b, γ |{yij}) ∝

p({yij}|{θij}, {σ∗2k }, {ζi})p({θij}|{θ
∗
k}, {Λ

∗
k}, {σ∗2k },Σ, {ζi})p(Σ)

p({θ∗k}, {Λ
∗
k}, {σ∗2k }|Ω, ν2, γ)p({ζi}|{wk})p({wk}|a, b)p(Ω)p(ν2)p(γ)p(a, b)

The indicators {ζi} and the cluster specific parameters {θ∗k}, {Λ
∗
k} and {σ∗2k } can

be sampled easily after integrating out the curve-specific parameters {θij}. Specif-
ically, ζi can be sampled conditionally on all other parameters in the model from a
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multinomial distribution where

Pr(ζi = k| · · · ) ∝ wkσ
−

Pni
j=1 Tij

ζi
×

exp

− 1
2σ2

ζi

ni∑
j=1

(
yij −B(xij)Λ∗ζi

θ∗ζi

)′ (Σ + I)−1
(
yij −B(xij)Λ∗ζi

θ∗ζi

)
and k = 1, . . . ,K, while the cluster specific parameters are sampled by first integrating
out θ∗k and σ∗2k and sampling Λ∗k, and then sampling θ∗k and σ∗2k conditionally on Λ∗k
(see Appendix C). The component weights are simulated through the stick-breaking
ratios, whose full conditional distribution is given by

uk| · · · ∼ Beta

(
a+ rk, b+

K∑
s=k+1

rs

)

where rk =
∑I
i=1 1(ζi=k) is the number of observations assigned to component k of

the mixture. Given the indicators and class specific parameters, we can sample the
parameters {θij} independently from their full conditional distribution.

θij | · · · ∼ N
([

B(xij)′B(xij) + Λ∗ζi

′Σ−1Λ∗ζi

]−1 [
B(xij)′yij + Σ−1Λ∗ζi

θ∗ζi

]
,

σ∗2ζi

[
B(xij)′B(xij) + Λ∗ζi

′Σ−1Λ∗ζi

])
The rest of the steps are relatively straightforward. The full conditional random

effects variance Σ can be sampled from an inverse Wishart distribution,

Σ| · · · ∼ IWis

νΣ +
I∑
i=1

ni∑
j=1

Tij ,Σ0 +
I∑
i=1

ni∑
j=1

1
σ∗2ζi

(θij − θζi
)(θij − θζi

)′

 ,

and the parameters of the baseline measure Ω, ν2 and γ are respectively sampled
from another inverse Wishart, a Gamma and a beta distribution,

Ω| · · · ∼ IWis

(
νΩ +Kp,Ω0 +

K∑
k=1

1
σ∗2k

θ∗kθ
∗
k
′

)

ν2| · · · ∼ Gam

(
ρ+Kν1, ψ +

K∑
k=1

σ∗2k

)

γ| · · · ∼ Beta

(
η1 +

K∑
k=1

tr Λ∗k, η2 +Kp−
K∑
k=1

tr Λ∗k

)
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where tr D denotes the trace of the matrix D. Finally, sampling for the precision
parameters a and b is done using a random-walk Metropolis-Hastings algorithm with
log normal proposals.

5.2. Sampling in the distribution-based clustering model
Again, in this case we truncate the stick-breaking constructions to generate a blocked
Gibbs sampler. Hence,

Gi ∼
K∑
k=1

πkδG∗
k

G∗k =
L∑
l=1

$lkδ(θ∗lk,σ∗2lk ,Λ
∗
lk)

Also, we introduce two sequences of latent indicator variables, ζ1, . . . , ζI and
{ξ1j}n1

j=1, . . . , {ξIj}
nI
j=1 such that(θij , σ2

ij ,Λij) = (θ∗ξij ,ζi
, σ∗2ξij ,ζi

,Λ∗ξij ,ζi
). After intro-

ducing these latent indicators, the posterior distribution of the model parameters can
be written as:

p({ζi}, {ξij}, {θ∗lk}, {σ∗2lk }, {Λ
∗
lk}, {πk}, {$lk},Ω, a1, b1, a2, b2, γ |{yij}) ∝

p({yij}|{ζi}, {ξij}, {θ∗lk}, {σ∗2lk }, {Λ
∗
lk})p({θ

∗
lk}, {σ∗2lk }, {Λ

∗
lk}|Ω, ν2, γ)

p({ζi}|{πk})p({πk}|a1, b1)p({ξij}|{$lk})p({$lk}|a2, b2)p(Ω)p(ν2)
p(γ)p(a1, b1)p(a2, b2)

The indicators {ζi} can be sampled from a multinomial distribution with weights

Pr(ζi = k| · · · ) ∝ πk

{
ni∏
j=1

[
L∑
l=1

$lk

(
2πσ∗2lk

)−Tij/2×

exp
{
− 1

2σ∗2lk
(yij −B(xij)Λ∗lkθ

∗
lk)′ (yij −B(xij)Λ∗lkθ

∗
lk)
}]}

for k = 1, . . . ,K. Similarly the indicators {ξij} are sampled from another multinomial
where

Pr(ξij = l| · · · ) ∝ $lζi

(
σ∗lζi

)−Tij ×

exp

{
− 1

2σ∗2lζi

(
yij −B(xij)Λ∗lζi

θ∗lζi

)′ (
yij −B(xij)Λ∗lζi

θ∗lζi

)}

and l = 1, . . . , L. The rest of the parameters are sampled almost identically as in
the mean-based clustering algorithm. The cluster specific parameters are sampled
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by first integrating out θ∗lk and σ∗2lk and sampling Λ∗lk, and then sampling θ∗lk and
σ∗2lk condtionally on Λ∗lk (see Appendix C). The mixture weights are sampled again
through the stick-breaking weights {vk} and {ulk} so that

vk ∼ Beta

(
a1 + rk, b1 +

K∑
s=k+1

rs

)
, ulk ∼ Beta

(
a2 +mlk, b2 +

L∑
s=l+1

mls

)
,

where rk =
∑I
i=1 1(ζi=k) and mlk =

∑I
i=1

∑ni

j=1 1(ζi=k,ξij=l). The parameters of the
baseline measure Ω, ν2 and γ are sampled from their full conditional distributions,

Ω| · · · ∼ IWis

(
νΩ +Kp,Ω0 +

K∑
k=1

L∑
l=1

1
σ∗2lk

θ∗lkθ
∗
lk
′

)

ν2| · · · ∼ Gam

(
ρ+Kν1, ψ +

K∑
k=1

L∑
l=1

σ∗2lk

)

γ| · · · ∼ Beta

(
η1 +

K∑
k=1

L∑
l=1

tr Λ∗lk, η2 +Kp−
K∑
k=1

L∑
l=1

tr Λ∗lk

)

Finally, sampling for the precision parameters a1, b1, a2 and b2 is done as before
using a random-walk Metropolis-Hastings algorithm with log normal proposals.

6. An illustration: The Early Pregnancy Study

Progesterone plays a crucial role in controlling different aspects of reproductive func-
tion in women, from fertilization to early development and implantation. Therefore,
understanding the variability of hormonal profiles across the menstrual cycle and
across subjects is important in understanding mechanisms of infertility and early
pregnancy loss, as well as for developing approaches for identifying abnormal men-
strual cycles and women for diagnostic purposes. Our data, extracted from the Early
Pregnancy Study (Wilcox et al., 1998), consists of daily creatinine-corrected concen-
trations of pregnanediol-3-glucuronide (PdG) for 60 women along multiple menstrual
cycles, measured in micrograms per milligram of creatinine (µg/ml Cr). We focus on
a 13-day intervals extending from 10 days before ovulation to 2 days after ovulation.
According to the results in Dunson et al. (1999), this interval should include the fer-
tile window of the menstrual cycle during which non-contracepting intercourse has
a non-neglible probability of resulting in a conception. Also, for this illustration we
considered only non-conceptive cycles and women with at least four cycles in record.
Therefore, the number of curves per woman varies between 4 and 9.
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We analyzed the EPS data using both the mean-based clustering model described
in Section 4.1 and the distribution-based clustering model of Section 4.2 using the
algorithms from Section 5. In the mean-based clustering algorithm, the GDP was
truncated so that K = 40 , while in the distribution-based algorithm the nested GDP
was truncated so that K = 40 and L = 30. Although these numbers might seem
large given the sample sizes involved, a large number of empty components is helpful
in improving the mixing of the algorithms. In both cases, we used piecewise linear
splines (q = 1) and p = 13 knots, corresponding to each of the days considered in the
study.

Prior distributions in the mean-based clustering algorithm were set as follows. For
the concentration parameters, we used proper priors a ∼ Gam(3, 3) and b ∼ Gam(3, 3),
for the observational variance, we set σ2 ∼ IGam(2, 0.04), so that E(σ2) = 0.04. To
allow uncertainty in the probability of basis selection within the base measure, we let
γ ∼ Beta(2, 4), implying that we expect about one third of the spline basis functions
to be used in any given cluster. Priors for the distribution-based clustering algorithm
were chosen in a similar way, with a1 ∼ Gam(3, 3), b1 ∼ Gam(3, 3), a2 ∼ Gam(3, 3)
and b2 ∼ Gam(3, 3), while for the baseline measure we picked a prior the inclusion
probabilities γ ∼ Beta(2, 4) and the prior on the group specific variances as given by
IGam(2, 0.04).

All inferences presented in this section are based on 100,000 samples obtained after
a burn-in period of 10,000 iterations. Results seemed robust to reasonable changes
in the parameter values, and no convergence issues where detected when reviewing
trace plots for model parameters.

We start by comparing the clustering structure generated by the mean-based and
distribution-based models considered in Section 4. For this purpose, we show in
Figures 3 and 4 heatmaps of the average pairwise clustering probability matrix under
these two models. Entry (i, j) of the matrix contains the posterior probability that
observations i and j are assigned to the same cluster. The black squares in the plots
correspond to point estimates of the clustering structure obtained through the method
described in Lau & Green (2007). In our case, the point estimate is obtained by
minimizing a loss function that assigns equal weights to all pairwise misclassification
errors. Therefore, the resulting plots provide information about the optimal clustering
structure for the data as well as the uncertainty associated with it.

Figures 3 and 4 show that, as our descriptive analysis suggested, under the mean-
based clustering model, subjects 36 and 43 are assigned to a common cluster while
subject 3 is assigned to a different cluster. In contrast, under the distribution-based
clustering model it is subjects 3 and 43 who are placed in a common cluster, while
subject 36 is assigned to another. In addition, note that in spite of the difference in
the composition of the main clusters, the outlier subjects (corresponding to the small
clusters at the top and right of both heatmaps) are very similar under both methods.
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More generally, posterior estimates of the precision parameters on the GDP suggest
that a logarithmic rate of growth for the number of clusters might be reasonable for
this data. For the mean-based clustering, the posterior mean for a was 1.06 and the
95% posterior symmetric credible interval was (0.65, 1.49), while the posterior mean
for b was 0.77 with 95% credible interval (0.17, 1.72). For the distribution based
clustering, the corresponding estimates are 1.03 (0.62, 1.56) and 0.72 (0.20, 1.73) for
a1 and b1, and 1.12 (0.71, 1.43) and 0.27 (0.15, 1.51) for a2 and b2.

Figure 5 shows reconstructed profiles under the distribution-based clustering model
for some representative women in each of the main four groups. Most profiles are flat
before ovulation, when hormone levels start to increase. Also, in most clusters the
profiles tend to be relatively consistent for any single woman. However, we can see
some outliers, typically corresponding to elevated post-ovulation levels and/or early
increases in the hormone levels. Cluster 3 corresponds to women with very low hor-
monal levels, even after ovulation. This group has few outliers, and those present are
characterized by a slightly larger increase in progesterone after ovulation, which is
still under 1 µg/ml Cr. Group 2 shows much more diversity in the hormonal profiles,
as well as a slightly higher baseline level in progesterone level and an earlier rise in
progesterone than group 3. Group 1 tends to show few outliers, and otherwise differs
from the previous ones in a higher baseline level and an early and very fast increase in
progesterone. Finally, group 4 presents “normal” cycles with the highest baseline level
of progesterone (1 µg/ml Cr) and the fastest increase in progesterone after ovulation,
along with “abnormal” cycles with even higher baseline levels and very extreme levels
of progesterone after ovulation (close to 5 µg/ml Cr).

7. Discussion

We have presented two approaches to functional clustering in nested designs. These
approaches look into different features of the nested samples, and are therefore appli-
cable in different circumstances. Our mean-based clustering approach is easier to in-
terpret and provides an excellent alternative when within-subject samples are homoge-
nous. However, when within-subject curves are heterogeneous, mean-based clustering
can lead to biased results. Therefore, in studies such as the EPS, distribution-based
models such as the one described here provide a viable alternative that acknowledges
the heterogeneity in the function replicates from a subject..

One interesting insight that can be gathered from the results of the EPS data
is that, for small numbers of functional replicates per subject and rare outliers, the
effect of the distribution-based clustering is to perform clustering based on the modal,
rather than the mean profile. That is, the distribution-based clustering model is able
to automatically discount the abnormal curves, leading to more appropriate clustering
patterns if the effect of outliers needs to be removed.
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Fig. 3. Average incidence matrix, illustrating probabilities of joint pairwise classification for the
60 women in the EPS under the mean-curve clustering procedure described in Section 4.1.
White corresponds to zero probability, while red corresponds to 1. The squares correspond to
a point estimate of the cluster structure in the data.
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Fig. 4. Average incidence matrix, illustrating probabilities of joint pairwise classification for the
60 women in the EPS under the distribution-based clustering procedure described in Section
4.2. White corresponds to zero probability, while red corresponds to 1. The squares corre-
spond to a point estimate of the cluster structure in the data.
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Fig. 5. Reconstructed profiles for some representative subjects in the study. Panel (a) corre-
sponds to patient 9 (who was chosen from cluster 1, counting from the bottom left), panel (b)
to patient 36 (who was chosen from cluster 2), panel (c) to patient 45 (who was chosen from
cluster 3), and panel (d) corresponds to patient 13 (who was chosen from cluster 4).
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A. Proof of theorem 1

Let θ∗1,θ
∗
2, . . . be a sequence of independent and identically distributed samples from

a random distribution G, which follows a GDP(a, b,G0) distribution. Also, let Wi be 1
if θ∗i is different from every θ∗1, . . . ,θ

∗
i−1, and zero otherwise. Clearly, Zn =

∑n
i=1Wi

is the number of distinct values among the first n samples form a GDP(a, b,G0). Hjort
(2000) shows that

E(Wi) = i
E{u(1− u)i−1}
1− E{(1− u)i}

= i

Γ(a+b)
Γ(a)Γ(b)

Γ(a+1)Γ(b+i−1)
Γ(a+b+i)

1− Γ(a+b)
Γ(a)Γ(b)

Γ(a)Γ(b+i)
Γ(a+b+i)

=
iaΓ(a+ b)Γ(b+ i− 1)

Γ(b)Γ(a+ b+ i)− Γ(a+ b)Γ(b+ i)

which completes the proof.

B. Truncations of Generalized Dirichlet processes

Theorem 2. Assume that samples of n observations have been collected for each
of J distributions and are contained in vector y = (y′1, . . . ,y

′
J). Also, let

P∞∞(θ) =
∫ ∫

P (θ|Gj)P∞(dGj |Q)P∞(dQ)

PLK(θ) =
∫ ∫

P (θ|Gj)PL(dGj |Q)PK(dQ)

be, respectively, the prior distribution of the model parameters under the nested GDP
model and its corresponding truncation after integrating out the random distributions,
and P∞∞(y) and PLK(y) be the prior predictive distribution of the observations
derived from these priors. Then∫ ∣∣PLK(y)− P∞∞(y)

∣∣ dy ≤ ∫ ∣∣PLK(θ)− P∞∞(θ)
∣∣ ≤ εLK(α, β)
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where

εLK(α, β) =



4

(
1−

[
1−

(
b1

a1+b1

)K−1
]J)

if L =∞,K <∞

4

(
1−

[
1−

(
b2

a2+b2

)L−1
]nJ)

if L <∞,K =∞

4

(
1−

[
1−

(
b1

a1+b1

)K−1
]J [

1−
(

b2
a2+b2

)L−1
]nJ)

if L <∞,K <∞

The proof is a direct extension of results in Ishwaran & James (2001), Ishwaran &
James (2002) and Rodriguez et al. (2008b) and it is omitted for reasons of space. This
result is particularly important since it justifies the use of computational algorithms
based on finite mixtures and allows us to choose adequate truncation levels.

C. Details on the computational algorithm

Here we provide details on the sampling of the component-specific parameters. For
the mean-curve clustering model, the probability of the model associated with Λ∗k is
proportional to

Pr(Λ∗k = Λ| · · · ) ∝ (2π)−sk/2 |Ω|−1/2 ∣∣Ω−1 + Ek(Λ)
∣∣1/2 Γ(ν1 + sk/2)

Γ(ν1)
νν12{

ν2 +
[
Ak(Λ)− dk(Λ)′{Ω−1 + Ek(Λ)}dk(Λ)

]
/2
}−(ν1+sk/2)

with

sk =
∑

{i:ζi=k}

ni∑
j=1

Tij

Ak(Λ) =
∑

{i:ζi=k}

ni∑
j=1

y′ij [ΣΛ + IpΛ ]−1 yij

dk(Λ) =
∑

{i:ζi=k}

ni∑
j=1

BΛ(xij)′ [ΣΛ + I]−1 yij

Ek(Λ) =
∑

{i:ζi=k}

ni∑
j=1

BΛ(xij)′ [ΣΛ + I]−1 BΛ(xij)

where ΣΛ and BΛ(xij) correspond to the restrictions of matrices Σ and B(xij) to
the entries where the diagonal elements of Λ are different from 0. In our case, since
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the number of possible values for Λ∗k is small (213 = 8192), we explicitly compute the
full-conditional probability distribution for each of the possible models and perform
exact sampling from this posterior distribution. More generally, when the number of
nodes is large we can use a random-walk Metropolis-Hasting algorithm as described
in George & McCulloch (1997). Now, conditionally on Λ∗k, we can sample σ∗k and θ∗k
from

σ∗k|Λ
∗
k ∼ IGam

(
ν1 + sk/2, ν2 +

[
Ak(Λ∗k)− dk(Λ∗k)′{Ω−1 + Ek(Λ∗k)}dk(Λ∗k)

]
/2
)

θ∗k|σ∗k,Λ
∗
k ∼ N

([
Ω−1 + Ek(Λ∗k)

]−1
dk(Λ∗k), σ∗k

[
Ω−1 + Ek(Λ∗k)

]−1
)

For the distribution-based clustering algorithm the expressions are similar, but we
replace sk, Ak(Λ), dk(Λ) and Ek(Λ) by

slk =
∑

{(i,j):ζi=k,ξij=l}

Tij

Alk(Λ) =
∑

{(i,j):ζi=k,ξij=l}

y′ijyij

dlk(Λ) =
∑

{(i,j):ζi=k,ξij=l}

BΛ(xij)′yij

Elk(Λ) =
∑

{(i,j):ζi=k,ξij=l}

BΛ(xij)′BΛ(xij)
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