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Exploring Multistreaming in the Universe
Category: Application

Abstract— Visually striking large scale structures (LSS) such as galaxy filaments and clusters have been observed in cosmological
surveys, and are composed of large numbers of galaxies. Even though there are theories for the formation and evolution of these
cosmological structures, much remains to be understood, especially in the nonlinear regime of structure formation. This problem
is now being attacked with the aid of high accuracy cosmological simulations. Associated with these simulations, there is a new
challenge for data analysis. In this paper, we describe how visual analytics can help identify and characterize a particular set of
features of interest in the evolution of the universe, the multistreaming events. As the name implies, different velocities (directions and
magnitudes) can be observed in locations of such events. It is believed that these events are precursors to the formation of the LSS.

Index Terms—Cosmology, multistreaming, feature detection, velocity field.

1 INTRODUCTION

This paper describes the application of visualization techniques to
identify and characterize multistreaming events (see Section 3 for de-
tails) in the evolution of the distribution of dark matter in the universe.
We first give an overview of the cosmology problem including the
importance of multistreaming in the formation of LSS in the initially
smooth dark matter distribution. We then provide a brief review of pre-
vious and related works in cosmological visualization and detection of
multistreaming events. Next, we re-examine the different contexts in
which multistreaming is described and identify other criteria for de-
tecting these events. Finally, we present our strategies and results for
finding these multistreaming events.

An astonishing 99.6% of our Universe is “dark” and not directly
observable by emission or absorption of light. Observations indicate
that the Universe consists of 70% mysterious dark energy, 25% of a
yet unidentified dark matter component referred to as cold dark mat-
ter, and only 0.4% of the remaining 5% of ordinary (baryonic) matter
is visible. Understanding the physics of this dark sector is the fore-
most challenge in cosmology today. Although the ultimate nature of
the dark sector is unknown, a detailed phenomenology has been con-
structed which is called the cosmological Standard Model. In this
model, tiny density fluctuations in the very early Universe grow un-
der the influence of gravity as the Universe expands. It is this den-
sity fluctuations that seed the formation of complex LSS in the matter
distribution. Growing modes collapse into dark matter clumps called
halos which attract and collect baryonic matter (gas) and eventually
lights up as galaxies. The galaxies, being visible, can be used to track
the dynamics and distribution of dark matter [14].

Understanding the evolution and dynamics of the dark matter can
be achieved by following the formation of LSS as observed in the dis-
tribution of galaxies from the earliest moments until today. LSS such
as galaxy clusters (0-D), filaments (1-D), and surface-like pancakes
(2-D) can be considered to correspond to nodes, edges, and faces re-
spectively, in a tessellation of the topology of the universe [2, 12].
These structures have complex geometry and topology as can be seen
in Figure 1. Understanding the formation of the LSS is not only in-
teresting in of itself but will also be very important to guide analytical
and numerical studies in the quasi-linear regime of structure formation
(where one can still apply perturbation theory techniques). Such stud-
ies will be essential to interpret results from major up-coming large-
scale structure surveys, such as the Large Synoptic Survey Telescope
(LSST), the Joint Dark Energy Mission, and the Baryon Oscillation
Spectroscopic Survey (BOSS), a key component of the Sloan Digital
Sky Survey III.

Precision dark matter simulations are a key foundation of cosmo-
logical studies. These simulations track the evolution of the dark
matter with very high resolution in time, force, and mass. At the
scales of interest to structure formation, a Newtonian approximation
in an expanding universe is sufficient to describe gravitational dynam-
ics. The evolution is given by a collisionless Vlasov-Poisson equation

Fig. 1. Large scale cosmological structures of the universe.

[6], a six-dimensional partial differential equation. Thus, on memory
grounds alone, a brute force approach is impractical. Having made
their first appearance in plasma physics, N-body codes now form a
standard approach for dealing with this problem. In the N-body ap-
proach, the six-dimensional phase space distribution is sampled by
“tracer” particles and these particles are evolved by computing the
inter-particle gravitational forces.

The starting point of the simulations is a Gaussian random den-
sity field which imprints small perturbations on a uniform density,
isotropic universe. The simulations start in the linear regime of the
density fluctuations and then evolve under the influence of gravity. At
any given length scale, during the early stages the evolution remains
linear but as time progresses, the evolution enters the quasi-linear
regime before finally reaching the fully nonlinear regime at which
point all analytic descriptions break down. There is substantial in-
terest in determining and characterizing the transitions between linear,
quasi-linear, and nonlinear dynamics in the simulations by tracking
the dynamics of dark matter tracer particles. At the start of the simula-
tion, the velocity dispersion is initially zero, and the phase-space dis-
tribution is a three-dimensional sub-manifold of the phase space (only
one velocity direction at a given spatial point). As the 3-hypersurface
evolves, it folds, leading to the occurrence of singularities in the den-
sity field corresponding to the appearance of regions with multistream
flow.

The initial appearance of multistreaming is observed during the
transition from linear to nonlinear regimes. This transition affects the
accuracy of perturbative techniques used to analyze the evolution of
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Fig. 2. Phase-space plot of a 1-D flow. A singularity (non-self-
intersecting fold) is a necessary condition for multistreaming.

the density field. Multistreaming is therefore of interest both in terms
of the underlying phenomenology and for understanding the validity
of analytical methods.

Previously, LSS have been identified by thresholding on the density
of tracer particles with halo finders (e.g. [10]. In this paper, we study
how the velocity information of tracer particles can find and charac-
terize the multistreaming regions which eventually lead to these LSS.
This work is carried out in close collaboration between astrophysicists
and computer scientists.

2 PREVIOUS WORK

The visualization of cosmological data sets has received considerable
attention recently. Since all cosmological simulations are particle-
based, one of the popular tools for visualizing particles directly is
Partiview [8]. Within the visualization community, there are also a
handful of recent contributions dealing with astrophysics data sets.
These include the work of Li et al. [9], focusing on how to display
positional and trajectory uncertainties in astrophysical data sets. In the
same year, Navratil et al. [13] described their visualization approach
for a data set that study the formation and effects of the radiation from
the first stars and the impact on subsequent star formation. Last year,
Haroz et al. [5] investigated particle-based simulation data sets of the
evolution of the universe and studied the relationship of different vari-
ables especially in the face of uncertainty arising from the different
code settings, e.g. the starting time for the simulation. A similar data
set was also investigated by Ahrens et al. [1] where the focus was on
comparison rather than on uncertainty visualization.

There have also been several papers on multistreaming events. For
example, Yano et al. [18] studied the distribution of caustics (see Sec-
tion 3) in the expanding universe, while Gouda [4] investigated the
relationship between catastrophe theory and gravitational clustering
leading to caustics. In these studies, the models describe continuous
matter density fields, e.g. density perturbations, singularities of den-
sity, etc. A good starting point for reading more about about multi-
streaming can be found in [3].

3 MULTISTREAMING

Multistreaming is said to occur when there are multiple velocities at
one point. A more formal description is illustrated in Figure 2. Here,
the phase space plot of a 1-D system shows that within the dashed
region, singularity occurs. That is, the mapping from phase space to
physical space produces multiple possibilities. Hence, at some loca-
tion x, there are multiple velocities v. While this illustration is in 1-D,
the theory extends to higher spatial dimensions as well.

In cosmology literature, multistreaming is often mentioned in con-
junction with caustics. Caustics are high density structures that form
in collisionless media. Just as light caustics are formed by the conver-

gence of light rays from multiple directions, multistreaming can also
be formed by the convergence of particles. There are differences be-
tween the two however. For example, multistreaming can also arise if
particles are traveling at different speeds but along the same direction
– this can easily be illustrated by additional folds in the phase space
plot. Both are due to singularities in the evolution of the density field,
and for the purpose of this paper, both terms are used interchangeably.

Looking at the top portion of Figure 2, one can observe a corre-
spondingly higher density of particles, ρ , in the range of x where there
are multiple velocities. This is the basis for existing methods of halo
finders that look for over-dense regions associated with multistream-
ing. In our work, one of the questions we seek to answer is how to use
the velocity information to find multistreaming, and see if there is any
additional information that can be gleaned.

First, we look at the assumptions that go into numerical simulations.
In cosmological simulations, initially the universe is close to homoge-
neous with very low velocity dispersion. At this early stage, the net
effect of the gravitational interaction is insignificant, and particle mo-
tion is inertial to a good approximation:

x(t,q) = q+ t · v(q) (1)

The particle position in Eulerian space x is a function of time t and par-
ticle position in the (initial) Lagrangian space is q. v(q) is the initial
velocity field. Over time, the small density perturbations are ampli-
fied by the gravitational instability. In an expanding universe, a non-
perturbative description of the instability is given by the Zel’dovich
approximation describing particle motion as

r(t,q) = a(t)[q−b(t)∇Φ(q)], (2)

the particle position in Eulerian space r is a function of time t and parti-
cle position in Lagrangian space q. a(t) is the cosmological expansion
factor, and b(t) is the growth rate of linear density fluctuations. Since
Φ(q) is the gravitational potential field, −∇Φ(q) describes the initial
velocity field, which is conservative and irrotational. In Equation 2,
the first term is the unperturbed particle position, and the second term
is the spatial perturbation. Equation 1 reduces to Equation 2 through
the following substitutions:

r(t,q) = x(t,q)a(t), b(t) = t, v(q) = −∇Φ(q)

This means that particle motion under gravity mimics particle mo-
tion under inertia. Furthermore, the Zel’dovich approximation closely
matches the evolution of density perturbation to full N-body simula-
tion until multistreaming.

As particles move under gravity, they form structures such as clus-
ters, filaments, pancakes, or voids. Multistreaming happens in these
structures: particles from different position q1,q2,q3, . . . ,qn in La-
grangian space congregate at point x in Eulerian space having different
velocities v1,v2,v3, . . . ,vn [16]. In other words, a multistreaming re-
gion consists of heterogeneous particle flows. Although they were not
looking explicitly for multistreaming events, this behavior was also
observed by Haroz et al. [5] where they found that dense cluster re-
gions are associated with high velocity uncertainty of particles. In such
a scenario, any one of three conditions can lead to multistreaming:

- Particle flows have different speed and direction.

- Particles flows have the same speed but different direction.

- Particles flows have different speeds but the same direction.

From these conditions, one can hypothesize possible metrics for ex-
tracting multistreaming events. For example, regions with high veloc-
ity variance, or regions with high shear can account for any of the three
situations above.

In addition, we found recurring descriptions associated with mul-
tistreaming that suggests additional alternatives for finding them. For
example, Sahni and Coles [15] described that “... as evolution pro-
ceeds, the map connecting initial to final positions develops singu-
larities (caustics) corresponding to multiple flow directions at a given
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spatial point. Regions of multistream flow form, and even though each
stream is irrotational (curl-free), the velocity field is no longer a poten-
tial flow.” This suggests that flows where imaginary components in the
eigenvalues may now appear. Another example, is the frequent men-
tion of multistreaming happening around the time when the system
transition from a linear to a nonlinear regime. If we extrapolate this to
linear versus nonlinear flows, one could possibly test for nonlinearity
in flows as an indication of multistreaming.

In summary, there are a number of potential identifiers for caustics
or multistreaming events e.g. high density regions, exploiting singu-
larities in phase-space, high velocity variance, and high shear regions.
Other possibilities include looking for changes in the velocity field —
e.g. see if the flow remains curl-free as well as linear. In the next
section, we describe and investigate velocity-based indicators of mul-
tistreaming events.

4 DATA SETS

We use two cosmological simulation data sets in this study — (i) the
Zel’dovich pancake where multistreaming regions form flat pancake-
like sheets and (ii) a simulation from the Mesh-based Cosmology Code
(MC2) [6]. Both are particle-based simulations of cosmological evolu-
tion. Each particle has a unique tag, position, and velocity. More im-
portantly, particles are collisionless. They can occupy the same space
without physically colliding into each other.

4.1 The Zel’dovich Pancake

This data set simulates particle behavior within a (10
√

3 Mpc)3 box
using the MC2 code. Each megaparsec (Mpc) is approximately 3.26
million light years. The simulation has 643 particles and 250 time
steps. It models the 1D flow of particles along the main diagonal of
the data cube, where it is known that multistreaming starts simulta-
neously in three orthogonal pancake regions at time step 37. It is an
important test data for validating the hypotheses behind our velocity-
based feature extraction. We describe our feature extraction methods
with results using this data set in Section 5.

4.2 MC2

This data simulates particle behavior within a (90 Mpc)3 box using the
MC2 code. It has 2563 particles and 251 time snapshots. Unlike the
Zel’dovich Pancake, the locations and onset of multistreaming events
in this data set are unknown. We describe the results of our proposed
methods using this data set in Section 6.

4.3 Regridding

To facilitate processing of the particle-based data, we resample the
data onto a regular grid. The choice of grid resolution is quite im-
portant since if the grid is too coarse we may miss the multistreaming
event, and if the grid is too fine it would result in a low particle count
and confidence in each cell. We choose the grid size for the density
calculation in such a way that each cell on average has eight particles.
For the MC2 data set, this leads to a 1283 grid, and for the Zel’dovich
Pancake data set, a 643 grid. At the start of the simulation, each cell
contains eight particles on average. As time progresses, some regions
become more dense while others become sparse or even empty. Empty
cells as well as those in their immediate vicinity must be treated with
care so that they do not produce erroneous results in the analysis.

5 IDENTIFYING AND CHARACTERIZING MULTISTREAMING
EVENTS

Incorporating velocity from particle simulations opens up several ideas
for finding multistreaming events. In this section, we describe how
those ideas can be formulated into feature detectors. We also test each
method against the pancake data to see how well it detects the onset
and identify the multistreaming regions. We use ParaView [17] to vi-
sualize our results.

Fig. 3. Phase space plot. Top image is from frame 37 of the simulation,
which coincides with the onset of multistreaming. Note the three verti-
cal sections of the curve where multiple velocities are associated with
each position. Bottom image is from frame 249, the last frame of the
simulation. One can see that the curve has evolved into multiple, but
non-self-intersecting curves. The range within each of the three multi-
streaming regions have also grown wider.

5.1 Phase Space Plots
First, we verify the onset of multistreaming events in the Zel’dovich
pancake by looking at the phase space plots (PSP) of the particles at
each time step. Because the flow in the Zel’dovich pancake data is
along the main diagonal d of the data cube, we find the PSP by defining
a plane going through the origin o and perpendicular to d. Given a
particle with position p and velocity v, we calculate its distance p′ and
velocity v′ along d with respect to p.

p′ = |p−o|cosα
v′ = |−→v |cosβ

where α is the angle between p−o and d, and β is the angle between
v and d. The PSP shows the relationship between p′ and v′ of all the
particles in a time frame. Figure 3 confirms that at the onset of multi-
streaming, frame 37, the PSP is not a functional anymore giving rise
to multiple velocities at a given position. The same information dis-
played in physical space as a volume rendering of the particle density
field is shown in Figure 4. Here, we can clearly see the three pancake
regions in green which intensifies and gets thicker over time. The three
sections of the PSP in Figure 3 correspond to the three pancake regions
in Figure 4. The thicker pancakes correspond to the expanding region
of overlapping folds in the PSP.

Unfortunately, the PSP plot is useful only if the velocities are pre-
dominantly 1D. In general 3D flows, the PSP combines velocities that
are not orthogonal to the reference plane, and hence cannot be used
directly in the analysis.

5.2 Maximum Shear Stress
Shear in the velocity field can be one of the mechanisms for multi-
streaming. Particles going in the same or opposite directions but at
different speeds lead to shear in the velocity field. To find the maxi-
mum shear stress, we first calculate the velocity gradient tensor of the
velocity field, then find its symmetric tensor and associated eigenval-
ues λ1, λ2, and λ3. We use the von Mises criterion for maximum shear
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Fig. 4. Volume rendering of the particle density field. Top image is from
frame 37. The three green pancake regions correspond to the vertical
sections of the PSP in Figure 3. Bottom image is from frame 249, and
shows how the pancakes have intensified and thickened.
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stress which is defined as:

MS =

√

(λ1 −λ2)
2 +(λ1 −λ3)

2 +(λ2 −λ3)
2

2
(3)

Figure 5 shows the results of this metric.

5.3 Critical Points

Because flows in the vicinity of critical points usually involve differ-
ent velocities (directions and magnitudes), we do a quick study on the
location of critical points. In addition, because flows in multistream-
ing regions are not potential flows anymore, we also look at the type
of critical points. In particular, we try to identify those that have ro-
tational components. Figure 6 shows the location and color code the
different types of critical points according to the following scheme:

5.4 Divergence

Divergence is a scalar quantity that measures the degree to which a
vector field is a source or a sink at a given location. Positive values
indicate a source-like behavior, while negative values indicate a sink-
like behavior. Divergence can potentially be used to find multistream-
ing because it finds regions where light converges (sink) as in caustics.
Looking at the evolution of the divergence field in Figure 7, one can
see that the pancake regions, corresponding to negative divergence,
are starting to pull in particles most noticeably when multistreaming
started. At the same time, the particles in-between the pancake re-
gions, with positive divergence, are being forced away and towards

Fig. 5. Maximum shear stress. Top image is from frame 37 where we
can see well defined three regions of high shear. Over time, the maximal
shear has increased and become more pronounced as shown in frame
249 on the bottom. On the other hand, the size of the high shear region
has tapered off and become more concentrated in the pancake region.

Fig. 6. Type and locations of critical points at time frames 37 and 249.
One can observe that the number of critical points grow over time and
congregate at the pancake regions. One can also observe that critical
points with rotational components (colored red, white, blue, and purple)
can also be found in these regions. On the top image, one can also
see two planes of predominantly green and blue critical points, both of
which are repelling types. We surmise that these critical points “push”
the particles in their towards the three pancake regions towards the end
of the simulation. On the other hand, the high concentration of different
types of critical points in the pancake regions indicate the highly com-
plex behavior even for this simple 1D model.
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Fig. 7. Divergence field at time frames 37 and 249. The negative diver-
gence in the three green pancake regions tend to draw in the particles
from their surrounding neighborhood. These regions seem to intensify
and grow larger over time.

the pancake regions. This corroborates the observations using critical
points.

5.5 Vorticity

Vorticity measures the tendency of vector field elements to spin. In
cosmological simulations the velocity field is irrotational (zero curl)
prior to multistreaming. We hypothesize that vorticity may be used as
an indicator for multistreaming.

The vorticity at a point is a vector and is defined as the curl of the
velocity. That is, vorticity is ∇×~V where ∇ = ( ∂

∂x , ∂
∂y , ∂

∂ z ). Since
we are primarily interested in detecting the presence of regions with
rotational motions and not their particular orientations, we look at the
vorticity magnitudes in the simulations. Figure 8 shows that vorticity
magnitude increasing over time with higher vorticity in the pancake
regions.

5.6 Linearity Test

Another test for multistreaming is to check if the velocity field is still
linear. This is motivated by the description that the simulations start
out being linear, then transition through a quasi-linear to a nonlinear
behavior. Detecting changes in the linearity of the velocity field may
be an indicator of multistreaming.

Given a velocity field ~V , position p, and velocity gradient J, we can
obtain the velocity of a nearby point d p using first order approxima-
tions if the field is linear.

~V (p+d p) =~V (p)+ J ·d p (4)

where d p is one of [±1,0,0], [0,±1,0], or [0,0,±1] depending on
which neighboring velocity we want to get. To check whether the
velocities around p are linear, we compare the first order approxima-
tion of~V (p+d p) against the original velocity at p+d p by taking their
pairwise dot products. Velocities are normalized before dot products
are taken. Each direction that has a dot product greater than 0.9 counts
as a vote for linearity. If any neighbor of p is empty, we skip the calcu-
lation of J(p) and do not apply the linearity test at p. Figure 9 shows
results of running the linearity test on the pancake data. Cells with vote

Fig. 8. Vorticity magnitude can be seen as faint bluish regions in the
three pancake regions in frame 37, that becomes more pronounced in
frame 249. We also note that vorticity around the boundaries of the
pancake regions seem to be stronger.

counts of 3 or more are considered linear. Regions with linear flows
are not of interest and are made transparent. Regions with nonlinear
flows are rendered opaque and bluish. Their opacity drops off as they
tend towards linear flows. While we can see that the nonlinear regions
correspond to the pancake regions found using other methods at the
last time frame, the linearity test did not show the pancake region at
frame 37. In fact, the test did not detect any nonlinear flows until 14
frames after frame 37. This might be due to the strict cutoff of having
not more than 3 votes, or the test, using first order approximations,
was simply late in predicting multistreaming.

5.7 General Observations

We know that multistreaming happens at time frame 37 for the pan-
cake data. This is confirmed in the PSP images. There is strong agree-
ment with the three pancake regions among the density field, the criti-
cal points, maximal shear, divergence, vorticity, and nonlinearity tests.
In addition to consistently identifying the multistreaming regions, the
velocity-based methods were also able to provide valuable new infor-
mation not available with density-based methods alone. This can be
observed in the form of complex behaviors within multistreaming re-
gions as well as the behavior of nearby regions that contribute to the
formation of multistreaming regions. One drawback to the current set
of methods, however, is that they are not able to accurately predict the
onset of multistreaming. The main limiting factor is that one needs to
set the appropriate threshold parameter for each test e.g. what is the
minimum value of maximum shear before one can consider a region
to be multistreaming, or what is the maximum number of affirmative
votes for linearity before a cell is considered to have nonlinear flow?
Even for the existing density-based methods of halo finding, one also
needs to set a threshold for particle density [7].

In our experiments, we looked at the histograms of the relevant de-
rived fields and selected threshold values that made physical sense and
produced results corresponding to the expected results for the pancake
data set. There are several problems with having to manually find and
set thresholds: (i) the thresholds may vary from one data set to another,
(ii) even worse, the threshold may vary one time frame to another. Ab-
sent an automated method for finding the proper threshold value, we
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Fig. 9. Nonlinear regions in frames 37 and 249. Linear regions are
reddish but has opacity of zero since we are interested in the nonlinear
regions. Nonlinear regions are bluish and more opaque. In frame 37,
this test does not detect any nonlinear flows. In frame 249, nonlinearity
is detected in the three pancake regions.

are unable to predict the actual onset of multistreaming. However, we
see this as avenues of new research within the cosmology field to iden-
tify relevant thresholds, just as they have determined the appropriate
density threshold for halo finders.

6 BLIND TEST

While the different velocity-based methods can identify the multi-
streaming regions, none of the methods, in their current form, can ac-
curately predict the onset of multistreaming. Therefore, in the next set
of tests with the MC2 data set, we are primarily interested in the evolu-
tion and structure of the multistreaming regions. As with the pancake
data set, the MC2 data set starts out as fairly homogeneous at the start
of the simulation. Therefore, we are showing only the middle (frame
124) and last frames (250) of the simulation.

As a point of reference, we first show the results from density-based
halo finder in Figure 10. We note that the complex structure is already
quite prominent at the halfway mark in the simulation and continue to
change over time.

Figure 11 shows the results of maximum shear stress on the MC2

data set. The top image shows high correlation with the density
method in Figure 10. The bottom image shows that regions of high
shear are diminishing which may suggest that multistreaming due to
the shearing mechanism may be weakening even though the density
image shows very high concentration. That is, while the particles have
aggregated to form LSS, there is actually less shearing action within
the aggregate. If so, this could be interpreted as leading to a process
where there is more structural stability and less change in the system.
Of course, this kind of observation need to be verified with additional
research and analysis by the scientists.

The interpretation of the critical points in this data set is less con-
clusive. Figure 12 shows that the number of critical points are decreas-
ing over time. On the other hand, the locations of the critical points
roughly correspond to the locations of the LSS. Also, we can still see
red, white, and blue critical points (purple is harder to see) in those
regions. So, the local flow behavior in the vicinity of those critical
points still exhibit swirling motion. Perhaps, a plausible explanation

Fig. 10. Particle density field of the MC2 data set for frame 124 on
the top and 250 on the bottom. Clusters and filaments can already
be observed in the top image. These complex structures continue to
evolve with some structures disappearing while others becoming more
prominent towards the end of the simulation.

Fig. 11. Maximum shear stress of MC2 data set at frames 124 and
250. The LSS on the top correlates very well with those in Figure 10.
The bottom image shows that regions of high shear have diminished.
A possible explanation is that even though particle densities are high in
the LSS, the structures are becoming more stable. This also suggests
that regions of high shear stress may be better characterized as places
where one can have a higher chance of finding multistreaming activity.
In contrast, traditional density-based methods find the LSS but does not
say much about their dynamics.
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Fig. 12. Critical points in time frame 124 and 250 of the MC2 data set.
Refer to Table 5.3 for the color legend of different types of critical points.
The number of critical points diminish over time suggesting that the flow
patterns are becoming less complex.

might be that over time, this particular simulation produced a system
that is becoming more stable over time. Such that at the end of the
simulation, there is actually less critical points, and a correspondingly
less complex behavior of particle motions. This explanation coincides
with the observation using the maximum shear stress criterion.

Figure 13 shows the divergence field. Recall that regions with neg-
ative divergence are places that have a sink-like behavior and tend to
draw particles in from neighboring regions. We can observe that over
time, the divergent region becomes concentrated and co-located with
regions of high density. Therefore, competition for pulling particles
from neighboring areas are now localized to these high density re-
gions. This suggests that further drastic movements away from the
established high density LSS will be less likely, and the structure at
the end of the simulation is becoming more stable.

Two frames of the vorticity magnitude of this data set are shown
in Figure 14. Here, we also notice that the structure of the vorticity
magnitude field seem to subside over time, and that the similarity with
the structure from the density field is easily identifiable. Compared to
the maximum shear stress, the LSS are better preserved. This suggests
that local spins and rotations remain the predominant mechanism rela-
tive to shearing at the end of the simulation. Also, one can notice that
the high vorticity regions seem to be more pronounced in the cluster
region than in the filaments.

Results using the nonlinearity test are shown in Figure 15. While we
can see that there is also good correspondence between the nonlinear
regions and the high density regions, it is difficult to draw conclusions
with this criterion. The reason is that nonlinear regions were detected
very early in the simulation. It is possible that we are detecting false
positives due to the first order approximation test for nonlinearity, and
therefore this method needs to be refined further.

Overall, the suite of methods to find the multistreaming regions pro-
duce results that agree very well with those found by density-based
methods. The main advantage, however, is that they provide addi-
tional information about the behavior within the multistreaming re-
gions. Some of the observations made as a result of these methods
have raised some questions that require additional research in cosmol-
ogy.

Fig. 13. Divergence field at frame 124 and 250 of the MC2 data set.
This pair of images show that competition for particles from neighboring
regions have subsided over time and are concentrated at the already
high density regions at the end of the simulation.

Fig. 14. Vorticity magnitude of the MC2 data set for frames 124 and
250. High vorticity regions can be observed to be located in high den-
sity regions. These regions seem to subside over time and concentrate
around clusters more so than in the filament regions.
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Fig. 15. Nonlinear regions in frames 124 and 250 of the MC2 data set.
The locations of the nonlinear regions correspond to the high density
regions in Figure 10.

7 CONCLUSIONS AND FUTURE WORK

We started this investigation with a general question of whether we
can use the velocity information in the simulation data to detect and
characterize multistreaming events. We hypothesized how the flow
field should behave given the various descriptions of multistreaming in
the cosmology literature and formulated ways to extract regions with
those behaviors. Not all of our hypotheses were verified. Compared to
density-based techniques, the velocity-based techniques produce qual-
itatively very similar results. More importantly, they not only identi-
fied the multistreaming regions but also provided information about
the particle flow behavior within them and their vicinity. On the other
hand, they were not able to accurately detect the onset of multistream-
ing. It is possible though that this inadequacy is due to other variables,
e.g. gridding strategy, and not the formulations themselves.

From our investigations, particularly through animations, we have
learned that (i) once multistreaming starts, it is not necessarily
monotonous but can grow and shrink over time, (ii) multistreaming
regions are not static and can move around, and (iii) there are very
interesting dynamic behaviors within multistreaming regions.

We have met the original goal of this work and can affirmatively
conclude that velocity-based methods are viable tools for finding mul-
tistreaming regions. The different methods not only find the multi-
streaming regions, but also provide additional information about the
regions and the behavior within the regions. While one may wonder
which is the best method, we are not ready to provide an answer yet
as the methods have different strengths and weaknesses with respect
to the different properties of multistreaming.

The results we have to date are very promising, but they are also
far from being definitive. During the course of this work, we have
identified a few areas for improvement and new research questions
in visualization and astronomy alike. For example, the main weak-
ness of the current set of techniques is the reliance on a user-specified
threshold. There are at least two possible ways to address this: (i) find
an automated way for determining threshold levels based on data dis-
tribution e.g. we have looked at the histogram but have not found a
generalizable method so far; and (ii) correlation between simulations
and empirical data sets to arrive at the threshold e.g. what has been
done for the density-based method by the astronomers. The current

implementation relied on very simplistic regular gridding. The effects
of different gridding strategy (such as adaptive meshing, application
of sparse data interpolation, and cloud-in-cell algorithms, etc.) on the
resulting multistreaming regions need to be studied further. The PSP
was the benchmark for 1D flows, but unfortunately not directly ap-
plicable to 3D flows. Future research can look at extending PSP to
support multi-directional flows. While we do not have the theory de-
veloped yet, a close analogy would be the projection slice theorem
commonly found in 3D reconstruction of 3D scalar fields. Another
possible area of investigation is the application of multivalued feature
extraction techniques [11] to this problem. Cosmology simulations
tend to be very large. Hence, scalability of algorithms is also another
area of concern and further research.

With respect to cosmology, our work have identified some possible
directions of research. For example, what types of behavior can one
find in a multistreaming region? How do these behaviors evolve over
time – does one type of behavior become more dominant? Or are
certain types of behavior associated to different types of large scale
structures e.g. filaments versus clusters? Can filaments (or cluster)
happen in isolation, or do they have to be topologically connected?
Is there a density (or velocity) threshold below which multistreaming
cannot occur?
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