
A Framework to Support Research on
Portable High Performance Parallelism

Sean Halle

UCSC and INRIA Saclay

seanhalle@yahoo.com

Dmitry Nadezhkin

Univ of Leiden

nadezhkin@gmail.com

Albert Cohen

INRIA Saclay

albert.cohen@inria.fr

Abstract

There is an increasing need for a framework that supports research on portable high-performance parallelism. Such
a framework would facilitate two main goals: discovering how to separate application-specific code from hardware-
specific code, and supporting research on parallel schedulers and optimizations. The framework would be agnostic
to language, however the knowledge gained might inform future language research with better understanding of the
boundary between application and hardware.

We propose a first step towards such a framework; to separate application code from hardware specific code,
we define a “bi-directional” library interface that has both, library functions implemented by application-code, and
library functions implemented by hardware-specific code. We also make the scheduler a first-class entity that is
called as a library function. We provide a sample implementation of the framework that can automatically link the
two directions and generate executables, from the same source, for each platform being investigated.

To support research on run-time schedulers we provide a pool of instrumented applications and our implemen-
tation of the framework to plug research schedulers into. The interface makes an instrumented application appear
to the scheduler as a black box that has a number of "knobs" to manipulate, via the interface.

Optimizations that performCode Structure Transforms are also supported by the application pool and our sample
implementation. The researcher is free to use their preferred language to write command-line tools to perform the
transforms. The framework would invoke the plugged-in tools on the suite of applications and generate ready-to-
run executables for the target platform.

We detail our first installment, which focuses on data parallelism, stating the interface defined so far. We describe
the process of instrumenting a set of three applications, Hamiltonian Path (an NP-Complete problem) in Java, H264
Deblocking in C, and Matrix Multiply in Java. We describe the process of implementing, then plugging-in run-time
schedulers for three hardware platforms: Multi-core, the Cell processor, and a heterogeneous collection of multi-core.
We also share details of our sample implementation that transform tools and run-time schedulers can plug into.

1 Introduction
Solving the compound problem of making it easy for application experts to remain isolated from most hardware
architecture details, while writing a single source that runs high performance across widely varying parallel platforms
may be larger than a single research group can reasonably handle. A collaborative approach is needed where it is
simple and natural for many different groups to collectively accumulate incremental contributions. Some framework
is needed to support such collaborative accumulation of research from loosely connected groups working to solve the
Portable High Performance Parallelism (PHPP) problem.

By definition, PHPP requires a single source to run high performance on many hardware architectures. Therefore
that one source should not encode information specific to one hardware architecture. Hence the essence of solving the
PHPP problem is identifying the boundary between application-specific information and hardware-specific information,
if one does indeed exist. Once this boundary is identified, then it can be encoded in languages, development tools,
and intermediate formats.

An explicit embodiment of the boundary is effectively the “plug” by which a single source is connected to multiple
hardware encodings. The existence of such a plug provides the portability feature. The high performance will come
from getting the shape of the plug (boundary) right. All communication between hardware and application goes
through it, so the plug must enable the operations needed for high performance on the hardware. Some of those
operations take place during the process of plugging the two together, while other operations take place during
execution of the application.

The process of searching for the boundary involves trying different plug shapes. One popular approach to the search
has been to define new languages [25][24][23][10][20][16][18][13][7] and language extensions [15][21][2][26][9][3] which
express application information, while hardware information is embedded underneath in the language implementation,
to the extent possible. This is a perfectly valid and useful approach. However, it has proven frustratingly slow, and
tends to isolate groups, making collective contribution to the search more difficult.

A fair number of other approaches to searching for the boundary have been tried: skeletons[17][14], meta-program-
ming[22], parallelising compilers[8][5] among others. An important effort has been to develop parallel implementations
of common programming patterns[11][1][19]. Again, progress has remained slow and research groups fairly decoupled.

A collaborative approach to speed up the search will need an easily changed boundary embodiment. It should keep
past plug-shapes working when introducing new proposed extensions or modifications. It should also automate the
generation of executables, for testing. But most valuable, perhaps, will be enabling focused research, freeing researchers
from the burden of implementing infrastructure, such as by providing a clonable embodiment of the accumulated effort.
Individual groups can replicate the most recent version then modify only the one portion their research focuses on.
That embodiment should also be easy to modify.

1

To get a start on such a framework, we propose two patterns: first, the Bidirectional Libraray Interface plus
Specialization (BLIS) pattern, and second, the pattern of making schedulers first-class entities in the interface. The
bidirectional library pattern decouples application from hardware, while the specialization performs the plugging of
each application into hardware encodings. This: makes it relatively easy to accumulate contributions; makes it easy to
replicate the accumulation; and makes it easy to modify only the portion a group wishes to do research on. Making
schedulers first-class entities is our best guess at a starting embodiment of the boundary, and has yielded the results
we share in this paper.

Our first step is for data-parallelism only. We have defined and implemented an interface, instrumented several
applications, implemented schedulers for several hardware platforms, and implemented infrastructure that performs
some automation. In particular, the infrastructure will automatically specialize any instrumented Java application
to run on a shared memory multicore machine, and produce a runnable jar file specialized to the target hardware’s
number of threads.

In order for this first step to be convincing, we must: demonstrate an array of applications written to the interface,
demonstrate that a number of schedulers for different hardware can be written to the interface, and demonstrate
that it is easy to link the two. We also must describe the interface, describe our framework implementation, and the
process of plugging into it applications and schedulers, with sufficient detail to allow the reader to asses the level of
convenience of using the framework.

To support the notion that it is worth taking a look at this first step, we share that we believe that the forms of
parallelism supported can be grown to include: stream (pipelining) parallelism; functional-block (component) paral-
lelism; and parallel-library-implementation parallelism. We also believe that it will be possible to support fully general
communication among parallel work units, atomic updates of shared data structures, parallel distributed I/O, nested
levels of parallelism, and prediction of computation and communication costs, via the bidirectional interface approach.

The growth process envisioned allows a given application to remain compatible with older as well as newer sched-
ulers, insulating the source code from changes in the interface. New applications can implement additions to the
interface as needed, and will work with older schedulers, which will automatically ignore the interface additions. Hence
to get started on a new application, one is free to implement only a minimal sub-set of the interface, then add extensions
as needed for additional performance. Likewise, application developers and hardware specialization implementers are
both protected from changes in the interface as the search of the boundary progresses.

In Section 2 we describe the big picture of the framework, showing each of the pieces and how they fit together. In
Section 3 we describe the interface defined for data parallelism. In Section 4 we describe the three sample applications
and how each was instrumented with the interface. In Section 5 we describe the automated infrastructure. In Section
6 we describe the details of the specializers and run-time schedulers in them. In Section 7 we give brief execution-time
results demonstrating successful use of the framework for the three hardware platforms and the three applications.
Section 8 concludes the paper.

2 Big Picture of the Framework

The “Bidirectional Library Interface plus Specialization” (BLIS) framework
is centered around the BLIS Interface, which in turn is based on the notion
that scheduling is at the center of parallel execution. The interface makes
the scheduler a first-class entity that is directly communicated with by
application code. For this paper we define scheduling to consist of three
parts: choosing work-units, choosing resources to perform each work-unit,
and choosing the timing of starting the work. A work unit is a tuple of
a code-snippet, bookkeeping data, and work data. The code snippet is
controlled by the bookkeeping data causing it to transform the work-data.
Hence bookkeeping data consists of things like iteration-space bounds, while
work-data is an ancestor of the computation output.

The BLIS Interface is a set of bidirectional libraries (biLib). Each
high level pattern of parallelism can have its own biLib, centered around a
scheduler for that kind of parallelism. The first biLib is for data parallelism
(Sec 3), while future biLibs will be for stream parallelism, function-unit
(component) parallelism, and Library Parallelism (a library of common
patterns that have hand-tuned parallel implementations).

Fig 1 shows how a bidirectional library works. It is split into two
entities: an application, and a hardware-specific directory. The application
implements library functions that things in the hardware directory call.
Meanwhile the hardware directory implements library functions that the
application calls. The only interaction between the two is via library calls.

Figure 1. How a bidirectional library works.

The application, above, implements app-
lib functions, while the hardware directory,
below, implements HW-lib functions. The
thick lines in the middle represent the inter-
face itself. To run an application on a
target platform, the hardware directory for
the platform is paired with the application
(then, typically, compiled).

2 Section 2

Thus, either side can be replaced with a different set of implementations of the library calls and the combination still
compiles. In our implementation of bidirectional libraries, the hardware directory is named the BLIS directory.

To support research on PHPP, we chose to make a sample implementation of a framework that automatically
performs Specialization. For application development, we made the framework as “turn-the-key” as possible, allowing
an application developer to write an application then “press a button” to get an executable for their target machine.
Meanwhile, for researchers who wish to focus on one aspect of the PHPP problem, such as Code Structure Transforms
(CSTs) or scheduling implementations for specific hardware, we have tried to make it easy to “plug in” such research
to the sample infrastructure.

Fig 2 shows the tool chain of our sample BLIS frame-
work implementation. We describe the path of an application
passing through the tool chain. First, applications are devel-
oped, compiled, and debugged in a sequential environment.
The application developer is given the BLIS directory as part
of the framework. It contains serial implementations of all
the hardware function calls, such as the scheduler call, and
definitions of standard data structures.

When an application is complete, its source code is sent to
the sample Specialization Server[6], where it is first saved for
future use, then sent to each specializer in the server. A spe-
cializer is custom to a single hardware platform, and produces
an executable, or set of executables, that run native on that
platform.

The executables produced by the specializers inside our
Specialization Server are saved and later retrieved by the hard-
ware on which they run. To retrieve a stored executable, we
supply some form of BLIS client that connects to the Spe-
cialization Server and requests the application. The server
automatically sends the correct executable for the hardware,
and the client makes that executable available to be run.

The hardware-specific side of the BLIS interface is driven
by development of specializers. Through this process, the
interface will explore the boundary, collecting the most essen-
tial “knobs” that schedulers require, and discovering the most
essential information the schedulers need from the applications.

In practice, a research team can clone the Specialization
Server and modify the local copy. This gives them a fast,
responsive development cycle and supplies a ready, reusable
pool of applications copied-over inside their clone. The var-
ious research teams may modify the applications and the BLIS
interface in their local Specialization Server clones. As they
discover a need to extend the BLIS interface, or a need to
modify an existing library call definition, they can do so. When

Figure 2.

The tool chain of our sample embodiment of the BLIS frame-
work, with breakouts showing what is inside certain elements.
It is designed to encourage general researchers to write appli-
cations to the BLIS standard, and to make focused research
on one aspect of PHPP convenient. (“MC + GPU” stands for
multi-core plus GPU)

the team publishes, they can propose that their modifications be adopted into the central Specialization Server.
This streamlines the process of collaborative sharing of work, collecting the best, in the manner of open source

cooperative development.
Such a process will expand experience with application developers who use the BLIS interface, allowing the most

convenient form of the BLIS interface to be discovered. Researchers focused on making the BLIS interface convenient
for application developers will also have the needs of the hardware-specific code available. They can explore various
ways to present to the application the needs of hardware developers by proposing new forms of the BLIS interface,
and validate the value of the proposals against the collective experiences of application developers across domains.
Because such work will involve changing existing interfaces, it will progress more slowly than specialization research,
but more rapidly than the evolution of new languages.

3 The DKU Interface for Data Parallelism
“DKU” is the name of the BiLib (bidirectional library) we propose for enabling portable data-parallelism. It stands
for “D”ivider, “K”ernel, “U”ndivider, which are the main library functions that the application implements. The func-
tions are made available to the DKU-scheduler, which uses them to divide work into smaller pieces, execute the kernel
on each piece, then collect the individual results into the larger result. The DKU pattern’s programming model is
shared memory with results communicated by side-effect. However, the shared-memory restriction is lifted by the use
of a “bundling quad” interface extension described in Sec 3.5.

The DKU Interface for Data Parallelism 3

When the application’s control flow reaches the data parallelism, it calls the scheduler. Normally, at that point, a
sequential application would execute a loop nest to process the data. When DKUized, the loop nest is wrapped and
becomes the Kernel, while the data that would go to the loop nest is handed instead to the DKU-scheduler.

The scheduler has a choice of whether to exploit the parallelism, or simply pass the data to a serial kernel. A serial
kernel is effectively the original sequential loop nest. It takes the data in the application’s native form, and processes
it sequentially, avoiding overhead.

Figure 3 shows the
two cases. On the left,
the scheduler decides
the data is too small
to be profitable and
calls the SerialKernel.
When the SerialKernel
returns, so does the
scheduler; the results
are communicated by
side-effect

On the right, the
scheduler decides it is
profitable to process
the data in parallel
and hands it to the
Dividable Piece Maker,
which packages the
data into the DKU pat-
tern’s standard data
structure. The Divid-
able Piece Maker is
necessary for two rea-
sons: being a set of
library-functions, the
D, K, and U must have
a standard interface, so
the data has to be

Figure 3.

The call structure of the DKU interface. On the left
is the case when the scheduler chooses not to exploit
the parallelism. On the right is the case when the
scheduler does.

Note that the Dividable PieceMaker turns appli-
cation-format data into DKU pieces. It is the bridge
from application to DKU pattern.

Sidebar:
Above is the minimum set of rules to follow to
instantiate a valid DKU instance in a Java appli-
cation (the Kernel is the implementation of the
performKernelOnSelf() method, the Divider is
divideSelfInto_SubPieces, and so on).

packages into a standard data structure; and there may be dependencies within the data that must be accomodated.
The Dividable Piece Maker accepts application specific data and returns the largest freely-dividable work-units

(pieces of work) that it can, while still respecting the dependencies. The work-units returned from the Dividable Piece
Maker are scheduled in-order, which guarantees that all dependencies in the data are respected.

For each, the scheduler decides how many work-units to sub-divide it into, based on a hardware-specific algorithm,
and tells the Divider to perform the division. The scheduler then hands each sub-piece to one of the instances of the
Kernel, all of which run in parallel. When a Kernel finishes, the scheduler passes the sub-piece along to the Undivider.
When the Undivider indicates that all the sub-pieces are done, the scheduler moves on to the next root piece, until
all are complete, then the scheduler returns.

Note that the scheduler is a library function, called by the application. Meanwhile the D, K, U, Dividable-
PieceMaker, and SerialKernel are also library functions, called by the scheduler. The scheduler is a black box to
the application, while the application is a black box to the scheduler. This generic-in-both-directions is what allows
connecting all combinations of applications with scheduler-implementations. The fact that all interactions are through
library calls is what ensures that compilation is error free for all combinations.

3.1 The Divider

The D is perhaps the most interesting part of the DKU interface. This is where the strategy of how to parallelize a
section of the application is mainly implemented. Often, the only thing divided is the iteration space; a nest of FOR
loops is identified and becomes the Kernel; then the nest is modified so that the iteration variables’ start and end
values come from a DKU-piece data structure.

As a result, the process of dividing is reduced to placing start and end values into DKU-pieces; each piece gets a
different portion of the original iteration range. When a K receives such a DKU-piece, it sets the start and end values
in each of its loops from the piece, then performs the loops. Each piece has a distinct set of start and end values,
so each K performs a distinct portion of the work. The application programmer ensures the pieces are independent.
The independence restriction will be lifted in the next release of the DKU biLib, which will include inter-piece
communication.

4 Section 3

This basic technique of identifying loop nests, then dividing the loop-bounds among DKU pieces was used in
both dense matrix multiply and H264 deblocking. However, Hamiltonian Path was included in the application set
to demonstrate more creative opportunities for using the DKU biLib. There, the divider turns the control flow into
data, then divides that “control” data. Section 4.3 gives details of how this was done.

An important point is that the divider is not required to produce the number of pieces the scheduler asks for. It
simply does its best. The scheduler always checks how many pieces it actually got back and proceeds accordingly.

3.2 The Kernel

The K is pure application code. It is normally a loop nest that has been slighly modified such that the ranges of its
iterations come from values taken from a DKU piece structure. During the DKU-ization process, the Kernel code
normally has only minimal changes from the pre-DKU code. Often only a wrapper is required.

The rules for a Kernel are straightforward: all variables must be local to the kernel, all data touched is reached via
the DKU piece that is passed to the kernel (pointers are allowed), and all results are reachable from the DKU piece.
Isolating the kernel from the environment in this way allows it to be run in remote memory spaces without modification.

Kernels are allowed to work on shared data-structures, and to have loop-carried dependencies. The complications
are handled by the Dividable Piece Maker, described in section 3.4, which is tasked with identifying independent pieces
within the data/iteration-space. This flexibility expands the number of applications that can successfully use the DKU
interface.

In C, the Kernel has the additional restriction of using only data-types defined in the BLIS-supplied headers for
DKU. “int” becomes “int32” and so forth, to ensure data sizes are the same (except for pointers) in both local and
remote memories. Data-structures used in the Kernel cannot have align statements in them (these will be supplied by
the specializer if they are needed for the target hardware). Finally, the bundling quad (Sec 3.5) must handle changes
in data-structure sizes that are due to differences in pointer sizes.

3.3 The Undivider

The U is usually the simplest of the three. In many cases, it simply acts as a barrier, counting the completed sub-
pieces until all have been accounted for. However, sophisticated specializers that perform source-to-source transforms
are free to analyze the application code and substitute more relaxed synchronization. The DKU interface identifies
for such a specializer where the barrier is located in the code (the U), and where the dependencies among root pieces
are encoded (in the Dividable Piece Maker).

3.4 The Dividable Piece Maker

The Dividable Piece Maker packages application-specific data structures into DKUPiece standard data structures and
enforces dependencies within the data. For example, in H264 deblocking, a macro block depends on having its neighbor
above and neighbor to the left being already finished. The Dividable Piece Maker encodes these dependencies. It is
handed the original data structure, and returns maximally-sized independent DKUPiece structures that can be freely
sub-divided. Each piece it hands back must be processed in sequence.

The Dividable Piece Maker written for H264 deblocking is given a frame of data and slices it into diagonals of
macro-blocks, handing back each diagonal as a single piece. Each diagonal can then be freely sub-divided, with its
macro-blocks distributed among the sub-pieces.

3.5 Extension for Distributed Memory: The Bundling Quad

The bundling quad is an extension to the basic DKU interface that enables specialization to distributed memory
machines. As the name implies, it consists of four functions: bundleInputs, unbundleInputs, bundleResults, and
unbundleResults. Their effect is to make remote execution look as though it happened locally.

Each bundling function can be thought of as a “port” for sending between local memory and remote memory. They
are only invoked by schedulers on distributed memory machines, so impose no overhead on shared memory.

BundleInputs is run locally, gathers all data that will be touched by the Kernel, and returns a pointer to the bundle.
The scheduler sends this bundle, via its specializer-inserted, hardware-specific, communication infrastructure, to a
remote scheduler or to a remote communication stub.

In the remote memory the remote scheduler calls unbundleInputs, then the Kernel, then bundleResults.
UnbundleInputs unpacks the data and returns a DKUPiece. The DKUPiece is handed to the Kernel, which pro-
duces results that are reachable from the DKUPiece as per the standard for Kernels. Then bundleResults is handed
the DKUPiece. It packs all result data into an array (or object) and returns a pointer. The remote scheduler
then sends the result bundle back.

The specializer-inserted communication infrastructure that runs in local memory then receives the bundled result
data. The local scheduler hands it to unbundleResults which modifies the local copy of the DKUPiece, making local
memory look exactly the same as if the Kernel had run locally.

The DKU Interface for Data Parallelism 5

This set of functions cleanly hide remote execution from both the local application and the Kernel. The application
is free to use global variables, shared data structures, and so forth. In practice it has been surprisingly easy to
implement the bundling quad.

4 The Applications

We have chosen a set of three applications to demonstrate using the DKU interface. Two of these are implemented in
Java, and are more “benchmark” code, while the third is taken from a real application written in C. The benchmarks
are dense matrix multiply and a Hamiltonian Path solver (an NP-Complete problem). The real application is H264
deblocking, which was previously optimized by hand for high performance on serial processors.

4.1 Deblocking Filter for H264

This is the most interesting, from a real-world perspective, as it was taken from an active project [12] and optimized
for high speed on serial hardware. As such, it breaks many abstractions natural to the application. For example,
the “macro block” is a natural unit of data. In an object oriented program, one would include all the data for a macro
block in a single object. However, in the C code, the data is flattened onto linear arrays then accessed by calculating
addresses within the arrays (the arrays are static variables).

For many parallel programming paradigms, the global, shared, flattened, arrays and address arithmetic would be
problematic, due to side-effects, incompatibility of single shared arrays with the language’s parallel model, and so
forth. For DKU, it is handled via the Dividable Piece Maker and the bundling quad, without modifying the core of
the original application code, and without undue effort. The details of how this was done are too involved for the
space available; the best way to see them is via the code on the website [4].

The dividable piece maker we implemented divides a frame, consisting of macro blocks, into diagonals, making
each diagonal a separate root DKUPiece. Each macro block requires its neighbor above and neighbor to the left to
be completed before it is calculated, so all the macro blocks on a 45 degree diagonal are independent from each other
and all free to calculate once the preceeding diagonal is complete. The divider simply assigns the macro blocks from
a diagonal to sub-pieces.

4.2 Dense Matrix Multiply

Nothing special was done in the sample implementation of matrix multiply we supply. The divider slices the two
input matrices into “strips”. A single DKUPiece contains a pair of matrices to be multiplied. When such a pair is
divided, its left matrix is sliced horizontally into clusters of rows, while the right matrix is sliced vertically into clusters
of columns. Each combination of clusters is made into a separate sub-piece. This has the side-effect of discretizing
the number of sub-pieces the divider is able to make. Note, however, that the division doesn’t move any data in the
matrices around. Rather, it calculates start and end rows for the left matrix, and start and end columns for the right.

4.3 Hamiltonian Path

In the Hamiltonian Path problem, one finds a path that visits every node of a graph exactly once, or else determines
that no such path exists. The standard approach is to use back-tracking, which, when one examines the control flow,
performs a search that has the shape of a tree. We turned the back-tracking algorithm into an iterative algorithm
that represents the current point in the search as a partial-path. There is a one-to-one correspondence between each
possible partial-path and a node in the search tree.

The property we exploit is that in a tree, given two nodes neither of which is an ancestor of the other, those two
nodes have no descendants in common. So, if search proceeds independently from those two nodes, the two searches
will remain independent and will duplicate no work.

The divider finds a set of such nodes by traversing the search tree breadth-first. It accumulates the nodes it visits,
removing a node when it explores its children. Meanwhile the Kernel is written to search depth-first to increase the
chances of early termination. The undivider, in essence, performs a logical OR of all the answers. If they’re all null,
the total answer is null. Otherwise, it takes the first path returned to it as the final answer.

The search tree is typically exceptionally unbalanced. To handle this, we introduced a “re-divide” interface exten-
sion. The scheduler signals a running Kernel to stop for re-division, then hands the partially-completed piece to the
ReDivider. For Hamiltonian Path, we exploit the re-entrant nature of the divider, and implement the redivider as a
few “fix ups” that handle the differences between depth-first and breadth-first search.

In the case that one of the sub-trees finds a path quickly, we have also added an extension to the DKU interface
that allows the undivider to tell the scheduler to early-terminate the un-finished DKU-pieces.

6 Section 4

5 Specialization Infrastructure

In general, specialization can be performed in many different ways: by hand, by a build-script, or by some more general
infrastructure. To support research, we have chosen to try to minimize the effort required by a researcher who wants
to focus on one step of specialization such as Code Structure Transforms or specific scheduling algorithms. Hence our
sample BLIS implementation has sample code of infrastructure. It has a BLIS directory with serial implementations
that is supplied to the application developer, a sample Specialization Server, and a sample BLIS Client.

5.1 Application Development

Figure 2 shows that during development, the application source includes an inserted BLIS directory that is supplied as
part of our framework. The BLIS directory has a DKU sub-directory that has all standard data-structure definitions
and a sequential implementation of the DKU-scheduler. By being serial, the sequential-scheduler allows development
to proceed in a serial environment, such as the application developer’s favorite development environment.

When the D, K, U, and DividablePieceMaker are being debugged, an alternate implementation of the scheduler is
swapped in, which calls the D, K, U, and DividablePieceMaker in a serial fashion. This pattern of swapping in different
scheduler implementations leaves room for more sophisticated debugging machinery. For example, a serial scheduler
could stimulate timing bugs by performing repeatable inter-leaving and simulating distributed memory.

Later, during specialization, the application will be linked, in turn, to one or more hardware-specific scheduler
implementations. In our framework implementation, the hardware specific scheduler’s source is packaged inside a
specializer module.

The use of a BLIS directory during app-development provides additional benefits. As mentioned, our BLIS
implementation allows given application code to remain compatible with both future and past schedulers as the
interface is extended, and modified. The use of a BLIS directory enables this. When an extension is accepted into the
BLIS interface, then a new BLIS directory containing serial implementations of all the interfaces, including the new
ones, is made available for developing applications, and for developing schedulers. Meanwhile, the BLIS directories
inside each application and inside each specializer already in the central Specialization Server are merged with the new
directory, such that “do nothing” versions of missing interface implementations are added. Hence, all interfaces “work”.

The caveat is that schedulers written to new versions of the interface will not necessarily do anything interesting
with applications written to old versions and vice versa. This scheme only ensures that old apps still work the same
with old schedulers and new works with new, and no compilation errors happen when new is mixed with old.

5.2 Our Specialization Server Implementation

The middle of Figure 2 shows that the server in our sample implementation sends the source to each specializer module.
A specializer is self-contained and is invoked by a script placed in a designated directory. The server simply calls all
scripts in that directory. Plugging in a new specializer module consists of placing the module’s entry-script into that
directory.

The entry script is handed a copy of the application code-base. From there it invokes other scripts in the special-
ization module. The first script typically deletes the DKU directory that came with the app and replaces it with the
DKU directory packaged inside the module. Next, if the specializer has any code-structure transforms (CST), a script
invokes those. When transform completes, a script invokes the compilation process. Finally, a script packages the
resulting executables and sends the package, along with information about the specializer, the application, and the
target hardware, to the Server’s distributor.

The Server’s distributor accepts executable bundles from specializer modules, and also listens for requests from
clients running on end-platform hardware. To run an application on a given machine, a client on that machine is used
to get the application. It sends information about the hardware and the desired application. The Distributor sends
back the appropriate executable. The client unpacks the executable and makes it available to the OS to be run. The
client may simply be a human using FTP, a script or a test harness.

5.3 Client on end-hardware

We chose to include a client on end-hardware to improve support for the search for the boundary between application
and hardware. The search needs a broad base of applications; to encourage application development we provide “turn-
key” infrastructure that automates the entire toolchain, all the way to invoking an application on target hardware via
a BLIS Client. The right of the top of Figure 2 shows that a client sends detailed information about its platform to
the Specialization Server, potentially including cache sizes, number of cores, operating system settings, and so forth.
The server hands the client the executable best suited to the hardware. Our sample code implements the client as a
human using FTP and a web-page interface to the data base.

Specialization Infrastructure 7

A more interesting client would be one that runs on a mobile device, as envisioned for the OMP (Open Media Plat-
form) project[5] which supported this work on the BLIS framework. Here, the client requests the media-components
required to play a particular content stream, as needed, and may even request according to resource usage and quality
of experience offered.

6 Specializers and the Schedulers Inserted by Them

The heart of the BLIS framework is the specializers that produce the executable images.

There is only one formal requirement for specializers and schedulers: Specialization must be performed, and the
code output from Specialization must produce the same result as with the sequential scheduler. Beyond this, they are
free. For instance, they don’t even have to use the library interface call to the scheduler; the specializer could perform
a Code Structure Transform that turns the call to the Scheduler into an OS call to start the Kernels, and so on.

For our automated infrastructure, specializer modules often have two parts: a BLIS directory that contains pre-
written scheduling + communication code, and a script that first replaces the serial BLIS directory, that came with
the application source, with the hardware-specific one, and then compiles the result. The pre-written scheduler in
the new BLIS directory makes calls to the D, K, U, etc implemented in the application, while the application calls
the scheduler. Such a specializer module does not modify the calls, so there are no compilation errors. Changing the
contents of the BLIS directory has only changed the implementations of both directions of library call.

In the following sub-sections, we describe some details of our sample specializer modules and the schedulers packaged
inside them, for each of our test hardware platforms.

6.1 Java specializer and scheduler for Shared Memory Multicore

Our sample specializer module for Java on shared memory multi-core machines has no Code Structure Transforms.
It only removes the serial DKU directory and replaces it with one containing our pre-written scheduler for multi-core
machines.

We didn’t concentrate on performance, as our intent is to demonstrate how to make a scheduler, not to try to
make an interesting one. The scheduler creates one worker-thread for each core, and communicates with it via a pair
of one-way queues.

A separate DKUScheduler object is created in the application’s main thread. Then its scheduleAndPerformWorkOn
method is called and handed an Object. The method uses the DividablePieceMaker to turn the Object into an array
of DKUPiece objects, then loops through the objects invoking the divider method of each one. It tells the divider to
make the same number of pieces as the number of worker threads. Then it loops through the sub-pieces, sending each
to a worker thread, round-robin. The worker threads take DKUPieces out of the queue, call the Kernel method of
the DKUPiece, which produces results by side-effect, then put the piece into the return queue back to the scheduler.
The scheduler calls the undivider method on the parent piece, passing it each sub-piece until the parent says all sub-
pieces are accounted for. The scheduler then loops to the next DKUPiece in the array, and returns when all are done.
There is significant room for scheduler improvement.

6.2 Java specializer for Heterogeneous Networks of Machines

The scheduler in this specializer module has two levels that run in separate JVMs: one scheduler is part of the appli-
cation executable, and a second scheduler is in a stand-alone “worker” that runs on each machine in the heterogeneous
collection. A worker accepts pieces from all applications running on the collection.

Two levels of division are performed, adaptively. The first level of division is performed by the application-scheduler.
It reads a config file of the machines available, and makes enough pieces that it can hand each machine a number
proportional to its processing power. The second division-level is performed inside each worker.

The worker running on a given machine is implemented specifically for that machine, so it potentially performs
division and scheduling in its own way. Our implementation is for a collection of shared memory multicore machines,
so the workers are all implemented the same, but they differ in the number of threads they schedule onto. The workers
divide the pieces they receive, to end up with close to the same number of sub-pieces as there are hardware threads
in the machine.

This demonstrates a useful property of the DKU interface, that division is re-entrant, so it can be performed
repeatedly on sub-pieces and sub-sub-pieces, etc. The choice of further sub-division is left to the receiver of a piece.

6.3 C specializer for Cell BE Processor

The Cell BE hardware makes this specializer more interesting. The scheduler code is split into two parts, one part that
runs on the two PPUs, and a second part that runs on the SPEs. As with the other schedulers, this is sample code
to show how to make a scheduler for the Cell that uses the DKU interface, without special effort to gain performance.

8 Section 6

The Cell has two different instruction sets inside it, one for the PPU, a second for the SPE, so the specializer must
create two separate code bases and call two separate compilers (with help from the SDK). The functions from the
application that execute on the SPEs are unbundleInputs(), Kernel, and bundleResults(), so these must be copied
out of the application code-base and into the DKU directory where they are inserted into SPE code templates. We
performed the copy and insertion by hand rather than writing scripts. It takes about 10 mins to specialize the generic
source to run on the Cell.

In the C version of DKU, before calling the schedule function the first time, schedulerInit() is called. For the
Cell, this init uploads the SPE code templates, with their inserted application functions, and starts them running.
The SPEs then loop looking for work.

The PPU scheduler has the same architecture as the Java and C shared memory versions, with the difference lying
in the worker threads. Rather than performing the work itself, the worker thread instead finds a free SPE and transfers
the work to it.

This requires the worker thread to first call bundleInputs, then tell the SPE the address of the bundle. The SPE
uploads the bundle and runs unbundleInputs in its local memory, hands the created DKUPiece to the Kernel, then
calls bundleResults on the completed DKUPiece. The SPE then copies the result bundle to the PPU memory and
notifies the worker threads. The worker that gets the notification pairs the returned result bundle with the original
DKUPiece in PPU memory and runs unbundleResults, which moves data out of the bundle. After the data-moves,
PPU memory looks just like the work had been performed locally.

The specializer has to handle machine details, such as the difference in pointer sizes between the PPUs, at 64bits,
and the SPEs at 32 bits. It gets help from the application and the DKU standard.

Recall that the Kernel is defined to only touch data that is reachable from a DKUPiece, while bundleInputs is
defined to gather all data a Kernel will touch from a given DKUPiece. This hides global variables and shared variables
from the scheduler code.

Native data size differences are hidden by #defines. The DKU.h file #defines standard size data types, for
example int32 and uint8. The application uses these for all data touched by the Kernel, instead of int and char.
This allows the specializer to include a hardware-specific DKU.h file in its DKU directory. The #defines are written
as part of the specializer, possibly using macros, and make the compilation performed inside the specializer use the
right assembly instructions to be consistent with the defined size.

Pointer size differences and endian differences are handled by #defines as well, two for pointer sizes in local and
remote memories, and two for the endianness in each. The bundling quad is written, by the application programmer,
to use these #defines in the DKU.h file to construct a bundle with the right sizes and byte orderings for remote
memory. Pointer arithmetic and normal arithmetic then function correctly inside a remote Kernel binary, which was
compiled to a different ISA, without the application ever knowing what that ISA might be. Further, if statements in
the bundling quad, that check the #define values to decide which rearrangements of data to perform, are optimized
away, leaving only the operations required for the actual combination of ISAs to be compiled and run.

Lastly, the application should not use align statements in data structures that are copied by bundleInputs. If
such statements are required, then bundleInputs is written to perform a primitive-by-primitive copy into the bundle.
Meanwhile unbundleInputs is written to create a new data structure and copy the individual primitives into it. With
this approach, the two compilers should correctly handle differences in alignment on the local and remote machines.

7 Experimental Results

We stress that the schedulers tested here are sample code, written to show how it is done, with no interesting features
for performance. The results serve to show that the bidirectional interface pattern works; performance is placed by
the BLIS interface into the hands of the specializer implementors and application implementors.

When measuring overhead, it can be subtle determining which overhead should be counted against the interface,
and which is intrinsic to parallelism. We adopt this question as the defining test to determine what is overhead of
BLIS vs overhead intrinsic to parallelism:

“would this overhead occur in the application, if it were written by hand using the scheduling primitives
available on the hardware?”

In most cases, the answer to the question is yes, the overhead would also occur in a hand-coded version, which
makes the overhead intrinsic to parallelism. The one set of overheads that are clearly unique to using BLIS are the
call instructions of the interface calls.

However, some overheads may be made worse by using BLIS, but by how much is implementation dependent. These
are: loss of parallelism opportunities due to BLIS’s choice of interface pattern; additional think time in a scheduler
due to lack of needed information or lack of a needed “knob” to manipulate application-specific quantities; time lost in
the barrier implied by the undivider; and added overhead caused by the form of sending signals between the scheduler
and a running Kernel that has been implemented to communicate.

We have no general solution to measure the worsening of these overheads resulting from the BLIS form. However,
for some actions we measure times in the schedulers, which admits intuition about how efficient the BLIS code is.

Experimental Results 9

In the experiments, we used a 2 core laptop, denoted “1x2”,
a 2 socket by 4 core each, denoted “2x4”, a 4 socket by 4 core
each, denoted “4x4”, a heterogeneous network of them connected
by 100Mbit LAN, denoted “Het”, and the Cell BE in a PS3. Of
note, the heterogeneous network demonstrates the use of the re-
entrant feature of the Divider, as mentioned in Sec 6.2.

Matrix Multiply in Java: Figure 4 shows efficiency on Matrix
Multiply in Java, when run on three different multi-core machines,
plus the heterogeneous collection of them. The break even size
is around 100x100 double precision on the multicore machines.
However, on the heterogeneous collection, the amount of data sent
over the 100 MBit LAN limits performance. Break even is around
200x200, where serial Kernel time is that on the machine the app
is lauched from. On matrix multiply, the comp-to-comm ratio
grows linearly with matrix size, causing percent ideal speedup to
increase linearly with matrix size.

The Slow-down for small matrix sizes can be avoided by
the addition of an interface for execution-time prediction. When
added, the schedulers will be able to avoid the parallelism overhead
by instead calling the serial Kernel when a slow-down is predicted.

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10

P
er

ce
nt

 Id
ea

l S
pe

ed
 U

p

serial exe time in sec

1x2
2x4
4x4
Het

Figure 4. Matrix Multiply in Java: The per-
centage of the ideal speedup achieved on each of
four machines vs the serialKernel execution time.
Break-even exe time on a machine is found at the
0% point (serial exe time = parallel exe time). The
size of matrix at succesive points along one curve:
9x9, 81x81, 162x162, 324x324, 648x648, 1296x1296

PercentISU =
Tser

Tpar
− 1

p-1
· 100

Hamiltonian Path in Java: Hamiltonian Path is used to demonstrate several things: the interface does evolve
as needed; the interface admits high-efficiency; and complex problems can be expressed within the DKU interface.
Hamiltonian Path is a complex problem, its running time is inherently not predictable, as far as is currently known,
so the running-time of an input-graph in a serial thread is the base quantity, rather than size of the input-graph.

Table 1 shows the evolution of the interface: two input-graphs are run on a 4x4 core machine four times. Each
time is with a different implementation of the scheduler: serial, one-time division, redivision, and redivision plus early
termination. The dramatic changes in running time show the value of being able to incrementally add features to
the interface. The fact that the same application source is run on all four versions of the scheduler demonstrates the
point that “old” schedulers can be successfully used with “new” applications. This backwards-and-forwards compatible
feature of the framework has practical value for researchers.
The odd timings are due to the nature of the search Kernel: it

explores the search tree depth-first until it finds a solution, then
stops. So the existence of a solution allows early termination,
while on a graph with no solution, the full search tree must be
explored. Hence, dividing the search tree of a graph can separate
a solution into one piece, while the other pieces have no solution.
The solution-containing piece finishes early while the others
fully explore their sub-trees. This is why exe time increases from
sequential to one-time divide: a previously hidden sub-tree with
no solution is placed into its own piece, and all the other pieces
wait for that one to complete.

Ham. Sched: Serial One Rediv. Rediv. +
Path Div. Early Term.

Solution 140s 272s 43s 0.012s

No Soln. 52s 21s 3.4s 3.3s

Table 1. Four versions of the scheduler, each on two
input-graphs run on a 4x4 core machine. The top row
shows running times for the graph that has a solution,
while the bottom row is for a graph that has no Hamil-
tonian Path in it.

This behavior drove the addition of the redivide and early-terminate
interface extensions. In the “redivide” interface, the Kernel stops when
signaled by the scheduler, and the work remaining in the piece is divided
then handed out to idle workers. The table shows that, for this input-
graph, redivision gives near linear speedup over one-time divide. The
deviation from fully linear is due to working on the orignal pieces, that
finished early. Notice that it would finish even faster if the long-running
pieces could be stopped as soon as a solution is found. This is what the
Early-terminate interface provides. Its use gives the surprising speedup
seen in the top of the last column. However, when no solution exists in
the input graph, the speedup remains linear as seen just below, in the last
column of the second row.

Figure 5 shows efficiency: the same input-graphs are run on all the
test machines, in a single thread first then on multiple threads. The
input-graphs all have no solution, so the amount of work stays constant.
The plot shows that the speedup approaches perfect speedup on all

machines once the serial time is large enough. This shows that reasonable
performance can be achieved even with very simple schedulers.

 0

 20

 40

 60

 80

 100

 0.02 0.1 0.5 2.5 12.5 62.5

P
er

ce
nt

 Id
ea

l S
pe

ed
 U

p

serial exe time in sec

1x2
2x4
4x4
Het

Figure 5. Hamiltonian Path in Java: The
percentage of the ideal speedup achieved on
each of the multicore machines vs the seri-
alKernel execution time. All input graphs
are no solution types. The Redivide + Early
Terminate scheduler was used. Exe time is
the same for serial and parallel execution at
the 0% SU point.

10 Section 7

Table 2 shows Cell BE results for deblocking of a cell-
phone size screen. All of the parallel configurations using the
SPEs caused slowdown due to communication delays. As
seen by the Kernel time vs Comm time, deblocking performs
very little work on each byte transferred, so communication
latency dominated. However, in a system with other sources
of parallelism, the latency might be overlapped.

This illustrates the importance of the serial kernel. As seen
here, not all sources of parallelism exposed in an application
are exploitable on all hardware. The serial kernel’s speedup
of 2.3x over the 6 SPE configuration shows that the flexibility
to decide at run-time whether to exploit the parallelism can
significantly affect performance.

H264 D.F. Serial 1 SPE 3 SPE 6 SPE
on Cell BE PPE

Total time 2.0ms 16ms 8.9ms 4.7ms

Kernel time n/a 2.2ms 0.7ms 0.3ms

Comm time n/a 13sms 7.6ms 4.2ms

Table 2. Cell results on H264 deblocking. Total time
is for one frame of 320 x 200 pixels. Kernel time is the
portion of that due the Kernel. Comm time is the por-
tion due to the bundling quad plus queues plus DMA.
The “missing” time was spent in the scheduling code on
the PPU. “Serial” means the serialKernel was run on the
PPU, while “X SPE” means the parallel version was run
using that many SPEs.

These Cell results show how the framework can be useful. The hand-coded versions of H264 achieve parallel
speedup, by performing multiple steps on the same data once it is in an SPE. To close the gap between hand-coding vs
machine-independent source, greater flexibility is needed in automatically arranging the sources of parallelism exposed
in the portable source. This framework helps in exploring how to express the needed flexibility, and in exploring how
to write a specializer and a scheduler for the Cell that take advantage of that expressed flexibility. Productivity gains
in doing that kind of research are the goal of the proposed framework.

8 Conclusion

We have shown a framework to support research on portable high performance parallelism. It uses the pattern of bi-
directional library calls to successfully separate application code from hardware specific code, while enabling mix-and-
match of applications to hardware. The hardware scheduler is called as a library function, and interacts with “knobs”
that the application makes available as reverse-library functions.

We showed a bidirectional library interface for data parallelism, three applications instrumented with it, and results
of automated specialization of the applications to shared memory multicore machines. The applications were written
and debugged in a sequential IDE in Java and C; then the sources were specialized, automatically or by hand, to the
Cell BE, to various multi-core, and to a heterogeneous collection of multi-core. The performance results show that
this approach works, and anecdotal evidence of the time we spent on implementation of the specializers indicates that
the proposed framework may be efficient and helpful for research on portable parallelism.

References
[1] Berkeley Pattern Language. http://parlab.eecs.berkeley.edu/wiki/patterns.

[2] CILK homepage. http://supertech.csail.mit.edu/cilk/.

[3] CnC homepage. http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc/.

[4] Deblocking Filter code. http://dku.svn.sourceforge.net/viewvc/dku/branches/DKU_C__Deblocking__orig/.

[5] Open Media Platform homepage. http://www.openmediaplatform.eu/.

[6] Sample BLIS Code. http://dku.sourceforge.net/SampleCode.htm.

[7] Scala homepage. http://www.scala-lang.org/.

[8] Suif parallelizing compiler homepage. http://suif.stanford.edu.

[9] Titanium homepage. http://titanium.cs.berkeley.edu.

[10] Unified Parallel C homepage. http://upc.lbl.gov/.

[11] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer, D.A. Patterson, W.L. Plishker, J. Shalf,
S.W. Williams, et al. The landscape of parallel computing research: A view from berkeley. Electrical Engineering
and Computer Sciences, University of California at Berkeley, Technical Report No. UCB/EECS-2006-183, December ,
18(2006-183):19, 2006.

[12] Arnaldo Azevedo, Cor Meenderinck, Ben Juurlink, Andrei Terechko, Jan Hoogerbrugge, Mauricio Alvarez, and Alex
Ramirez. Parallel h.264 decoding on an embedded multicore processor. In HiPEAC ’09: Proceedings of the 4th Interna-
tional Conference on High Performance Embedded Architectures and Compilers , pages 404–418, 2009.

[13] G.E. Blelloch, J.C. Hardwick, S. Chatterjee, J. Sipelstein, and M. Zagha. Implementation of a portable nested data-
parallel language. In Proceedings of the fourth ACM SIGPLAN symposium on Principles and practice of parallel program-
ming , pages 102–111. ACM New York, NY, USA, 1993.

Conclusion 11

[14] M Cole. Algorithmic skeletons: Structured management of parallel computation . Pitman, 1989.

[15] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon Leem, Mike Houston, Ji Young Park, Mattan
Erez, Manman Ren, Alex Aiken, William J. Dally, and Pat Hanrahan. Sequoia: programming the memory hierarchy. In
SC ’06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing , page 83, 2006.

[16] D. Gelernter. Generative communication in Linda. ACM Transactions on Programming Languages and Systems
(TOPLAS), 7(1):80–112, 1985.

[17] Dominique Ginhac, Jocelyn Serot, and Jean Pierre Derutin. Fast prototyping of image processing applications using
functional skeletons on a mimd-dm architecture. In In IAPR Workshop on Machine Vision and Applications , pages 468–
471, 1998.

[18] C. Lin and L. Snyder. ZPL: An array sublanguage. Lecture Notes in Computer Science , 768:96–114, 1994.

[19] T. Mattson, B. Sanders, and B. Massingill. Patterns for parallel programming . Addison-Wesley Professional, 2004.

[20] J. McGraw, SK Skedzielewski, SJ Allan, RR Oldehoeft, J. Glauert, C. Kirkham, B. Noyce, and R. Thomas. SISAL:
Streams and iteration in a single assignment language: Reference manual version 1.2. Manual M-146, Rev , 1.

[21] P Palatin, Y Lhuillier, and O Temam. Capsule: Hardware-assisted parallel execution of componentbased programs. In
In Proceedings of the 39th Annual International Symposium on Microarchitecture , pages 247–258, 2006.

[22] Jocelyn Serot and Joel Falcou. Functional meta-programming for parallel skeletons. In ICCS ’08: Proceedings of the
8th international conference on Computational Science, Part I , pages 154–163, 2008.

[23] D.B. Skillicorn and D. Talia. Models and languages for parallel computation. ACM Computing Surveys (CSUR),
30(2):123–169, 1998.

[24] R. Stephens. A survey of stream processing, 1995.

[25] Wikipedia. HPF wikipedia page. http://en.wikipedia.org/wiki/HighPerformanceFortran.

[26] Wikipedia. MPI wikipedia page. http://en.wikipedia.org/wiki/MessagePassingInterface.

12 Section 8

