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Understanding the origin of the recently discovered accelerated expansion of the Universe poses
one of the greatest challenges in physics today. Due to a lack of a fundamental theory to test, major
observational efforts are targeted at characterizing the underlying cause. If the cause is a dark
energy, the equation of state w and its possible time evolution will hold clues about its origin. In
order to exploit the information from ongoing and upcoming observations it is extremely important
to develop a robust and accurate reconstruction approach with controlled errors for the dark energy
equation of state. We introduce a new, nonparametric, direct reconstruction method based on
Gaussian process modeling. We apply this method to recent supernova measurements and for the
first time reliably reconstruct the continuous history of w out to redshift z = 1.5.

PACS numbers: 98.80.-k, 02.50.-r

Only a decade has passed since the astonishing discov-
ery of a mysterious agent driving an accelerated expan-
sion of the Universe [1, 2]. Since confirmed by different
probes, this discovery has been hailed as the harbinger
of a revolution in fundamental physics and cosmology.
Why is there so much excitement? Simply because no
fundamental understanding exists: Cosmic acceleration
demands completely new physics. It challenges basic no-
tions of quantum theory, general relativity, and the fun-
damental make-up of matter. Currently, the two most
popular explanations are a dark energy, maybe driven by
a scalar field, or a modification of general relativity on
the largest scales.

In the absence of any compelling theory to explain the
observations, the main target of current and future cos-
mological missions is to first characterize the underlying
cause for the accelerated expansion. In the case of dark
energy, constraints on the equation of state w = p/ρ and
its possible time dependence are the major targets for fu-
ture surveys. Any deviation from w = const. would pro-
vide clues about the origin of the accelerated expansion.
Currently, observations are consistent with a cosmologi-
cal constant, w = −1, at the 10% level [3] without hints
on a possible time variation. In order to extract such in-
formation from cosmological data, a reliable and robust
reconstruction method for w(z) is crucial, since “direct
reconstruction is the only approach that is truly model
independent” [4]. In this paper, we introduce a new
nonparametric method for reconstructing w(z) based on
Gaussian Process (GP) modeling.

For supernova data, the reconstruction task can be
summarized as follows. The data is given in form of the
distance modulus µ(z) defined as:

µ(z) = mB − M = 5 log10 DL(z) + 25. (1)

The luminosity distance DL(z) is connected to the Hub-

ble expansion rate and therefore to the dark energy equa-
tion of state w(z) via:

DL(z) =
c(1 + z)

H0

∫

z

0

ds

h(s)
(2)

=
c(1 + z)

H0

∫

z

0

ds
[

Ωm(1 + s)3

+(1 − Ωm)(1 + s)3 exp

(

3

∫

s

0

w(u)

1 + u
du

)]− 1

2

,

where h(z) = H(z)/H0. We assume here spatial flat-
ness which is well justified from combined cosmic mi-
crowave background and baryon acoustic oscillation mea-
surements [5]. Equation (2) defines our reconstruction
task for w(z), a classic statistical inverse problem, where
we have to solve for a function w(z) and two parameters
(H0 and Ωm) given noisy data.

To make the problem tractable, there are different ways
to proceed. (i) Assume a parametrized form for w(z) and
estimate the associated parameters. This approach is
currently most commonly used and the parametric forms
either assume w = const. or allow for a small time varia-
tion such as w = w0 −w1z/(1 + z), where w0 and w1 are
constant [6]. (ii) Pick a simple local basis representation
for w(z) (bins, wavelets), and estimate the associated
coefficients (effectively a piecewise constant description),
use Principal Component Analysis (PCA) if needed to
work with eigenmodes defined as linear combinations of
bins [7]. (iii) Follow a procedure similar to (ii) – without
PCA – but actually use (filtered) numerical derivatives to
estimate w(z) [8]. (iv) Assume a general functional repre-
sentation for w(z) and estimate the properties thereof (we
will follow this approach in the current paper). Methods
(i), (ii), and (iv) can all be carried out using a Bayesian
approach and explore posteriors by Markov Chain Monte
Carlo (MCMC) methods, whereas (iii) – as carried out in



2

the literature – represents a different class of approach to
the inverse problem. It requires taking numerical deriva-
tives which is generally a difficult task and an error theory
for this method seems hard to develop. It will never be
as good as the other methods – if it works, the others
should already work better.

Approach (i) would not fare well if w(z) has indeed a
non-trivial time dependence. The number of parameters
is too small to capture a time dependence reliably and
the specific functional form assumed can easily bias the
result for the temporal behavior of w. In principle, one
could use more parameters (e.g. in a Chebyshev poly-
nomial expansion or a harmonic oscillator basis), and
include as many as the data requires. In practice, the
current data quality does not hold enough information
to go beyond a one- or two-parameter fit and limits the
usefulness of this approach. Methods (ii) and (iv) in ef-
fect apply different philosophies – (ii) applies a local view
of the reconstruction (z bins), whereas (iv) attempts to
sample the posterior continuously in z. In some sense,
(ii) is mildly parametric because of the choice of a piece-
wise continuous representation (w = const. is just the
one-bin limit of this). It also forces an unphysical view
of w(z) since the actual w(z) is not piecewise constant.
In contrast, method (iv) can be performed in a fully non-
parametric fashion. As such, it is more flexible and more
general than the others.

Our new approach – based on GP modeling – is an
example for a realization of method (iv). It enables us
to pick up non-trivial time dependencies in w(z) reliably
(see Ref. [10] for examples based on simulated data). The
basic idea is to use a large family of possible functional
forms for w(z) (we choose GP models because of their
flexibility) and take advantage of the integral form of
Eq. (2). Using a Bayesian approach to explore posterior
distributions via MCMC we not only obtain a continuous
best-fit realization for w(z) but at the same time optimize
the GP model parameters, informed by the actual data.

There seems to be a confusion in the literature that
a general nonparametric reconstruction involves taking
a second derivative. Formally this is true but not prac-
tically – our approach does not involve any derivatives.
Instead, we are “inverting” an integral equation, ill-posed
because the operator to be treated is a complicated
smoothing operator (a double integral). To make the
problem well-behaved we make relatively mild smooth-
ness assumptions about w(z) which is justified if the ori-
gin of dark energy is described by a well defined theoret-
ical model.

For our analysis we focus on one of the most recently
available supernova data sets from Hicken et al. [3]. This
data set combines the so-called Union data set [11] with
new measurements of low redshift supernovae to form
the Constitution set. The data set has been analyzed
in Ref. [3], using different light curve fitters for fitting
the supernova light curves. They investigate the origi-
nal version of the Spectral Adaptive Lightcurve Template
(SALT) fitter [12], which is based on spectral template
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FIG. 1: Data set from Ref. [3], combining the Union data
set from Ref. [11] and a new set of low redshift supernovae.
The left panel shows the distance modulus µ versus redshift
z obtained using the SALT fitter, the right panel shows µ

versus z obtained using MLCS17. The colors indicate differ-
ent subsets of data. It is interesting to note that the data
points from MLCS17 are much tighter around a mean than
the results from the SALT fitter.

fitting and a newer version, SALT2 [13] based on prin-
ciple component analysis (PCA). In addition, they an-
alyze the data using the Multicolor Light Curve Shape
2k2 (MLCS2k2) [14] fitter with two different parameter
settings for the extinction ratio RV . The results obtained
from these methods are consistent within error bars and
in agreement with a cosmological constant.

We carry out an analysis of the results from the SALT
fitter and MLCS2k2 with RV = 1.7, denoted as MLCS17
in Ref. [3]. The data are given in Tables 1 and 4 in Ref. [3]
including an estimate for the error for the distance mod-
ulus µ (the tables contain what is referred to in Ref. [3]
as ”minimal cut”). Figure 1 shows the two resulting data
sets for µ as a function of redshift z. The SALT data set
shown in the left panel contains 397 data points, while
the MLCS17 data set contains 372 data points.

A GP model assumes that w(z1), ..., w(zn), for any col-
lection of z1, ..., zn, follow a multivariate Gaussian distri-
bution. Here we use a mean of negative one and power
family covariance function written as (the constant ρ
should not be confused with the density)

K(z, z′) = κ2ρ|z−z
′|α . (3)

The value of α influences the smoothness of the GP
realizations: for α = 2, the realizations are smooth
with infinitely many derivatives, while α = 1 leads to
rougher realizations suited to modeling continuous non-
differentiable functions. We use both values for α in our
analysis, the results are very similar. The mean of the
GP is taken to be fixed to improve the stability of the
MCMC (we explored other means and found very similar
results that all had posteriors that tended toward nega-
tive one). ρ has a prior of Beta(6, 1) and κ2 has a vague
prior IG(25, 9). Ωm and mB are given priors based on
currently available estimates. We marginalize over these
two parameters to obtain the final results.
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Following the notation of Eqn. (2) we set up the fol-
lowing GP for w:

w(u) ∼ GP(−1, K(u, u′)). (4)

Recall that we have to integrate over w(u) (Eqn. 2):

y(s) =

∫

s

0

w(u)

1 + u
du. (5)

We use the fact that the integral of a GP is also a GP with
mean and correlation dependent on the original GP [15].
The integral of a GP can be found by integrating the
correlation function. We therefore set up a second GP
for y(s):

y(s) ∼ GP
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(6)
The mean value for this GP is simply obtained by solving
the integral in Eqn. (5) for the mean value of the GP for
w(u), negative one. We can now construct a joint GP for
y(s) and w(u):
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′|α , (9)
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The mean for y(s) given w(u) can be found through the
following relation:

y(s)|w(u) = − ln(1 + s) + Σ12Σ
−1

22 (w(u) − (−1)) . (11)

Now only the outer integral is left to be solved for in
Eqn. (2), and this can be computed by standard numer-
ical methods. Note that we never have to calculate the
double integral in Σ11, which would be numerically ex-
pensive, because it does not appear in our relationship
in Eqn. (11). In addition, the method does not require
the inversion of one large covariance matrix that would
typically be needed to have enough partitions to do the
outer integration and is therefore efficient. More details
about each step in the GP model algorithm are given in
Ref. [10].

Our final results for the reconstructed dark energy
equation of state w(z) are shown in Figures 2 and 3. Fig-
ure 2 shows the results we obtain from a GP model with
a Gaussian correlation function (α ≃ 2) while the results
in Figure 3 are based on an exponential correlation func-
tion (α = 1). The results are very similar, the Gaussian
correlation function leads to a slightly smoother predic-
tion. For the data set based on the SALT fitter, w(z) is

0.0 0.5 1.0 1.5

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

z

w
(z

)

0.0 0.5 1.0 1.5

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

z

w
(z

)

FIG. 2: Nonparametric reconstruction of w(z) based on GP
modeling from the data shown in Figure 1. The upper panel
displays the result for the data obtained using the SALT fitter,
the lower panel shows results based on data extraction using
MLCS17. Both results are in agreement with a cosmological
constant (black dashed line). The dark blue shaded region
indicates the 68% confidence level, while the light blue region
extends to 95%.

very close to -1 at redshifts close to zero and rises slightly
to w = −0.9 at redshift z = 1.5. For the MLCS17 based
data set, w(z) is slightly above -1 over the whole redshift
range at approximately w = −0.9. The results are con-
sistent with each other and with a cosmological constant
w = −1 within error bars.

In Ref. [3] a combined analysis of supernova data and
baryon acoustic oscillation measurements is carried out.
Under the assumption w = const. they find for the SALT
based data set w = −0.987+0.066

−0.068 and for the MLCS17

based data set w = −0.901+0.066
−0.067, consistent with our

findings.

To summarize, we have presented a new, nonparamet-
ric reconstruction method for the dark energy equation
of state based on GP models. Our method allows the
acceptance or rejection of classes of dark energy mod-
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FIG. 3: Same as in Figure 2 for α = 1. This choice allows
for more variability in reconstructing w(z) leading to a less
smooth result. The overall behavior of w(z) is unchanged.

els by providing the probability that w(z) is following
a certain trajectory. Our reconstruction approach leads
to the most probable behavior of w(z) and has informa-
tion about how likely a different trajectory is given the
current data. Of course, the method relies on some as-
sumptions about w(z) – it should be somewhat smooth
and the priors on the GP modeling parameters would
not allow for any arbitrary behavior of w(z). But these
assumptions are rather mild and can be relaxed when
the data quality is improving. We have analyzed recent
supernova measurements and reconstructed the redshift
dependence of the dark energy equation of state. Our
results are consistent with a cosmological constant and
with previous findings by other groups. We have carried
out careful tests to ensure that our choices of priors and
model parameters do not alter the results. As detailed
in the paper, this new method has many advantages over
previous reconstruction approaches: it does not intro-
duce any artificial biases due to restricted parametric as-
sumptions on w, it does not lose information about the
data by smoothing the data itself in order to fit it and
obtain w(z) via taking derivatives, and finally it does not
introduce arbitrariness to the reconstruction process by
choosing a certain number of bins to represent the data
or cutting off information by using only a restricted set
of basis functions to represent the data.
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