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Abstract. A key challenge in dynamic information flow analysis is han-
dling implicit flows, where code conditional on a private variable updates
a public variable x. The naive approach of upgrading x to private results
in x being partially-leaked, where its value contains private data but its
label may be either private (on this execution) or public (on an alterna-
tive execution where the conditional update was not performed).
Prior work proposed the no-sensitive-upgrade check, which handles im-
plicit flows by prohibiting partially-leaked data, but attempts to update
a public variable from a private context causes execution to get stuck.
To overcome this limitation, we develop a sound yet flexible permissive-
upgrade strategy. To prevent information leaks, partially-leaked data is
permitted but carefully tracked, and it must be upgraded to private be-
fore being used in a conditional test. We present an automatic dynamic
analysis technique for inferring these upgrade annotations and insert-
ing them into the program source code. The combination of these tech-
niques allows more programs to run to completion, while still guarantee-
ing termination-insensitive non-interference in a purely-dynamic manner.

1 Introduction

The error-prone nature of software systems suggests that critical security poli-
cies are best enforced by small trusted modules, rather than being an emer-
gent property of complex and buggy application code. In particular, the advent
of memory-safe languages provides a resilient defense against notorious buffer-
overrun vulnerabilities.

Applications in memory-safe languages are still vulnerable to other secu-
rity problems, however, such as violations of privacy or data integrity expecta-
tions. Such security concerns are particularly relevant in a browser setting, where
JavaScript code fragments from multiple untrusted or semi-trusted servers ex-
ecute within the same process. Indeed, browsers are notoriously vulnerable to
cross-site scripting attacks, which exploit confusions over the degree of author-
ity or trust that should be granted to various code or data fragments. Tracking
information flow and enforcing information security policies in the browser’s
JavaScript runtime engine provides a promising approach for addressing these
kinds of higher-level security problems.

Much prior work has focused on type-based information flow analysis (1;
2), but these ideas are not applicable to dynamically-typed languages such as



JavaScript. Instead, our work focuses on enforcing information flow policies dy-
namically rather than statically. The central correctness property we wish to en-
force is termination-insensitive non-interference, which says that changing the
private inputs to an application should not influence any of the public outputs.
Verifying this property dynamically requires simultaneously reasoning about the
current execution of the program, as well as possible alternative executions of
the program on the same public inputs but different private inputs.

The key challenge that we address is handling implicit flows, such as in the
following code fragment, where code conditional on a private variable x updates
a public variable y:

if (x) { y = false; } // line 1

We assume that y is initially trueL, where the superscript L indicates public
data with low confidentiality. Conversely, a superscript H indicates private data
with high confidentiality. We use this code snippet to illustrate how our proposed
approach improves over prior work.

Naive: A naive strategy for handling the above assignment is to upgrade the
label on y to H, since that assignment is conditional on the private variable x.
However, if x is trueH then y becomes falseH ; if x is falseH then y remains
trueL. Thus, we say that the variable y is partially-leaked, since y now contains
private information but y is labeled private on only one of these two executions.

Continuing the above example, suppose we now perform a second conditional
assignment, where z is initially trueL.

if (y) { z = false; } // line 2

Then the result of these two lines of code is that z is labeled public, but contains
the value of the private input x. (That is, if x is trueH then y becomes falseH

and z remains trueL; conversely, if x is falseH then y remains trueL and
so z becomes falseL.) Thus, the naive approach to handling implicit flows
permits both partially-leaked and totally-leaked data, and so does not provide
termination-insensitive non-interference.

No-Sensitive-Upgrade: To remedy this limitation, prior work proposed the no-
sensitive-upgrade check (3; 4), which prohibits partially-leaked data completely.
Under this strategy, the above assignment to the public variable y from code con-
ditional on a private variable x would get stuck. Although this strategy satisfies
termination-insensitive non-interference,1 stuck executions are undesirable since
they violate expected liveness properties of the application, which motivates our
development of a more flexible permissive-upgrade strategy.

1 As in other approaches, the termination channel may leak one bit of data, or some-
what more in the presence of intermediary outputs (5).
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Permissive-Upgrade: Our proposed permissive-upgrade strategy tolerates and
carefully tracks partially-leaked data, while still providing termination-insensitive
non-interference. Essentially, in addition to the private (H) and public (L) con-
fidentiality labels, we introduce an additional label P to identify partially-leaked
data that contains private information but which may be labeled as public in
some alternative executions. Thus, at line 1 above, if x is falseH then y remains
trueL, as the assignment is not performed. If x is trueH then y is updated to
falseP (where the label P reflects that in other executions y may remain labeled
as public).

Such partially-leaked data must be handled quite delicately. In particular, if
y is ever used in a conditional branch, as on line 2 above, then the permissive-
upgrade strategy still gets stuck (now at line 2 rather than line 1), in order to
avoid information leaks.

To avoid getting stuck, y can be upgraded to private before the conditional
test, as in:

if (<H>y) { z = false; } // line 2 alternate

This upgrade operation <H>y converts both public (L) and partially-leaked (P )
data to private (H). Critically, upgrading partially-leaked data to private is
sound since, as a consequence of the upgrade operation, the resulting data is
labeled private on all executions, including alternative executions where y may
originally have been labeled public. Thus, we can avoid stuck executions simply
by inserting upgrade annotations at all sensitive uses of partially-leaked data.

To avoid the programmer overhead of manually-inserting annotations, we
present an extension of our evaluation semantics that also infers these upgrade
annotations. In situations where our original semantics would get stuck because
of a sensitive use of partially-leaked data, the extended semantics implicitly
inserts the appropriate upgrade annotation instead, and so continues execution.
Thus, the conditional test “if (y)” at line 2 above is implicitly converted to
“if (<H>y)”.

In practice, we envision these techniques being applied as follows: A JavaScript
web application is initially released in an instrumented form that uses the ex-
tended semantics to infer upgrade annotations. The extended semantics never
gets stuck but does not (yet) provide information-flow guarantees. Once the set
of dynamically-inferred annotations appears to converge (which must eventu-
ally happen, since the program is finite), the appropriately-annotated applica-
tion could be re-released under the original permissive-upgrade semantics, with
strong information-flow guarantees. Subsequently, some executions may still get
stuck, but these are likely to be few, and can immediately be used to annotate
the application, preventing subsequent executions from getting stuck at the same
sensitive operation. In this manner, the difficulty of inferring upgrade annota-
tions can be amortized over a large collection of users.

We hope that these annotation-inference techniques may help migrate exist-
ing Javascript web applications into a more secure world, where information flow
policies are tracked and enforced by the language runtime itself. This deploy-
ment strategy does require information-flow support in the browser’s JavaScript
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implementation–in ongoing work with Mozilla, we are exploring how to incorpo-
rate such extensions in the Firefox browser (6).

Several topics remain for future work, including using a browser implementa-
tion to evaluate how these ideas scale to large web applications and what security
policies are useful in practice. This paper provides a theoretical foundation for
these later developments and implementations.

2 The λinfo Language

We formalize our permissive upgrade strategy in terms of λinfo, an imperative
extension of the lambda calculus described in Figure 1. Terms include variables
(x), constants (c), functions (λx.e), and function application (e1 e2). Since many
of the challenges in information flow analysis come from imperative updates, our
language supports mutable reference cells, including terms for allocating (ref e),
dereferencing (!e), and updating (e1:= e2) a reference cell. Finally, there is a term
for labeling data as private (〈H〉e).

This language is much simpler than full JavaScript, but we believe it allows us
to deal with many of the essential complexities of implicit flows while minimizing
syntactic clutter. We note that many additional constructs can be built from this
core; the second part of Figure 1 sketches some standard encodings for booleans,
conditionals, let-expressions, and sequential composition.

3 Three Evaluation Strategies for Implicit Flows

This section formalizes three evaluation strategies for handling implicit flows.
Figure 2 presents the core semantics that is common to all evaluation strategies.

Each reference cell is allocated at an address a. A store σ maps addresses to
values. A value v has the form rk, which combines both an information flow label
k and a raw value r. A raw value r is either a constant (c), an address (a), or a
closure (λx.e, θ), which is a pair of a λ-expression and a substitution θ that maps
variables to values. The core semantics includes both public (L) and private (H)
labels, as well as the partially-leaked label (P ), which is used exclusively by the
permissive-upgrade semantics. Labels are ordered by L v H v P , reflecting the
constraints on how correspondingly labeled data is used. We use t to denote the
corresponding join operation, and use ∅ to denote both the empty store and the
empty substitution.

Figure 2 defines the semantics of λinfo via the big-step evaluation relation:

σ, θ, e ⇓pc σ′, v
This relation evaluates an expression e in the context of a store σ, a substitution
θ, and the current label pc of the program counter, and returns the resulting value
v and the (possibly modified) store σ′. The program counter label pc ∈ {L,H}
reflects whether the execution of the current code is conditional on private data.

The rules defining this evaluation relation are mostly straightforward, with
some notable subtleties on how labels are handled. In particular, we adopt the
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Figure 1: The Source Language λinfo

Syntax:
e ::= Term

x variable
c constant
λx.e abstraction
e1 e2 application
ref e reference allocation
!e dereference
e:= e assignment
〈H〉e labeling operation

x, y, z Variable
c Constant

Standard encodings:

true
def
= λx.λy.x

false
def
= λx.λy.y

if e1 then e2 else e3
def
= (e1 (λd.e2) (λd.e3)) (λx.x)

let x = e1 in e2
def
= (λx.e2) e1

e1 ; e2
def
= let x = e1 in e2, x 6∈ FV (e2)

invariant that the label on the resulting value v is at least as secret as the
program counter (pc v label(v)). Thus, for example, the [const] rule evaluates
a const c to the labeled value cpc . The [fun] rule evaluates a function (λx.e)
to a closure (λx.e, θ)pc that captures the current substitution and that includes
the program counter label. The [var] rule for a variable reference x extracts the
corresponding value θ(x) from the environment and strengthens its label to be
at least pc, using the following overloading of the join operator:

(rl) t k def= r(ltk)

The [label] rule for 〈H〉e explicitly tags the result of evaluating e as private,
ignoring the original label k. The [app] rule applies a closure to an argument;
to avoid information leaks, this rule gets stuck if the closure is partially-leaked.
The [prim] rule applies function primitives. The [ref] and [deref] rules create
and dereference a reference cell, respectively.

From these rules, we can derive corresponding evaluation rules for the en-
coded constructs, which are also shown in Figure 2. Critically, the [then] and
[else] rules get stuck if the conditional is partially-leaked.

Assignment statements are notably missing from Figure 2 since they intro-
duce difficult problems with implicit flows. We present three strategies for track-
ing information flow across assignment statements, and illustrate these strategies
on the example function f(x) shown in Figure 3. This function creates two public
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Figure 2: Core Semantics for λinfo

Runtime Syntax:

a ∈ Address
σ ∈ Store = Address →p Value
θ ∈ Subst = Var →p Value
r ∈ RawValue ::= c | a | (λx.e, θ)

v ∈ Value ::= rk

k, l, pc ∈ Label ::= L | H | P

Evaluation Rules: σ, θ, e ⇓pc σ
′, v

[const]

σ, θ, c ⇓pc σ, c
pc

[var]

σ, θ, x ⇓pc σ, (θ(x) t pc)

[app]

σ, θ, e1 ⇓pc σ1, (λx.e, θ
′)

k

k 6= P
σ1, θ, e2 ⇓pc σ2, v2

σ2, θ
′[x := v2], e ⇓k σ

′, v

σ, θ, (e1 e2) ⇓pc σ
′, v

[ref]
σ, θ, e ⇓pc σ

′, v
a 6∈ dom(σ′)

σ, θ, (ref e) ⇓pc σ
′[a := v], apc

[fun]

σ, θ, (λx.e) ⇓pc σ, (λx.e, θ)
pc

[label]

σ, θ, e ⇓pc σ
′, rk

σ, θ, 〈H〉e ⇓pc σ
′, rH

[prim]

σ, θ, e1 ⇓pc σ1, c
k

σ1, θ, e2 ⇓pc σ2, d
l

r = [[c]](d)

σ, θ, (e1 e2) ⇓pc σ2, r
ktl

[deref]

σ, θ, e ⇓pc σ
′, ak

σ, θ, !e ⇓pc σ
′, (σ′(a) t k)

Derived Evaluation Rules:

[then]

σ, θ, e1 ⇓pc σ1, (true, θ)k

k 6= P
σ1, θ, e2 ⇓k σ

′, v

σ, θ, (if e1 then e2 else e3) ⇓pc σ
′, v

[let]
σ, θ, e1 ⇓pc σ1, v1

σ1, θ[x := v1], e2 ⇓pc σ
′, v

σ, θ, (let x = e1 in e2) ⇓pc σ
′, v

[else]

σ, θ, e1 ⇓pc σ1, (false, θ)k

k 6= P
σ1, θ, e3 ⇓k σ

′, v

σ, θ, (if e1 then e2 else e3) ⇓pc σ
′, v

[seq]
σ, θ, e1 ⇓pc σ1, v1
σ1, θ, e2 ⇓pc σ

′, v

σ, θ, (e1; e2) ⇓pc σ
′, v
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Figure 3: A Function With Problematic Implicit Flows

x=falseH x=trueH

Function f(x) All strategies Naive NSU Permissive U.
y z y z y z y z

let y = ref true in

let z = ref true in trueL trueL trueL trueL trueL trueL trueL trueL

if x then y:=false; trueL trueL falseH trueL stuck falseP trueL

if !y then z:=false; trueL falseL falseH trueL stuck
!z

Return Value: falseL trueL

reference cells x and y and conditionally updates both of them. If the argument
x is falseH , then all three evaluation strategies proceed in the same manner by
leaving y as trueL and updating z to falseL, and then returning falseL, as
shown in the “All strategies” column. The following subsections describe how
different strategies handle the tricky case where x is trueH and where f must
update the public reference cell y.

3.1 The Naive Approach

The intuitive approach for assignment is to promote the label on the reference
cell to at least the label k on the address ak. (Note that a global evaluation
invariant ensures that pc v k.)

σ, θ, e1 ⇓pc σ1, a
k

σ1, θ, e2 ⇓pc σ2, v

σ, θ, (e1:= e2) ⇓pc σ2[a := (v t k)], v
[assign-naive]

For the function call f(trueH), this strategy updates y to falseH but leaves z
as trueL. Thus, by comparing the return value for the All strategies and Naive
column of Figure 3, we see that the result of f(x) is a publicly-labeled copy of
its private argument, and so this naive approach leaks information.

3.2 The No-Sensitive-Upgrade Approach

The no-sensitive-upgrade (NSU) approach avoids information leaks by getting
stuck if a public reference cell is updated when the pc is private, or when the
label on the target address is private. (In an implementation such stuck states
might cause an exception to be thrown to the top level.)

The following rule requires that the label k on the target address ak is not
greater than the label on the reference cell contents. This rule assumes all data
is labeled public or private, but never partially-leaked.

σ, θ, e1 ⇓pc σ1, a
k

σ1, θ, e2 ⇓pc σ2, v
k v label(σ2(a))

σ, θ, (e1:= e2) ⇓pc σ2[a := (v t k)], v
[assign-nsu]
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Figure 4: A Secure Function

Function g(x) x=falseH x=trueH

Both Strategies NSU Permissive U.
let y = ref true in trueL trueL trueL

if x then y := false; trueL stuck falseP

y := true; trueL trueL

y

Return Value: trueL trueL

For our example function, the call f(trueH) would get stuck on the update
for the public variable z within a private branch of execution, as illustrated by
the NSU column of Figure 3, preventing the information leak.

Unfortunately, the NSU strategy may also get stuck on code that does not
leak information, as shown in Figure 4. Although there is no information leak,
evaluation of g(trueH) gets stuck when the private parameter x is partially-
leaked. Thus, the NSU strategy satisfies termination-insensitive non-interference,
but is unnecessarily restrictive.

3.3 The Permissive-Upgrade Approach

The permissive-upgrade semantics introduces an additional label (P ) in order to
tolerate and track partially-leaked data.

The rule [assign-permissive] below considers an assignment to an address ak

that currently holds a value labelled l, and the rule uses the function lift(k, l)
defined below to infer the new label m for the reference cell. If execution is
not in a private context (k = L), then there are no difficulties with implicit
flows. Conversely, if we are updating a public reference cell (l = L) from a
private context (k = H), then the rule labels the new contents as partially-
leaked (P ). Updating a private cell from a private context results in a private
cell, and updating a partially-leaked cell from a private context leaves the cell
as partially-leaked.

[assign-permissive]

σ, θ, e1 ⇓pc σ1, a
k

σ1, θ, e2 ⇓pc σ2, v
k 6= P

l = label(σ2(a))
m = lift(k, l)

σ, θ, (e1:= e2) ⇓pc σ2[a := (v tm)], v

k l lift(k, l)
L any L
H L P
H H H
H P P

Figure 4 demonstrates that, under the permissive-upgrade strategy, the func-
tion g runs to completion on all boolean inputs (unlike under NSU). More gen-
erally, the following theorem shows that any execution that does not get stuck
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under NSU evaluation (denoted ⇓nu
pc ) will also not get stuck under permissive up-

grade evaluation (denoted ⇓pc). Thus, the permissive upgrade strategy is strictly
superior to NSU.

Theorem 1. Suppose σ, θ, and pc do not contain the partially-leaked label P
and σ, θ, e ⇓nu

pc σ
′, v. Then σ, θ, e ⇓pc σ′, v, and σ′ and v do not contain P .

Partially-leaked data must be handled quite delicately, since on an alternative
execution this data may be labeled as public. In particular, function calls, con-
ditionals, and assignments are considered sensitive operations; these operations
get stuck (via the antecedent k 6= P ) if applied to partially-leaked data (as oth-
erwise our information flow analysis could not track how alternative executions
may propagate partially-leaked information). These stuck sensitive operations
are critical for avoiding information leaks, and they distinguish the permissive-
upgrade approach from the unsound naive approach.

For the function call f(trueH) from Figure 3, the permissive upgrade strat-
egy handles the first conditional assignment by marking y as partially-leaked,
but gets stuck on the second conditional test, to avoid information leaks.

We can remedy this situation by introducing the upgrade annotation <H>:

if <H>(!y) then z := false;

This upgrade annotation ensures the test expression is private on both execu-
tions, rather than partially-leaked on one execution and public on the other.
The modified function f now runs to completion on all boolean inputs. Section 6
discusses how to infer these upgrade annotations automatically.

The following function h(x) clarifies that assignment statements must also be
considered sensitive operations. The evaluation of h(falseH) returns falseL,
whereas h(trueH) gets stuck at the assignment to (!w) in order to avoid re-
turning trueL and thereby leaking information.

h
def= λx. let y = ref true in

let z = ref true in
let w = ref y in
if x then w := z;
(!w) := false;
!y

Adding the upgrade “<H>(!w) := false” allows both calls to complete without
information leaks: h(falseH) returns falseP and h(trueH) returns trueL.

4 Termination-Insensitive Non-Interference

We now verify that the permissive-upgrade strategy guarantees termination-
insensitive non-interference. The traditional non-interference argument is based
on an equivalence relation between states that is transitive. However, the in-
troduction of partially-leaked data in our semantics significantly complicates
this proof, since the values trueL and falseP are considered equivalent, as are
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falseP and falseL, but trueL and falseL are not equivalent. Thus, the desired
“equivalence” relation is no longer transitive, and so we call it a compatibility
relation (∼) instead. Intuitively, two stores are compatible if they differ only
on private data, and executions that start with compatible stores should yield
compatible results. In more detail, we define the compatibility relation (∼) on
labels, values, substitutions, and stores as follows.

– Two labels are compatible if both are private or one is partially-leaked:

k1 ∼ k2
def= (k1, k2) ∈ {(H,H), (P,−), (−, P )}

Label compatibility is neither reflexive (as L 6∼ L) nor transitive (as L ∼
P ∼ L but L 6∼ L).

– Two values are compatible if either their labels are compatible or the labels
are identical and the raw values are compatible.

rk1
1 ∼ r

k2
2

def= k1 ∼ k2 ∨ (k1 = k2 ∧ r1 ∼ r2)
– Two raw values are compatible if they are identical or they are both closures

with identical code and compatible substitutions:

r1 ∼ r2
def= r1 = r2 ∨ (r1 = (λx.e, θ1) ∧ r2 = (λx.e, θ2) ∧ θ1 ∼ θ2)

– Two substitutions are compatible (written θ1 ∼ θ2) if they have the same
domain and compatible values:

θ1 ∼ θ2
def= dom(θ1) = dom(θ2) ∧ ∀x ∈ dom(θ1). (θ1(x) ∼ θ2(x))

– Two stores σ1 and σ2 are compatible (written σ1 ∼ σ2) if they are compatible
at all common addresses:

σ1 ∼ σ2
def= ∀a∈(dom(σ1)∩dom(σ2)). σ1(a) ∼ σ2(a)

We also introduce an evolution (or can evolve to) relation (;) that constrains
how evaluation with a private program counter can update the store. This rela-
tion composes in a transitive manner with compatibility: see Lemma 2 below.

– Label k1 can evolve to k2 if both labels are private or k2 is partially-leaked:

k1 ; k2
def= k1 = k2 = H ∨ k2 = P

– A value rk1
1 can evolve to rk2

2 if either the two values are equal or k1 can
evolve to k2:

rk1
1 ; rk2

2
def= rk1

1 = rk2
2 ∨ k1 ; k2

– A store σ1 can evolve to σ2 if every value in σ1 can evolve to the correspond-
ing value in σ2:

σ1 ; σ2
def= dom(σ1) ⊆ dom(σ2) ∧ ∀a∈ dom(σ1). σ1(a) ; σ2(a)

The evolution relation captures how evaluation with a private program counter
can update the store.

Lemma 1 (Evaluation Preserves Evolution).
If σ, θ, e ⇓H σ′, v then σ ; σ′.
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Proof Sketch: By induction on the derivation of σ, θ, e ⇓H σ′, v. The most
interesting case is for [assign-permissive], which introduces the label P to track
partially-leaked data. ut

If two stores are compatible (σ1 ∼ σ2), then evolution of one store (σ2 ; σ3)
results in a new store that is compatible to the original stores (σ1 ∼ σ3), with
the caveat that any newly allocated address must not be in the original stores.

Lemma 2 (Evolution Preserves Compatibility of Stores).
If σ1 ∼ σ2 ; σ3 and (dom(σ1) \ dom(σ2)) ∩ dom(σ3) = ∅ then σ1 ∼ σ3.

Finally, we prove our central result: if an expression e is executed twice from
compatible stores and compatible substitutions, then both executions will yield
compatible resulting stores and values. That is, private inputs never leak into
public outputs.

Theorem 2 (Termination-Insensitive Non-Interference).
Suppose pc ∈ {L,H} and σ1 ∼ σ2 and θ1 ∼ θ2 and σi, θi, e ⇓pc σ′i, vi for i ∈ 1, 2.
Then σ′1 ∼ σ′2 and v1 ∼ v2.

Proof Sketch: By induction on the derivation of σ1, θ1, e ⇓pc σ′1, v1. In the [app]

rule case, where the callee may be private, Lemma 2 above is critical for limiting
the effect of this conditionally-executed code. Complete proofs are available in
the appendix. ut

5 Upgrade Inference

The permissive-upgrade semantics guarantees non-interference while getting stuck
on fewer programs than the NSU semantics, and it will not get stuck if the pro-
gram includes upgrade annotations on sensitive uses of partially-leaked data.

We now extend our semantics to infer these upgrade annotations. We begin by
adding a position marker p ∈ Position on each sensitive operation (applications
and assignments) where partially-leaked data is not permitted.

e ::= . . . | (e1 e2)p | (e1:= e2)p

Rather than explicitly insert upgrade annotations at particular positions in the
source code, we instead extend the store σ to now also record the positions where
these upgrades have been conceptually inserted.

We replace the original [app] evaluation rule with three variants, and similarly
for [assign-permissive], as shown if Figure 5. The [app-normal] rule applies if
an upgrade has not been inserted for this operation (p 6∈ σ) and is not needed
(k 6= P ). [app-upgrade] handles situations where the upgrade has been inserted
(p ∈ σ) by ignoring the label k on the closure and behaving as if the closure
were labeled private instead. [app-infer] handles situations where an upgrade is
required (k = P ) but has not yet been inserted (p 6∈ σ); it adds this position tag
to the store (conceptually inserting the required upgrade) and then reevaluates
the application.
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Figure 5: Upgrade Inference

Evaluation Rules: σ, θ, e ⇓pc σ
′, v

[app-normal]
p 6∈ σ

σ, θ, e1 ⇓pc σ1, (λx.e, θ
′)

k

k 6= P
σ1, θ, e2 ⇓pc σ2, v2

σ2, θ
′[x := v2], e ⇓k σ

′, v

σ, θ, (e1 e2)p ⇓pc σ
′, v

[app-upgrade]
p ∈ σ

σ, θ, e1 ⇓pc σ1, (λx.e, θ
′)

k

σ1, θ, e2 ⇓pc σ2, v2
σ2, θ

′[x := v2], e ⇓H σ′, v

σ, θ, (e1 e2)p ⇓pc σ
′, v

[app-infer]
p 6∈ σ

σ, θ, e1 ⇓pc σ1, (λx.e, θ
′)

k

k = P
(σ ∪ {p}), θ, (e1 e2)p ⇓pc σ

′, v

σ, θ, (e1 e2)p ⇓pc σ
′, v

[assign-normal]
p 6∈ σ

σ, θ, e1 ⇓pc σ1, a
k

k 6= P
σ1, θ, e2 ⇓pc σ2, v

l = lift(k, label(σ2(a)))

σ, θ, (e1:= e2)p ⇓pc σ2[a := (v t l)], v

[assign-upgrade]
p ∈ σ

σ, θ, e1 ⇓pc σ1, a
k

σ1, θ, e2 ⇓pc σ2, v
l = lift(H, label(σ2(a)))

σ, θ, (e1:= e2)p ⇓pc σ2[a := (v t l)], v

[assign-infer]
p 6∈ σ

σ, θ, e1 ⇓pc σ1, a
k

k = P
(σ ∪ {p}), θ, (e1:= e2)p ⇓pc σ

′, v

σ, θ, (e1:= e2)p ⇓pc σ
′, v

Our revised semantics still guarantees non-interference, but only if the evalua-
tion did not infer additional upgrades. This observation leads to some interesting
design decisions. If output of the final result is allowed even when there was an
inferred upgrade, then termination-insensitive non-interference is not guaran-
teed, but the information leak is detected. If output is forbidden in this case,
then the behavior is identical to the permissive-upgrade semantics.

Theorem 3 (Non-Interference Of Upgrade Inference). Suppose pc 6= P
and σ1 ∼ σ2 and θ1 ∼ θ2 and σi, θi, e ⇓pc σ′i, vi and Pi = (σ′i \ σi) ∩Position for
i ∈ 1, 2. If P1 = P2 = ∅ then σ′1 ∼ σ′2 and v1 ∼ v2.

We next show that adding some upgrades A to a program only influences the
labels in the program’s result, but not the raw values.

To formalize this property, we introduce a raw equivalence order (≈) that
identifies values, substitutions, and stores that differ only in their labels, not in
their underlying raw values. Moreover, raw equivalent stores are allowed to differ
in the position tags that they include, i.e., σ ≈ (σ ∪A).

Theorem 4 (Non-Interference Of Upgrade Annotations). Suppose pc 6=
P and A ⊆ Position and σ, θ, e ⇓pc σ1, v1 and (σ ∪A), θ, e ⇓pc σ2, v2. Then
σ1 ≈ σ2 and v1 ≈ v2

12



We prove this theorem via the following lemma, which strengthens the inductive
hypothesis.

Lemma 3. Suppose pc 6= P and σ1 ≈ σ2 and θ1 ≈ θ2 and σi, θi, e ⇓pci
σ′i, vi for

i ∈ 1, 2. Then σ′1 ≈ σ′2 and v1 ≈ v2.

6 Related Work

Fenton’s paper on memoryless subsystems (7) is largely the beginning of infor-
mation flow analysis. Denning’s papers (8; 9) highlight the challenges associated
with implicit flows, and advocate a static certification approach; since then, static
approaches have dominated because of their generally superior performance and
the perceived advantages in handling implicit flows.

Volpano et al. (1) and Heintze and Riecke (2) are two of the most well known
type-based approaches, though their target languages are relatively minimal.
Pottier and Simonet (10) introduce a more complex system for Core ML.

Dynamic approaches have been applied mostly to integrity problems, includ-
ing taint analysis for Perl, Ruby, and PHP. Integrity and confidentiality are usu-
ally claimed to be dual problems, but this is disputed. Sabelfeld and Myers (11)
note that integrity can be damaged by a system error without any outside influ-
ence. Haack et al. (12) observe that since format integrity errors are unaffected
by implicit flows, integrity analysis has focused on by dynamic techniques.

Recently, there has been more appreciation of the complementary benefits
that each approach offers. Many strategies rely primarily on static techniques and
insert dynamic runtime checks only in ambiguous cases (13; 14). This approach
reduces false positives with a minimum impact on performance. Myers (15) in-
troduced JFlow, a variant of Java using this hybrid strategy, which was the basis
for Jif (16). Chugh et al. (17) propose a mostly static approach for analyzing
JavaScript with “holes” for dynamically generated code.

Generally, dynamic analysis is more often applied to client-side scripting,
particularly for JavaScript, where dynamic typing makes type-based approaches
difficult, and the flexibility of the language makes offline certification ineffec-
tive. Vogt et al. (18) reverse the standard hybrid approach, relying primarily
on dynamic checks but falling back to runtime certification for implicit flows.
Russo et al. study information flow analysis in the DOM (19) and timeout
mechanisms (20)–both major issues for JavaScript applications. Askarov and
Sabelfeld (21) cover declassification and analysis of dynamic code evaluation.

In his dissertation, Zdancewic (3) first proposed rules for dynamic analysis to
effectively handle implicit flows. Our own work later dubbed the key assignment
rule the no-sensitive-upgrade check and addressed performance concerns for dy-
namic analysis with a sparse-labeling approach (4). Le Guernic et al. (22) use
dynamic automaton-based monitoring. Sabelfeld and Russo (23) formally prove
that both static and dynamic approaches make the same security guarantees.

Flow-sensitive approaches attempt to reduce false-positives in static analysis.
Hunt and Sands (24) use a type-system to guarantee this property. Hammer and
Snelting (25) use program dependency graphs to analyze in JVM bytecode.
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Both Chong and Myers (26) and Fournet and Rezk (27) focus on downgrad-
ing confidential information. Askarov et al. (5) demonstrate that Denning-style
analysis may leak more than one bit in the presence of intermediary output
channels, but that any attack will be limited to a brute-force approach. Askarov
and Sabelfeld (28) and King et al. (29) discuss exception handling challenges.

7 Conclusion

We present a permissive-upgrade semantics that tracks information flow in a
more flexible manner than prior dynamic approaches, using a new label (P )
to permit partially-leaked data without loss of soundness. To avoid stuck exe-
cutions, upgrade annotations are required on sensitive uses of partially-leaked
data, and we show how these upgrade annotations can be inferred dynamically.
We hope these techniques will help enforce important information-flow policies
in dynamically-typed web applications. In ongoing work with Mozilla (6), we are
exploring how to incorporate these and other ideas into the Firefox web browser.
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A Proofs

We first observe certain properties of labels. First of all, if two labels are com-
patible, then joining any other labels to either or both of the original labels will
still result in compatible labels.

Lemma 4. If k1 ∼ k2 then (l1 t k1) ∼ (l2 t k2).

Also, if two labels are compatible and are part of different values, those values
will also be compatible.

Lemma 5. If k1 ∼ k2 then (v1 t k1) ∼ (v2 t k2).

Finally, in a secure context (H as the first argument to the lift function), all
labels are compatible.

Lemma 6. lift(H, l1) ∼ lift(H, l2).

We now proceed to prove Theorem 1.

Restatement of Theorem 1. Suppose σ, θ, and pc do not contain the
partially-leaked label P and σ, θ, e ⇓nu

pc σ
′, v. Then σ, θ, e ⇓pc σ′, v, and σ′ and v

do not contain P .

Proof. The proof proceeds by induction on the derivation of σ, θ, e ⇓nu
pc σ

′, v and
by case analysis on the last rule used.

– The [const], [fun], [var], [label], [app], [prim], [ref], and [deref] rules are
identical for both semantics, and none of these rules produces the label P .
Therefore, these cases hold by induction.

– In the [assign-nsu] case, e = (e1 := e2), and from the antecedents of this
rule, we have:

σ, θ, e1 ⇓nu
pc σ1, a

k

σ1, θ, e2 ⇓nu
pc σ2, v

k v label(σ(a))
σ′ = σ2[a := (v t k)]

By induction:
σ, θ, e1 ⇓pc σ1, a

k

σ1, θ, e2 ⇓pc σ2, v

Let l = label(σ2(a)) andm = lift(k, l). Then by [assign-permissive], σ, θ, e1 := e2 ⇓pc
σ2[a := (v tm)], v. It remains to show that σ2[a := (v tm)] = σ′, i.e. that
v tm = v t k. We proceed by a case analysis on k:
• case k = P : This cannot happen, since no evaluation rule in the NSU

semantics produces P .
• case k = L: Then k v label(σ2(a)). Also, m = lift(k, label(σ2(a))) = L.

Therefore by Lemma 5, v tm = v t k.
• case k = H: By case analysis on l = label(σ2(a)):
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∗ case l = P : This cannot happen, since the initial store was free of
P -labeled data, and no evaluation rule introduces the label P in the
NSU semantics.

∗ case l = L: Then k 6v l, so the NSU semantics is stuck.
∗ case l = H: Then k v l and m = lift(k, l) = H. Therefore by

Lemma 5, v tm = v t k.
ut

In order to prove the desired relationship between the evaluation and evolution
relations, we first prove some preliminary lemmas.

Lemma 7. ∀m. m ; lift(H,m).

We note that the evolution relation is transitive, and that it is reflexive for both
values and stores.

Lemma 8. ; is transitive.

Lemma 9. ; on values and stores is reflexive.

The evolution relation on values interacts in a “transitive” manner with the
compatibility relation.

Lemma 10. If v1 ∼ v2 ; v3 then v1 ∼ v3.

Proof. If v2 = v3 then the lemma trivially holds. Otherwise let vi = rki
i and

consider the possibilities for k2 ; k3.

– Suppose k2 = k3 = H. Then k1 ∈ {H,P} and so k1 ∼ k3.
– Suppose k3 = P . Then k1 ∼ k3.

ut

We now proceed to prove Lemma 1 and Lemma 2.

Restatement of Lemma 1 (Evaluation Preserves Evolution).
If σ, θ, e ⇓H σ′, v then σ ; σ′.

Proof. The proof proceeds by induction on the derivation of σ, θ, e ⇓H σ′, v and
by case analysis on the final rule in the derivation.

– [const], [fun], [var]: σ′ = σ.
– [app], [prim], [label], [deref]: By induction.
– [ref]: σ and σ′ agree on their common domain.
– [assign-permissive]: In this case, e = (e1:= e2) and we have:

σ, θ, e1 ⇓H σ1, a
H

σ1, θ, e2 ⇓H σ2, v
l = label(σ2(a))
m = lift(H, l)

σ′ = σ2[a := (v tm)]
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By induction, σ ; σ1 ; σ2. By Lemma 7, l ; m. Hence σ2(a) ; (v tm)
and so σ2 ; σ′.

ut

Restatement of Lemma 2 (Evolution Preserves Compatibility of Stores).
If σ1 ∼ σ2 ; σ3 and (dom(σ1) \ dom(σ2)) ∩ dom(σ3) = ∅ then σ1 ∼ σ3.

Proof. Let D = dom(σ1) ∩ dom(σ3). Then D v dom(σ2). This means that
∀a ∈ D. σ1 (a) ∼ σ2 (a) and σ2 (a) ; σ3 (a). Therefore, by Lemma 10:

∀a ∈ D. σ1 (a) ∼ σ3 (a)

Hence by the definition of the evolution relation, σ1 ∼ σ3. ut

Restatement of Theorem 2 (Termination-Insensitive Non-Interference).
Suppose pc ∈ {L,H} and σ1 ∼ σ2 and θ1 ∼ θ2 and σi, θi, e ⇓pc σ′i, vi for i ∈ 1, 2.
Then σ′1 ∼ σ′2 and v1 ∼ v2.

Proof. The proof is by induction on the derivation σ1, θ1, e ⇓pc σ′1, v1 and case
analysis on the last rule used in that derivation.

– [const]: Then e = c and σ′1 = σ1 ∼ σ2 = σ′2 and v1 = v2 = cpc .
– [var]: Then e = x and σ′1 = σ1 ∼ σ2 = σ′2 and v1 = (θ1(x) t pc) ∼

(θ2(x) t pc) = v2.
– [fun]: Then e = λx.e′ and σ′1 = σ1 ∼ σ2 = σ′2 and v1 = (λx.e′, θ1)pc ∼

(λx.e′, θ2)pc = v2.
– [label]: Then e = 〈H〉e′. From the antecedent of this rule, we have that for
i ∈ 1, 2:

σi, θi, e
′ ⇓pc σ′i, r

ki
i

By induction, σ′1 ∼ σ′2. Also, regardless of the raw values r1 and r2, rH
1 ∼ rH

2

by the definition of the compatibility relation.
– [app]: In this case, e = (ea eb), and from the antecedents of this rule, we

have that for i ∈ 1, 2:

σi, θi, ea ⇓pc σ′′i , (λx.ei, θ
′
i)

ki

ki 6= P
σ′′i , θi, eb ⇓pc σ′′′i , v

′
i

σ′′′i , θ
′
i[x := v′i], ei ⇓ki

σ′i, vi

By induction:
σ′′1 ∼ σ′′2
σ′′′1 ∼ σ′′′2

(λx.e1, θ′1)k1 ∼ (λx.e2, θ′2)k2

v′1 ∼ v′2
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• If k1 and k2 are both H then v1 ∼ v2, since they both have label at
least H. By Lemma 1, σ′′′i ; σ′i. Without loss of generality, we assume
that the two executions allocate reference cells from disjoint parts of the
address space,2 i.e.:

(dom(σ′i) \ dom(σ′′′i )) ∩ dom(σ′3−i) = ∅

Under this assumption, by Lemma 2 σ′′′1 ∼ σ′2. Applying Lemma 2 again
gives σ′1 ∼ σ′2.

• Otherwise θ′1 ∼ θ′2 and e1 = e2 and k1 = k2. By induction, σ′1 ∼ σ′2 and
v′′1 ∼ v′′2 , and hence v′1 ∼ v′2.

– [prim]: In this case, e = (ea eb), and from the antecedents of this rule, we
have that for i ∈ 1, 2:

σi, θi, ea ⇓pc σ′′i , c
ki
i

σ′′i , θi, ea ⇓pc σ′i, d
li
i

ri = [[ci]](di)

By induction:
σ′′1 ∼ σ′′2 σ′1 ∼ σ′2
ck1
1 ∼ c

k2
2 dl1

1 ∼ d
l2
2

• If either k1 ∼ k2 or l1 ∼ l2, then by Lemma 4 k1t l1 ∼ k2t l2. Therefore,
rk1tl1
1 ∼ rk2tl2

2 .
• Otherwise, r1 = r2, since c1 = c2 and d1 = d2. Also, k1 t l1 = k2 t l2.

Therefore, rk1tl1
1 ∼ rk2tl2

2 .
– [ref]: In this case, e = ref e′. Without loss of generality, we assume that

both evaluations allocate at the same address a 6∈ dom(σ1) ∪ dom(σ2), and
so apc = v1 = v2. From the antecedents of this rule, we have that for i ∈ 1, 2:

σi, θi, e
′ ⇓pc σ′′i , v′i

σ′i = σ′′i [a := v′i]

By induction, σ′′1 ∼ σ′′2 and v′1 ∼ v′2, and so σ′1 ∼ σ′2.
– [deref]: In this case, e = !e′, and from the antecedents of this rule, we have

that for i ∈ 1, 2:
σi, θi, e

′ ⇓pc σ′i, a
ki
i

vi = σ′i(ai) t ki

By induction, σ′1 ∼ σ′2 and ak1
1 ∼ a

k2
2 .

• Suppose ak1
1 = ak2

2 . Then a1 = a2 and k1 = k2 and σ′1(a1) ∼ σ′2(a2), and
so v1 ∼ v2.

• Suppose ak1
1 6= ak2

2 . Then since ak1
1 ∼ a

k2
2 we must have that k1 ∼ k2 and

hence v1 ∼ v2 from Lemma 5.

2 We refer the interested reader to (30) for an alternative proof argument that does
use of this assumption, but which involves a more complicated compatibility relation
on stores.
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– [assign-permissive] In this case, e = (ea:= eb), and from the antecedents of
this rule, we have that for i ∈ 1, 2:

σi, θi, ea ⇓pc σ′′i , a
ki
i

σ′′i , θi, eb ⇓pc σ′′′i , vi

ki 6= P
mi = lift(ki, label(σ′′′i (ai)))
σ′i = σ′′′i [ai := vi tmi]

By induction:
σ′′1 ∼ σ′′2 σ′′′1 ∼ σ′′′2
ak1
1 ∼ a

k2
2 v1 ∼ v2

• If k1 ∼ k2 then k1 = k2 = H. By Lemma 6, m1 ∼ m2. By Lemma 5,
(v1 tm1) ∼ (v2 tm2). Hence σ′1 ∼ σ′2.

• Otherwise k1 = k2 = L. Then m1 = m2 = L and hence σ′1 ∼ σ′2.
ut

Restatement of Theorem 3 (Non-Interference Of Upgrade Inference).
Suppose pc 6= P and σ1 ∼ σ2 and θ1 ∼ θ2 and σi, θi, e ⇓pc σ′i, vi and Pi =
(σ′i \ σi) ∩ Position for i ∈ 1, 2. If P1 = P2 = ∅ then σ′1 ∼ σ′2 and v1 ∼ v2.

Proof. The proof is by induction on the derivation σ1, θ1, e ⇓pc σ′1, v1 and case
analysis on the last rule used in that derivation.

– [const]: Then e = c and σ′1 = σ1 ∼ σ2 = σ′2 and v1 = v2 = cpc .
– [var]: Then e = x and σ′1 = σ1 ∼ σ2 = σ′2 and v1 = (θ1(x) t pc) ∼

(θ2(x) t pc) = v2.
– [fun]: Then e = λx.e′ and σ′1 = σ1 ∼ σ2 = σ′2 and v1 = (λx.e′, θ1)pc ∼

(λx.e′, θ2)pc = v2.
– [label]: Then e = 〈H〉e′. From the antecedent of this rule, we have that for
i ∈ 1, 2:

σi, θi, e
′ ⇓pc σ′i, r

ki
i

By induction, σ′1 ∼ σ′2. Also, regardless of the raw values r1 and r2, rH
1 ∼ rH

2

by the definition of the compatibility relation.
– [prim]: In this case, e = (ea eb), and from the antecedents of this rule, we

have that for i ∈ 1, 2:
σi, θi, ea ⇓pc σ′′i , c

ki
i

σ′′i , θi, ea ⇓pc σ′i, d
li
i

ri = [[ci]](di)

By induction:
σ′′1 ∼ σ′′2 σ′1 ∼ σ′2
ck1
1 ∼ c

k2
2 dl1

1 ∼ d
l2
2
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• If either k1 ∼ k2 or l1 ∼ l2, then by Lemma 4 k1t l1 ∼ k2t l2. Therefore,
rk1tl1
1 ∼ rk2tl2

2 .
• Otherwise, r1 = r2, since c1 = c2 and d1 = d2. Also, k1 t l1 = k2 t l2.

Therefore, rk1tl1
1 ∼ rk2tl2

2 .
– [ref]: In this case, e = ref e′. Without loss of generality, we assume that

both evaluations allocate at the same address a 6∈ dom(σ1) ∪ dom(σ2), and
so apc = v1 = v2. From the antecedents of this rule, we have that for i ∈ 1, 2:

σi, θi, e
′ ⇓pc σ′′i , v′i

σ′i = σ′′i [a := v′i]

By induction, σ′′1 ∼ σ′′2 and v′1 ∼ v′2, and so σ′1 ∼ σ′2.
– [deref]: In this case, e = !e′, and from the antecedents of this rule, we have

that for i ∈ 1, 2:
σi, θi, e

′ ⇓pc σ′i, a
ki
i

vi = σ′i(ai) t ki

By induction, σ′1 ∼ σ′2 and ak1
1 ∼ a

k2
2 .

• Suppose ak1
1 = ak2

2 . Then a1 = a2 and k1 = k2 and σ′1(a1) ∼ σ′2(a2), and
so v1 ∼ v2.

• Suppose ak1
1 6= ak2

2 . Then since ak1
1 ∼ a

k2
2 we must have that k1 ∼ k2 and

hence v1 ∼ v2 from Lemma 5.
– [app-normal]: In this case, e = (ea eb), and from the antecedents of this rule,

we have that for i ∈ 1, 2:

p 6∈ σi

σi, θi, ea ⇓pc σ′′i , (λx.ei, θ
′
i)

ki

ki 6= P
σ′′i , θi, eb ⇓pc σ′′′i , v

′
i

σ′′′i , θ
′
i[x := v′i], ei ⇓ki

σ′i, vi

By induction:
σ′′1 ∼ σ′′2
σ′′′1 ∼ σ′′′2

(λx.e1, θ′1)k1 ∼ (λx.e2, θ′2)k2

v′1 ∼ v′2
• If k1 and k2 are both H then v1 ∼ v2, since they both have label at

least H. By Lemma 1, σ′′′i ; σ′i. Without loss of generality, we assume
that the two executions allocate reference cells from disjoint parts of the
address space. i.e.:

(dom(σ′i) \ dom(σ′′′i )) ∩ dom(σ′3−i) = ∅

Under this assumption, by Lemma 2 σ′′′1 ∼ σ′2. Applying Lemma 2 again
gives σ′1 ∼ σ′2.

• Otherwise θ′1 ∼ θ′2 and e1 = e2 and k1 = k2. By induction, σ′1 ∼ σ′2 and
v′′1 ∼ v′′2 , and hence v′1 ∼ v′2.
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– [app-upgrade]: In this case, e = (ea eb), and from the antecedents of this
rule, we have that for i ∈ 1, 2:

p ∈ σi

σi, θi, ea ⇓pc σ′′i , (λx.ei, θ
′
i)

ki

σ′′i , θi, eb ⇓pc σ′′′i , v
′
i

σ′′′i , θ
′
i[x := v′i], ei ⇓H σ′i, vi

By induction:
σ′′1 ∼ σ′′2
σ′′′1 ∼ σ′′′2

(λx.e1, θ′1)k1 ∼ (λx.e2, θ′2)k2

v′1 ∼ v′2
By the final antecedent of the rule, both v1 and v2 must have a label at
least H, so vi ∼ vs. By Lemma 1, σ′′′i ; σ′i. Without loss of generality, we
assume that the two executions allocate reference cells from disjoint parts of
the address space. i.e.:

(dom(σ′i) \ dom(σ′′′i )) ∩ dom(σ′3−i) = ∅

Under this assumption, by Lemma 2 σ′′′1 ∼ σ′2. Applying Lemma 2 again
gives σ′1 ∼ σ′2.

– [app-infer]: In this case, e = (ea eb), and from the antecedents of this rule,
we have that for i ∈ 1, 2:

p 6∈ σi

σi, θi, ea ⇓pc σ′′i , (λx.ei, θ
′
i)

ki

ki = P
(σi ∪ {p}), θ, (ea ea)p ⇓pc σ′i, v

The final antecedent of this rule joins p to the set of labels in σi, which means
that p ∈ σ′i. But by the first antecedent of this rule, p 6∈ σi. Therefore, neither
P1 nor P2 are empty.

– [assign-normal] In this case, e = (ea:= eb), and from the antecedents of this
rule, we have that for i ∈ 1, 2:

p 6∈ σi

σi, θi, ea ⇓pc σ′′i , a
ki
i

ki 6= P
σ′′i , θi, eb ⇓pc σ′′′i , vi

mi = lift(ki, label(σ′′′i (ai)))
σ′i = σ′′′i [ai := vi tmi]

By induction:
σ′′1 ∼ σ′′2 σ′′′1 ∼ σ′′′2
ak1
1 ∼ a

k2
2 v1 ∼ v2
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• If k1 ∼ k2 then k1 = k2 = H. By Lemma 6, m1 ∼ m2. By Lemma 5,
(v1 tm1) ∼ (v2 tm2). Hence σ′1 ∼ σ′2.

• Otherwise k1 = k2 = L. Then m1 = m2 = L and hence σ′1 ∼ σ′2.
– [assign-upgrade] In this case, e = (ea:= eb), and from the antecedents of

this rule, we have that for i ∈ 1, 2:

p ∈ σi

σi, θi, ea ⇓pc σ′′i , a
ki
i

σ′′i , θi, eb ⇓pc σ′′′i , vi

mi = lift(H, label(σ′′′i (ai)))
σ′i = σ′′′i [ai := vi tmi]

By induction:
σ′′1 ∼ σ′′2 σ′′′1 ∼ σ′′′2
ak1
1 ∼ a

k2
2 v1 ∼ v2

By Lemma 6 we know that m1 ∼ m2. By Lemma 5, (v1 tm1) ∼ (v2 tm2).
Hence σ′1 ∼ σ′2.

– [assign-infer]: In this case, e = (ea:= eb), and from the antecedents of this
rule, we have that for i ∈ 1, 2:

p 6∈ σi

σi, θi, ea ⇓pc σ′′i , a
ki
i

ki = P
(σi ∪ {p}), θ, (ea:= ea)p ⇓pc σ′i, v

The final antecedent of this rule joins p to the set of labels in σi, which means
that p ∈ σ′i. But by the first antecedent of this rule, p 6∈ σi. Therefore, neither
P1 nor P2 are empty.

ut

Restatement of Lemma 3.
Suppose pc 6= P and σ1 ≈ σ2 and θ1 ≈ θ2 and σi, θi, e ⇓pci

σ′i, vi for i ∈ 1, 2.
Then σ′1 ≈ σ′2 and v1 ≈ v2.

Proof. The proof is by induction on the derivation σ1, θ1, e ⇓pc1
σ′1, v1 and case

analysis on the last rule used in that derivation.

– [const]: Then e = c and σ′1 = σ1 ≈ σ2 = σ′2. Also, v1 = cpc1 ≈ cpc2 = v2.
– [var]: Then e = x and σ′1 = σ1 ≈ σ2 = σ′2. Also v1 = (θ1(x) t pc1) ≈

(θ2(x) t pc2) = v2.
– [fun]: Then e = λx.e′ and σ′1 = σ1 ≈ σ2 = σ′2. Also, v1 = (λx.e′, θ1)pc1 ≈

(λx.e′, θ2)pc2 = v2.
– [label]: Then e = 〈H〉e′. From the antecedent of this rule, we have that for
i ∈ 1, 2:

σi, θi, e
′ ⇓pci

σ′i, r
ki
i

By induction, σ′1 ≈ σ′2 and rk1
1 ≈ r

k2
2 . Therefore rH

1 ≈ rH
2 .
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– [prim]: In this case, e = (ea eb), and from the antecedents of this rule, we
have that for i ∈ 1, 2:

σi, θi, ea ⇓pci
σ′′i , c

ki
i

σ′′i , θi, ea ⇓pci
σ′i, d

li
i

ri = [[ci]](di)

By induction:
σ′′1 ≈ σ′′2 σ′1 ≈ σ′2
ck1
1 ≈ c

k2
2 dl1

1 ≈ d
l2
2

Since c1 = c2 and d1 = d2, it must be the case that r1 = r2. Therefore,
rk1tl1
1 ≈ rk2tl2

2 .
– [ref]: In this case, e = ref e′. Without loss of generality, we assume that

both evaluations allocate at the same address a 6∈ dom(σ1) = dom(σ2), and
so v1 = apc1 ≈ apc2 = v2. From the antecedents of this rule, we have that
for i ∈ 1, 2:

σi, θi, e
′ ⇓pci

σ′′i , v
′
i

σ′i = σ′′i [a := v′i]

By induction, σ′′1 ≈ σ′′2 and v′1 ≈ v′2, and so σ′1 ≈ σ′2.
– [deref]: In this case, e = !e′, and from the antecedents of this rule, we have

that for i ∈ 1, 2:
σi, θi, e

′ ⇓pci
σ′i, a

ki
i

vi = σ′i(ai) t ki

By induction, σ′1 ≈ σ′2 and ak1
1 ≈ ak2

2 . Since σ1(a1) ≈ σ2(a2) we know that
v1 ≈ v2.

– [app-normal]: In this case, e = (ea eb)p, and from the antecedents of this
rule, we have:

p 6∈ σ1

σ1, θ1, ea ⇓pc1
σ′′1 , (λx.e1, θ

′
1)k1

k1 6= P
σ′′1 , θ1, eb ⇓pc1

σ′′′1 , v
′
1

σ′′′1 , θ
′
1[x := v′1], e1 ⇓k1 σ

′
1, v1

We consider 3 possible rules for evaluation of σ2, θ2, e ⇓pc2 σ2, v2.
• In the [app-upgrade] case we have:

p ∈ σ2

σ2, θ2, ea ⇓pc2
σ′′2 , (λx.e2, θ

′
2)k2

σ′′2 , θ2, eb ⇓pc2
σ′′′2 , v

′
2

σ′′′2 , θ
′
2[x := v′2], e2 ⇓H σ′2, v2

By induction:
σ′′1 ≈ σ′′2
σ′′′1 ≈ σ′′′2

(λx.e1, θ′1)k1 ≈ (λx.e2, θ′2)k2

v′1 ≈ v′2
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Since θ′1 ≈ θ′2 and v′1 ≈ v′2, we know that θ′1[x := v′1] ≈ θ′2[x := v′2]. Also,
since (λx.e1, θ′1)k1 ≈ (λx.e2, θ′2)k2 we know that e1 = e2. Therefore by
induction, σ′1 ≈ σ′2 and v1 ≈ v2.

• In the [app-normal] case, we have: where k2 6= P , then we have:

p 6∈ σ2

σ2, θ2, ea ⇓pc2
σ′′2 , (λx.e2, θ

′
2)k2

σ′′2 , θ2, eb ⇓pc2
σ′′′2 , v

′
2

σ′′′2 , θ
′
2[x := v′2], e2 ⇓k2 σ

′
2, v2

By induction:
σ′′1 ≈ σ′′2
σ′′′1 ≈ σ′′′2

(λx.e1, θ′1)k1 ≈ (λx.e2, θ′2)k2

v′1 ≈ v′2
Since θ′1 ≈ θ′2 and v′1 ≈ v′2, we know that θ′1[x := v′1] ≈ θ′2[x := v′2]. Also,
since (λx.e1, θ′1)k1 ≈ (λx.e2, θ′2)k2 we know that e1 = e2. Therefore by
induction, σ′1 ≈ σ′2 and v1 ≈ v2.

• In the [app-infer] case, we know that σ2, θ2, ea ⇓pc2
σ′′2 , (λx.e2, θ

′
2)P . It

suffices to show that

σ1, θ1, (ea eb)p ⇓pc1
σ′1, v1

(σ2 ∪ {p}), θ2, (ea eb)p ⇓pc2
σ′2, v2

σ′1 ≈ σ′2
v1 ≈ v2

Since σ1 ≈ σ2 ∪ {p}, this case holds by induction.
– [app-upgrade]: In this case, e = (ea eb)p, and from the antecedents of this

rule, we have:
p ∈ σ1

σ1, θ1, ea ⇓pc1
σ′′1 , (λx.e1, θ

′
1)k1

σ′′1 , θ1, eb ⇓pc1
σ′′′1 , v

′
1

σ′′′1 , θ
′
1[x := v′1], e1 ⇓H σ′1, v1

We consider 2 possible rules for evaluation of σ2, θ2, e ⇓pc2 σ2, v2. (The
[app-normal] rule is covered above, via a symmetry argument).
• In the [app-upgrade] case, we have:

p ∈ σ2

σ2, θ2, ea ⇓pc2
σ′′2 , (λx.e2, θ

′
2)k2

σ′′2 , θ2, eb ⇓pc2
σ′′′2 , v

′
2

σ′′′2 , θ
′
2[x := v′2], e2 ⇓H σ′2, v2

By induction:
σ′′1 ≈ σ′′2
σ′′′1 ≈ σ′′′2

(λx.e1, θ′1)k1 ≈ (λx.e2, θ′2)k2

v′1 ≈ v′2
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Since θ′1 ≈ θ′2 and v′1 ≈ v′2, we know that θ′1[x := v′1] ≈ θ′2[x := v′2]. Also,
since (λx.e1, θ′1)k1 ≈ (λx.e2, θ′2)k2 we know that e1 = e2. Therefore by
induction, σ′1 ≈ σ′2 and v1 ≈ v2.

• In the [app-infer] case we know that σ2, θ2, ea ⇓pc2
σ′′2 , (λx.e2, θ

′
2)P . It

suffices to show that

σ1, θ1, (ea eb)p ⇓pc1
σ′1, v1

(σ2 ∪ {p}), θ2, (ea eb)p ⇓pc2
σ′2, v2

σ′1 ≈ σ′2
v1 ≈ v2

Since σ1 ≈ σ2 ∪ {p}, this case holds by induction.
– [app-infer]: In this case, e = (ea eb)p, and from the antecedents of this rule,

we have:
p 6∈ σ1

σ1, θ1, ea ⇓pc1
σ′′1 , (λx.e1, θ

′
1)k1

k = P
(σ1 ∪ {p}), θ1, (ea eb)p ⇓pc1

σ′1, v1

We consider the case where evaluation of σ2, θ2, e ⇓pc2 σ2, v2 is via [app-infer].
(The other cases are covered above, via a symmetry argument). In this case,
we know that

p 6∈ σ2

σ2, θ2, ea ⇓pc2
σ′′2 , (λx.e2, θ

′
2)k2

k2 = P
(σ2 ∪ {p}), θ2, (ea eb)p ⇓pc2

σ′2, v2

By induction, σ′1 ≈ σ′2 and v1 ≈ v2.
– [assign-normal]: In this case, e = (ea:= eb)p, and from the antecedents of

this rule, we have:
p 6∈ σ1

σ1, θ1, ea ⇓pc1
σ′′1 , a

k1

k1 6= P
σ′′1 , θ1, eb ⇓pc1

σ′′′1 , v1
l1 = lift(k1, label(σ′′′1 (a)))
σ′1 = σ′′′1 [a := (v1 ∪ l1)]

Without loss of generality, we assume that both evaluations allocate at the
same address a. We consider 3 possible rules for evaluation of σ2, θ2, e ⇓pc2

σ2, v2.
• In the [assign-upgrade] case we have:

p ∈ σ2

σ2, θ2, ea ⇓pc2
σ′′2 , a

k2

σ′′2 , θ2, eb ⇓pc2
σ′′′2 , v2

l2 = lift(H, label(σ2(a)))
σ′2 = σ′′′2 [a := (v2 ∪ l2)]
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By induction:
σ′′1 ≈ σ′′2
σ′′′1 ≈ σ′′′2
ak1 ≈ ak2

v1 ≈ v2
Since v1 ∪ l1 ≈ v2 ∪ l2, we know that σ′1 ≈ σ′2.

• In the [assign-normal] case we have:

p 6∈ σ2

σ2, θ2, ea ⇓pc2
σ′′2 , a

k2

k2 6= P
σ′′2 , θ2, eb ⇓pc2

σ′′′2 , v2
l2 = lift(k2, label(σ2(a)))
σ′2 = σ′′′2 [a := (v2 ∪ l2)]

By induction:
σ′′1 ≈ σ′′2
σ′′′1 ≈ σ′′′2
ak1 ≈ ak2

v1 ≈ v2
Since v1 ∪ l1 ≈ v2 ∪ l2, we know that σ′1 ≈ σ′2.

• In the [assign-infer] case, we know that σ2, θ2, ea ⇓pc2
σ′′2 , a

P . It suffices
to show that

σ1, θ1, (ea:= eb)p ⇓pc1
σ′1, v1

(σ2 ∪ {p}), θ2, (ea:= eb)p ⇓pc2
σ′2, v2

σ′1 ≈ σ′2
v1 ≈ v2

Since σ1 ≈ σ2 ∪ {p}, this case holds by induction.
– [assign-upgrade]: In this case, e = (ea:= eb)p, and from the antecedents of

this rule, we have:
p ∈ σ1

σ1, θ1, ea ⇓pc1
σ′′1 , a

k1

σ′′1 , θ1, eb ⇓pc1
σ′′′1 , v1

l1 = lift(H, label(σ′′′1 (a)))
σ′1 = σ′′′1 [a := (v1 ∪ l1)]

Without loss of generality, we assume that both evaluations allocate at the
same address a. We consider 2 possible rules for evaluation of σ2, θ2, e ⇓pc2

σ2, v2. (The [assign-normal] rule is covered above, via a symmetry argu-
ment).
• In the [assign-upgrade] case, we have:

p ∈ σ2

σ2, θ2, ea ⇓pc2
σ′′2 , a

k2

σ′′2 , θ2, eb ⇓pc2
σ′′′2 , v2

l2 = lift(H, label(σ′′′2 (a)))
σ′2 = σ′′′2 [a := (v2 ∪ l2)]
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By induction:
σ′′1 ≈ σ′′2
σ′′′1 ≈ σ′′′2
ak1 ≈ ak2

v1 ≈ v2
Since v1 ∪ l1 ≈ v2 ∪ l2, we know that σ′1 ≈ σ′2.

• In the [assign-infer] case we know that σ2, θ2, ea ⇓pc2
σ′′2 , (λx.e2, θ

′
2)P .

It suffices to show that

σ1, θ1, (ea:= eb)p ⇓pc1
σ′1, v1

(σ2 ∪ {p}), θ2, (ea:= eb)p ⇓pc2
σ′2, v2

σ′1 ≈ σ′2
v1 ≈ v2

Since σ1 ≈ σ2 ∪ {p}, this case holds by induction.
– [assign-infer]: Without loss of generality, we assume that both evaluations

allocate at the same address a. In this case, e = (ea eb)p, and from the
antecedents of this rule, we have:

p 6∈ σ1

σ1, θ1, ea ⇓pc1
σ′′1 , a

k1

k = P
(σ1 ∪ {p}), θ1, (ea:= eb)p ⇓pc1

σ′1, v1

We consider the case where evaluation of σ2, θ2, e ⇓pc2 σ
′
2, v2 is via [app-infer].

(The other cases are covered above, via a symmetry argument). In this case,
we know that

p 6∈ σ2

σ2, θ2, ea ⇓pc2
σ′′2 , (λx.e2, θ

′
2)k2

k2 = P
(σ2 ∪ {p}), θ2, (ea:= eb)p ⇓pc2

σ′2, v2

By induction, σ′1 ≈ σ′2 and v1 ≈ v2.
ut
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