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Aline A. Nobre, Bruno Sansó and Alexandra M. Schmidt ∗

Abstract

We develop a class of models for processes indexed in time and space that are based
on autoregressive (AR) processes at each location. We use a Bayesian hierarchical
structure to impose spatial coherence for the coefficients of the AR processes. The
priors on such coefficients consists of spatial processes that guarantee time stationarity
at each point in the spatial domain. The AR structures are coupled with a dynamic
model for the mean of the process, which is expressed as a linear combination of time-
varying parameters. We use satellite data on sea surface temperature for the North
Pacific to illustrate how the model can be used to separate trends, cycles and short
term variability for high frequency environmental data .
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1 Introduction

The time series in Figure 1 could very well correspond to the differences between monthly
temperature means over a period of ten years and monthly temperature readings at a me-
teorological station. In such case, some questions relevant to the climate dynamics of the
area would be: Are there periodic cycles in the data? Can we detect a trend in the level
or the amplitude of the signal? The abundance of information from remote sensors, like
satellites, and automatic environmental data networks has produced an explosion of,data
with high time frequency and high space resolution. Answering the former questions for
relevant spatial domains is key for the understanding of long term environmental changes.
Thus effective statistical tools are needed to identify spatially coherent signals from noisy
collections of geo-referenced time series and detect significant cycles and trends.
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Professor of Statistics and Chair, Department of Applied Mathematics and Statistics, University of Cal-
ifornia at Santa Cruz, 1156 High St. MS: SOE2, Santa Cruz, CA-95064, U.S.A. bruno@ams.ucsc.edu,
www.ams.ucsc.edu/∼bruno. Alexandra M. Schmidt is Associate Professor at the Instituto de Matemática,
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Figure 1: Simulated temperature data from two AR(3) processes. The roots of the characteristic
polynomial of the process in the left panel are G1 = 0.9, G2 = 0.9eiπ/6, G3 = 0.9e−iπ/6,

√
−1 = i

and the variance is σ2 = 0.12. For the left panel G1 = 0.7, G2 = 0.7eiπ/2, G3 = 0.7e−iπ/2 and
σ2 = 0.12.

The data presented in Figure 1 do not correspond to any actual observations. They have
been simulated from two autoregressive processes of order three (AR(3)). They correspond
to stationary processes, so they have no trends or cycles. It is clear that a naive least squares
fit would produce seemingly significant positive slopes in both cases. Thus, careful inference
on the stochastic structure of the process generating the data is needed. Autoregressive
processes (see, for example, Priestley, 1981) are well known times series models that provide
great flexibility in spite of their simple formulation. A univariate process xt that is an AR(p)
can be written as

xt =

p∑
i=1

φixt−i + εt, εt ∼ N(0, σ2).

Using the backwards operator B, Bxt = xt−1, we factorize this expression as

p∏
i=1

(1 − GiB)xt = εt.

Gi are the roots of the characteristic polynomial. The process is stationary when |Gi| <
1, ∀i (see, for example Box et al., 1994). The fact that the simulations in Figure 1 show
possible cycles and trends should not come as a surprise, as positive real roots provide some
persistence and complex roots provide quasi periodicities. This features are likely to be
present in long environmental time series with high frequency data. On the other hand,
when roots are outside the region of stationarity, the process shows an explosive behavior.
When an AR(p) is fitted to time series corresponding to nearby locations, we need to make
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sure that the coefficients are in the stationarity region. Furthermore, the condition should
hold for the coefficients of spatial interpolators, to prevent them from being explosive. The
goal of this paper is to build spatio-temporal models that satisfy those conditions.

The building block of our proposed methods is given by the following model: Let s ∈
S ⊂ Rd denote location, then, for a space-time process, we have

xt(s) =

p∑
i=1

φi(s)xt−i(s) + εt(s) or

p∏
i=1

(1 − Gi(s)B)xt(s) = εt(s),

with cov(εt(s), εt(s
′)) = τ 2Σss′ , where Σ is a covariance matrix. We obtain time stationarity

and spatial coherence by assuming appropriate priors on Gi(s). Imposing stationarity on the
original coefficients φi(s) would be hopeless due to the difficulty of describing the stationarity
region (Huerta and West, 1999). Notice that, since the coefficients of the AR(p) vary with s,
the process is not spatially stationary. Also, there is no separability between the space and
the time components. That is, the joint space-time covariance function can not be factorized
into a space covariance multiplied by a time covariance.

The literature on spatio-temporal modeling has been experiencing a significant growth in
the last 10 years. Here, we concentrate on Gaussian spatio-temporal processes. Usually the
main concern lies on proposing flexible covariance structures which are non-separable and
non-stationary in both dimensions. Cressie and Huang (1999); Gneiting (2002); Stein (2005)
present examples of non-separable stationary covariance functions for space-time processes.
Cressie and Huang (1999) propose classes of covariances that are obtained by inverting
spectral densities of the form h(ω, v) = ρ(ω, v)k(ω), where ω denotes the spatial frequency
and v the temporal one. Gneiting (2002) defines a class of covariances that provides a direct
construction of valid covariance functions, without the need of inverting the spectral density.
Stein (2005) considers classes of covariance functions that are smooth everywhere, except
possibly at the origin.

Another way of obtaining flexible covariance structures is through the use of conditional
dynamic linear models (West and Harrison, 1997). There are several examples of spatio-
temporal applications based on state space models in the literature. Some recent examples
are Wikle et al. (1998); Sansó and Guenni (2000); Shaddick and Wakefield (2002); Higdon
(2002); Huerta et al. (2004); Calder (2005); Sahu and Mardia (2005); Lemos and Sansó
(2009). Sansó et al. (2008) consider a linear representation of a spatio-temporal process in-
spired by corregionalization models for multivariate spatial data (Wackernagel, 2001). They
mention the idea of using spatial processes for the roots of the characteristic polynomial of
an AR(p). This paper carefully develops that approach by extending to the spatial domain
the priors for autoregressive processes proposed in Huerta and West (1999).

The paper is organized as follows. Section 2 introduces in detail our proposed model.
As the inference procedure follows the Bayesian paradigm, the prior distributions of the
parameters are also discussed therein. Section 3 presents the inference procedure used to
obtain samples from the resultant posterior distribution. The next Section illustrates the
proposed model by analyzing satellite data on sea surface temperature. Finally, Section 5
contains a discussion of the methods proposed in the paper.
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2 A spatio-temporal model

Denote the observed process as yt(s), with s = s1, . . . , sn ∈ S ⊂ Rd and denote yt =
(yt(s1), . . . , yt(sn))′ the vector of observations at time t. analysis and assume that all models
are conditional on observing most applications it is very natural to consider spatio-temporal
processes where the mean evolves in time. Let the mean of yt be µt. We assume that
µt = F ′

tθt where Ft ∈ Rk×n corresponds to a matrix of observed covariates and θt ∈ Rk is an
unobserved latent variable. Consider a covariance function C(s, s′) and the corresponding
covariance matrix Σi,j = C(si, sj). C can be treated with full generality, but we will focus on
the isotropic case where C(s, s′) = σ2ρ(||s− s′||; λ, κ), where ρ is a correlation function with
a parametric form that depends on two univariate parameters, λ and κ. Typical examples
are the power exponential and the Matérn classes of correlations (Banerjee et al., 2004). We
factorize Σ as KK ′, where K is a square root matrix of Σ. We assume that yt can be
decomposed into a time-varying mean plus a spatially correlated autoregressive vector xt.
Thus

yt = F ′
tθt + Kxt (1)

xt =

p∑
j=1

Φjxt−j + εt, εt ∼ Nn(0, τ 2In) (2)

θt = Gθt−1 + wt, wt ∼ Nk(0, Wt) (3)

where t = p + 1, . . . , T and Φj = diag(φj(s1), . . . , φj(sn)) ∈ Rn×n. Equation (1) corresponds
to an observation equation where the measurement error is “colored” both spatially and tem-
porally. Equation (2) defines the autoregressive structure of the measurement error. Finally
Equation (3) defines the evolution of the underlying process. A spatially and temporally
dependent measurement error is a realistic assumption in many environmental processes,
in particular when the observations are obtained using remote sensing. Alternatively, the
interest could be focused on assuming that the process of interest is a spatially-varying au-
toregression and that the actual observations, say Yt is subject to a measurement errors that
is simple white noise. We would then add the equation Yt = yt + ηt, ηt ∼ N(0, κ2In) as
a top layer in the hierarchy defined by Equations (1)–(3). This additional layer requires a
straightforward extension of our proposed sample based inference. We will not focus on this
as it does not provide any conceptual gains.

Collapsing Equations (1) and (2) we obtain that

yt = F ′
tθt + K

(
p∑

j=1

Φjxt−j + εt

)
= F ′

tθt +

p∑
j=1

Φj(yt−j − F ′
t−jθt−j) + vt

and thus

y∗
t =

p∑
j=1

Φjy
∗
t−j + vt, vt ∼ Nn(0, τ 2Σ),

where y∗
t = yt−F ′

tθt. We observe that only the product σ2τ 2 is identifiable in the likelihood.
Our choice is to fix one of the two variance parameters, in particular, we set τ 2 = 1. Thus,
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y∗
t is a multivariate AR(p) with spatially varying coefficients, Φj, j = 1, . . . , p and spatially

correlated variance, Σ. In essence, at each location s we have a time series modeled through
an autoregressive process with a common order for all locations but with different coefficients.
We refer to this model as a Spatially-Varying Autoregression of order p (SVAR(p)). Suppose
that the order of the process is p = R + 2C, where R and C are, respectively, the number of
real and complex roots of the characteristic polynomial. Then the AR(p) model at location
s can written as

R∏
j=1

(1 − aj(s)B)
R+C∏

j=R+1

(1 − rj(s)e
iωj(s)B)(1 − rj(s)e

−iωj(s)B)y∗
t (s) = vt(s) (4)

Here i =
√
−1, aj(s) is the j-th real root, rj(s) and ωj(s) are, respectively, the modulus and

the argument of the j-th complex root.
To obtain a stationary process at each location s we need to impose the conditions

|aj(s)| < 1, 0 < rj(s) < 1 and −π < ωj(s) < π ,∀j and ∀s. To achieve this we need to
consider bounded spatial processes indexed in s. A natural approach would be to consider
Gaussian processes transformed to a bounded interval by a function like the logistic, as pro-
posed in Sansó et al. (2008). While this will provide the flexibility of Gaussian processes,
it has the problem of being highly sensitive to the estimation of the parameters that de-
fine the processes’ covariance structure. To see why this is the case, consider the logistic
transformation of a univariate normal. For some choices of the normal variance we can have
bimodality in the transformed distribution, due the accumulation of mass in the tails of the
normal that is mapped to the extremes of the unit interval. This phenomenon is exacer-
bated in a multivariate setting. In the next two sections we consider alternative prior spatial
specifications.

2.1 Prior processes for the real roots

The idea of representing a spatial process using a kernel convolution has been applied success-
fully in the recent literature. A very clear explanation of process convolutions is presented in
Higdon (2007). In a similar fashion to Lee et al. (2007), where a process convolution is used
to obtain a positive process, we consider the convolution of bounded variables to obtain a
bounded process. Thus we consider a kernel k, a collection of locations u1, . . . , uM ∈ S and
let

aj(s) = 2
M∑

m=1

k(s − um)za
j (um) − 1 , j = 1, . . . , R ,

where za
1(um) ∼ Beta(α1, β1),m = 1, . . . , M, and za

j (um)|za
j−1(um) ∼ Beta(αj, βj)I[0,za

j−1(um)]

(za
j (um)) for m = 1, . . . ,M and j = 2, . . . , R. In other words, for the first real root, we

consider a collection of M beta-distributed random variables. We use a kernel and an affine
transformation to create a process bounded in (−1, 1). For the second real root, we condi-
tion on the beta-distributed variables corresponding to the first root and generate from a
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truncated beta. We then transform to the interval (−1, 1). We repeat the process condition-
ing on the previous root until the R-th one. This guarantees that the roots are ordered in
descending order. The ordering is important for the identifiability of the parameters in the
model.

2.2 Prior processes for the complex roots

To obtain a prior spatial process for the modulus and the argument of the complex root
we first consider a transformation of the moduli and arguments in the second term of the
product in Equation (4). Let φ1j(s) = 2rj(s) cos ωj(s) and φ2j(s) = −rj(s)

2. The stationarity
conditions translate into the restrictions φ1j(s) ∈ (l1j(s), l2j(s)) and φ2j(s) ∈ (−1, 0) where
l1j(s) = −2

√
−φ2j(s) and l2j = 2 cos(4π/t)

√
−φ2j(s). We proceed in a similar fashion to

the approach taken for the real roots. That is we convolve bounded random variables to
obtain bounded random fields. We assume that

φ2j(s) =
M∑

m=1

k(s − um)zφ
j (um) − 1

and

φ1j(s) = (l2j(s) − l1j(s))
M∑

m=1

k(s − um)zφ
j (um) + l1j(s)

where j = 1, . . . , C. Then, for each of the collections of variables zφ(·), we have, zφ
1 (um) ∼

Beta(α1, β1) and zφ
j (um)|zφ

j−1(um) ∼ Beta(αj, βj)I[0,zφ
j−1(um)](z

φ
j (um)) for m = 1, . . . , M and

j = 2, . . . , R. As in the case of the real roots, we impose ordering for the latent variables in
order to achieve identifiability.

3 Fitting the model

Inference for the parameters of the SVAR(p) is based on sampling the posterior distribu-
tion using Markov chain Monte Carlo (Gamerman and Lopes, 2006). For this we need to
explore the full conditional distributions of all model parameters. We start by noting that,
conditional on y1, . . . , yp, the likelihood is proportional to

|Σ|−(T−p)/2 exp

{
−1

2

T∑
t=p+1

(
y∗

t −
p∑

j=1

Φjy
∗
t−j

)′

Σ−1

(
y∗

t −
p∑

j=1

Φjy
∗
t−j

)}
. (5)

The full conditional of the parameters of the covariance function, denoted as Λ =
(σ2, λ, κ), given θt and Φj is the product of the equation (5) and the prior p(Λ). We
sample these parameters using Metropolis-Hastings steps.

Let dt = yt −
∑p

j=1 Φjyt−j then, conditioning on Λ and Φj, we have that

dt =

p∑
j=0

−ΦjF
′
t−jθt−j + vt = BD(ΦjF

′
t−j)Θt + vt (6)
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where Φ0 is equal to −I, BD(·) denotes a block diagonal matrix and Θt = (θt, . . . , θt−p)
′.

Equation (6) corresponds to the observation equation of a dynamic linear model (West
and Harrison, 1997). The evolution equation is given by Θt = BD(G)Θt−1 + εt, εt ∼
N(0, BD(W )). Then Θt can be sampled using a Forward Filtering Backward Sampler
(FFBS) as proposed by Carter and Kohn (1994) and Frühwirth-Schnater (1994).

Using Gj(s) to denote a generic root of the polynomial in Equation (4), we have that,
if j = 1, . . . , R, Gj(s) = aj(s). For j = R + 1, . . . , R + C we have Gj(s) = (φ1j(s), φ2j(s)),
the pair of complex conjugated roots parametrized by (rj(s), ωj(s)). We use bold faces to
denote the vectors of processes evaluated at s1, . . . , sn. Denote G−j the set of root processes
excluding Gj(s), then given Λ, θt and G−j, we define the vector-valued time series ujt =∏R+C

i=1
i6=j

(1−GjB)y∗
t . Thus, for j = 1, . . . , R, we have that ujt is a multivariate AR(1) process

with coefficients aj and variance Σ.
Let Aj, j = R + 1, . . . , C be the index set of all other roots. Given Λ, θt and G−j,

we can compute the filtered time series ujt =
∏

i∈Aj
(1 − GiB)y∗

t . It follows that, in this

case, ujt is a multivariate AR(2) process with coefficients φ1j = 2rj cos ωj and φ2j = −r2
j

and variance Σ. Here vector notation is used to denote component-wise operations. The
resulting full conditional of the roots does not have a closed form and we use Metropolis-
Hastings algorithm to obtain samples from this distribution. Given the roots Gj(s), we
compute the implied AR coefficients, Φj(s), by solving the equation (4). For example, for
p = 2 real roots we have Φ1(s) = a1(s) + a2(s) and Φ2(s) = −a1(s) ∗ a2(s).

To complete the model fitting procedure we need to consider inference for missing values.
Within a Bayesian framework, missing values are treated as additional model parameters
and sampled within the MCMC. We denote yt = (yu

t , yg
t )

′ a partition of the vector y for
each time t where yu

t is a vector with nut rows containing the missing values in time t and yg
t

is a vector with ngt rows containing the observations in t such as nut + ngt = n, ∀t. We can
compute the conditional distribution yu

t |y
g
t using the property of the multivariate normal as

described in Anderson (1994).

3.1 Spatial interpolation and temporal prediction

Let yu
t be the vector of the observations for ungaged locations each time t. Spatial predictions

can be obtained by considering the distribution of (yt,y
u
t ) conditional on the parameters and

the first p observations. This distribution is given as(
yt

yu
t

)
∼ N

((
F y

t θt +
∑p

j=1 Φy
j (yt−j − F y

t−jθt−j)

F u
t θt +

∑p
j=1 Φu

j (y
u
t−j − F u

t−jθt−j)

)
;

(
Σy Σyu

Σuy Σu

))
,

where F u
t and Φu

j correspond, respectively, to the regression matrix and the AR(p) coeffi-
cients vector for ungaged locations. Similar notation is used to split the covariance n four
blocks. We then have that

yu
t |yt, Θ ∼ N(µu

t + Σuy(Σy)−1(yt − µy
t ), (Σ

u − Σuy(Σy)−1Σyu)),
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where µy
t = F y

t θt +
∑p

j=1 Φy
j (yt−j −F y

t−jθt−j) and µu
t = F u

t θt +
∑p

j=1 Φu
j (y

u
t−j −F u

t−jθt−j) for
all t. Note that Φu

j is unknown and needs to be sampled following the approach described in
Section 3. To obtain samples of yu

t we start by drawing samples from yu
p+1 conditioning on

samples from the posterior of the parameters, and then recursively sample forward in time.
Temporal k steps ahead prediction, assuming p = 1 for simplicity, is given by

p(yT+k|y1:T ) =

∫
p(yT+k|FT+k,yT+k−1,θT+k,Φ,Λ)p(θT+k | θT+k−1, W )

p(yT+k−1|FT+k−1, yT+k−2,θT+k−1,Φ,Λ)p(θT+k−1 | θT+k−2,W ) . . .

. . . p(Φ,Λ, θ1, . . . , θT |y1, . . . , yT )d(Φ,Λ,θ1, . . . , θT ,W ).

The integral above can be approximated by

p(yT+k|y1:T ) ≈ 1

M

M∑
m=1

p(yT+k|FT+kθ
(m)
T+k + Φ(m)

(
yT+k−1 − FT+k−1θ

(m)
T+k−1

)
,Σ(m)).

Here the superscript (m) denotes samples from the posterior of θ1, . . . , θT , Φ, Σ. y
(m)
T+i, i > 0

is obtained by propagating the samples from the posterior through the evolution equations
for yt.

4 An illustrative example

We consider an illustration of our method to high frequency environmental data. We focus
on satellite sea surface temperature data for a region in the Pacific Ocean off the coast
of California. The measurements correspond to a 10 × 4 (longitude × latitude) grid with a
spatial resolution of 0.5◦. This is illustrated in Panel (a) of Figure 2. The data were recorded
every 8 days, from July 2000 to May 2005. Thus, for each grid cell we a time series of T=240
periods of time. The time series are illustrated in Panel (b) of Figure 2. As is common for
satellite data, there are a number of missing values. Clearly, all series show a yearly seasonal
pattern. Higher temperatures are observed in April and lower ones around October of each
year. A possible increasing long-term trend is present in the data, as well as possible changes
in the amplitude of the cycles. These two issues are of relevance for climatic studies. Thus,
the separation of such long-term trends from high frequency variabilities is very relevant.
Another important goal of the analysis is to fill in the gaps in the satellite measurements
and produce fields at a resolution of 0.25◦, which is the current standard of the World Ocean
Atlas 2001 version 2 (Boyer et al., 2005).

4.1 Preliminary analysis

Notice that the multivariate dynamic linear model (DLM), as described in (West and Har-
rison, 1997) is a particular case of the model in Equations (1)-(3) when p = 0. Therefore,
we start by fitting a multivariate DLM to the temperature data. We denote this model as
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Figure 2: Panel (a) Map with the coast of California together with 40 sites. Panel (b)
observed temperature measurements taken every 8 days, starting from July 2000 until May
2005.

M0. More specifically, we assume a time-varying mean structure comprising a baseline and a
seasonal component with an annual cycle, such that θt = (βt, γ1t, γ2t). As the multiple time
series are observed at different locations, we assume the covariance matrix, Σ based on an
exponential correlation function, that is Σ(s, s′) = σ2 exp{− ||s − s′||/λ}, where ||s − s′|| is
the Euclidean distance between locations s and s′, λ, and σ2 are parameters of the model.
More specifically, this model is described by

yt = F ′θt + εt εt ∼ N(0,Σ)

θt = Gθt−1 + ωt ωt ∼ N(0,W ) .

We used the same prior distributions considered for other models, as described in Section
4.3. We run a MCMC with 50,000 iterations, considered 20,000 as burn in and kept every
30th iteration. Panels of Figure 3 present the partial autocorrelation function of the residuals
from this model for two different sites. Both panels suggest that there is some structure left
even after removing the trend of each time series. Therefore next Subsection analyzes the
fitting considering different versions of SVAR(p).

We propose five different models for capturing this extra structure left in the data, based
on three different values for p = 1, 2, 3. We denote M1 as the model with one real root
(R = 1), M2 the model with 2 real roots (R = 2), M3 the model with one pair of complex
roots (C = 1), M4 that with 3 real roots (R = 3), and M5 the model with one real root and
1 pair of complex roots (R = 1 and C = 1). Table 1 summarizes the specification of the
fitted models.
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Figure 3: Partial autocorrelation function of the residuals of the time series at two locations
after fitting the multivariate DLM model.

4.2 Model comparison criteria

In order to compare the different models we fit to the data, we use two different criteria. One
is the posterior predictive loss criterion (EPD) introduced by Gelfand and Ghosh (1998); the
other is the predictive likelihood. Below we give more detail about them.

EPD The posterior predictive loss criterion (EPD) is based on replicates of the observed
data obtained from each fitted model. It is given by the sum of a goodness-of-fit term (G)
and a penalty term (P). Denoting Yl,rep as the vector of replicates of the observed data, the
criterion is given by the expression D = P + 1

2
G, where

P =
L∑

l=1

V ar(Yl,rep|y) G =
L∑

l=1

(E(Yl,rep|y) − Yl,obs)
2 , (7)

and L represents the sample size from the predictive distribution. For the computation we
need to solve integrals which do not have an analytical solution but they can be approximated
using the samples obtained via MCMC methods.

Predictive likelihood This criterion measures the ability of the model in predicting a set
of future values, yf = (yT+1, · · · , yT+k). The predictive likelihood under model M is given
by

p(yf |M, DT ) =

∫
p(yf |θf ,M, DT )p(θf |M, DT )dθf

= Eθf |M,DT
[p(yf |θf ,M, DT )].
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where p(θf |M,DT ) is obtained by propagating the samples from the posterior p(θT |DT ,M),
through the system equation. The expression above can be approximated by using Monte
Carlo estimation

Êθf |M,DT
[p(yf |θf ,M, DT ] =

M∑
m=1

∏k
i=1 p(yT+i|θm

T+i,M, DT )

M
.

The model with the highest predictive likelihood is the best among those fitted.

4.3 Fitting SVAR(p)

As described on Subsection (4.1) we consider a time-varying baseline, βt, and a seasonal
component with an annual cycle, (γ1t, γ2t). It is reasonable to assume that the temperature
varies around 18◦C in the beginning of the analysis, therefore we assume β0 ∼ N(18, 1). The
priors for γ10 and γ20 are assumed to follow a normal distribution, more specifically, N(3, 1).
We assign a inverse gamma distribution for σ2 with shape parameter equals 3 and scale
equals 2. The prior mean of λ is based on the idea of practical range, that is, we assume the
correlation is close to zero (say 0.05) at half of the maximum observed inter-location distance.
The prior variance is fixed at a reasonable large value. Thus we have λ ∼ Ga(300, 4). The
prior distribution for the real and complex roots is assigned by assuming a truncated beta
distribution for za

j and zφ
j . We consider αj = βj = 1 for all the roots, which is equivalent to

a uniform prior distribution in the interval (0, 1). We use a Gaussian kernel to construct the
beta priors assuming that we have a smooth process. The maximum distance between the
grid of M = 21 points (7×3) and coordinates of the gauged sites was about 430 Kilometers.
The parameter of the Gaussian kernel was fixed at 130 Kilometers and chosen using the
same idea of pratical range.

We run the MCMC for 200,000 iterations, consider a burn in of 50,000 iterations and
keep every 150-th iteration. The convergence was checked by using Geweke’s convergence
diagnostic proposed by Geweke (1992). Table 1 shows the values of the model comparison
criteria for each of the six fitted models. It is clear that M0 results in the highest value of
EPD and the lowest value of the predictive likelihood; also these values are quite different
when compared to the other models, providing strong evidence that models without an
autoregressive structure have a poor fit. On the other hand, M4 has the highest predictive
likelihood and the lowest EPD. Based on these criteria we present the results for M4, that
is, SVAR(3) with three real roots.

The posterior mean of the scale parameter σ2 is 0.258 with 95% credible intervals (0.244-
0.272), which is expected from this type of data. On the other hand, the posterior mean
of the parameter of the exponential correlation function λ is equal to 190 kilometers, its
provides correlations that range from 0.10 to 0.89 among all sites.

In Figure 4 we show the posterior mean and respective 95% credible intervals for the
baseline and amplitude (

√
γ2

1t + γ2
2t). There is evidence of an increasing temperature trend

during the first four years of the series, until roughly 2004. The posterior mean of the baseline
in early 2001 is 16.6◦C and becomes 17.6◦C in early 2004. This is followed by a decreasing
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Model Autoregressive structure Predictive likelihood EPD
P G D

M0 p = 0 8.70e-34 5446.4 5813.5 8353.2
M1 p = 1 (R = 1) 3.06e-22 3962.3 6352.3 7138.5
M2 p = 2 (R = 2) 1.36e-21 3814.2 6360.6 6994.5
M3 p = 2 (C = 1) 2.96e-23 4123.2 5977.1 7111.7
M4 p = 3 (R = 3) 3.01e-21 3765.4 6184.1 6857.4
M5 p = 3 (R = 1 and C = 1) 4.53e-22 3973.8 6106.5 7027.1

Table 1: Predictive likelihood and EPD criteria for each fitted model.

trend during the period 2004 – 2005 when the baseline mean becomes 17.1◦C. As for the
amplitude we see a similar, but substantially less pronounced pattern. The amplitude mean
is 2.8◦C in 2001 decreasing to 2.5◦C in 2002. This is followed by an increase to 2.7◦C in
2004.
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Figure 4: Posterior mean and limits of the 95% credible intervals of βt (baseline) and αt

(amplitude).

The 95% posterior credible interval of the autoregressive parameters, Φ1(s), Φ2(s) and
Φ3(s) for all sites are showed in Figure 5. We notice that even after the inclusion of the mean
structure, which accounts for a baseline and a seasonal component, there is some structure
left in the error term. Moreover, the coefficients of the autoregression vary smoothly with
location. This is illustrated in Figure 5. We observe significant difference between the
coefficients of different locations. In particular we observe that locations in the east boundary
of the domain have φ1 coefficients that are substantially larger than those for other locations.
As for φ3, we observe that in most cases the the 95% posterior credible intervals include zero.
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Figure 5: Posterior mean and limits of the 95% credible intervals of Φ1(s), Φ2(s) and Φ3(s) based
on model M4.

The two panels of Figure 6 show the temporal prediction for K = 10 periods of time.
These observations were left out from the inference procedure. The solid circles represent
the actual observations, the solid line represents the posterior mean and the dashed lines the
posterior 95% credible interval. Apparently the model is performing well in terms of short
term temporal predictions.
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Figure 6: Temporal prediction for K = 10 periods of time at two different locations. The solid
line represents the posterior mean, and the dashed lines represent the limits of the 95% posterior
credible intervals.

Figure 7 shows the original data with a spatial resolution of 0.5◦for 8 points in time from
12/10/02 to 02/04/03. We observe missing data for the last three periods of time in some grid
cells. Figure 8 presents the evolution of estimated temperature surface for the same period
in a grid of 240 points (20 × 12) with a spatial resolution of 0.25◦. We observe, as expected,
that the estimated temperatures are compatible with the observed ocean temperatures and
that the resulting contours are smoother than the ones based on the corser resolution data.

In addtion to the six models considered we run M4 with and independent covariance
matrix (Σ = I). The idea here is to check if the spatial process induced by the discrete
process convolutions for the AR coefficients captures all the spatial variability. We obtained
a predictive likelihood of 7.03e-130. This is a very small value, especially when compared to
3.01e-21, the value of the predictive likelihood for M4. We conclude that we can not drop
the assumption of spatial correlation in the errors.
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Figure 7: Original data at 0.5◦spatial resolution: Temperatures for 8 points in time.
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Figure 8: Spatial interpolation at 0.25◦spatial resolution: Posterior mean of the estimated tem-
peratures for 8 points in time.

5 Discussion

In this paper we have presented a spatio-temporal model that provides a spatial structure
to autoregressive processes. We use bounded spatial processes as priors for the roots of the
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characteristic polynomial of the AR process. This imposes smooth spatial variability on
the coefficients of the autoregression as well as stationarity of the time series corresponding
to any point in the spatial domain. Autoregressive processes are popular for their simple
formulation together with their ability to capture persistence and stochastic cycles. So they
are a valuable tool for the detection of long term trends in high frequency data.

We illustrate our method with an analysis of satellite data of ocean temperatures. We
believe that this is a pertinent example, as data from remote sensors are likely to be con-
taminated by noise that is not white. Clearly we could include additional features in the
example, like spatially-varying seasonalities and some description of the ocean dynamics.
We prefer to keep the model simple to focus on the inferential methods we propose in this
paper.

An obvious extension to the proposed SVAR(p) would be to consider that the order p
is unknown and possibly space-varying. The simplest way to achieve this is to let p be a
large number and impose priors on the coefficients that include a point at zero. This is
the approach taken, in the time series context, in Huerta and West (1999). The extension
to the spatial case requires that whole spatial processes be exactly zero. Unfortunately
our attempts to fit models where the priors are given by mixtures of processes strongly
concentrated around zero with processes like the ones described in Sections 2.1 and 2.2 have
not been successful. A model comparison approach, like the one taken in our ocean data
example, is our preferred way of exploring the most suitable values of p,R and C.
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Sansó, B. and Guenni, L. (2000). A nonstationary multisite model for rainfall. Journal of
the American Statistical Association, 95:1064–1089.
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