
An Effect System for Checking Consistency
of Synchronization and Yields

Technical Report UCSC-SOE-09-33

Jevgenia Smorgun Jaeheon Yi

University of California at Santa Cruz

jsmorgun@ucsc.edu, jaeheon@soe.ucsc.edu

1. Introduction

Type-and-effect systems can guard against race conditions by stat-
ically enforcing a locking discipline [1]. A program’s synchroniza-
tion structure enforces a program’s locking discipline. Whether or
not a program’s locking discipline is enforced by its synchroniza-
tion structure is a previously studied question.

A yield is a multithreading synchronization mechanism for au-
tomatic mutual exclusion (AME) [2], where multithreading is ex-
plicitly allowed at selected yield points, and excluded elsewhere.
AME’s semantics have cooperative multithreading, where the yield
command explicitly permits preemptions to occur. We consider
yields as a specification in a non-cooperative semantics, such that
yields indicate program points where the programmer expects a
preemption to possibly occur: a yielding discipline.

Given a program, are its synchronization structure and yielding
discipline consistent with each other? We propose an effect system
for this problem.

2. Concurrent IMP

Our Concurrent IMP programming language [3] consists of the
following domains, including commands.

e ∈ AEXP ::= · · ·
b ∈ BEXP ::= · · ·
x ∈ VAR ::= · · ·
m ∈ LOCK ::= · · ·
d ∈ DECL ::= var x [guarded by m]opt

v ∈ VAL ::= Z ∪ {true, false}
C, D ∈ CMD ::=

| CMD ; CMD

| VAR := AEXP

| sync LOCK in CMD

| yield
| skip
| if BEXP then CMD else CMD

| while BEXP do CMD

Figure 1. Domains of Concurrent IMP

A program in IMP is a declaration of variables, a set of com-
mands representing the thread pool, and the accompanying state.
Threads finish when their command is skip. The program is fin-
ished when all threads are skip.

A context is an expression with a hole; an evaluation context
E is a context used during evaluation: E = [] | E ; CMD. If E
is a metavariable ranging over eval contexts and we have some
expression C, we take E[C] to mean the context E with C placed
in E ’s hole.

Every command C defines two program points, C− and C+,
representing the points just before and after C executes.

We may query the guarding lock set for each variable from the

declaration of variables by the function LS : VAR → 2LOCK.

2.1 Evaluation Rules

We assume an interleaving semantics where the scheduling is non-
cooperative; a preemption may occur after any evaluation step.
Evaluation steps are atomic: when one evaluation step occurs, no
evaluation step by another thread may occur simultaneously.

We represent the state space of the program as follows:

π : LOCK → {locked, unlocked}

σ : VAR → VAL

T : THREAD → CMD

The initial state for the program is
Σ = 〈 λm . unlocked,

λx . 0,
λt . Ct〉

where Ct is the initial command defined in the program for each
thread t.

Transition rules express the effect of the command evaluation
on the state (Figure 2).

3. Locking and Yielding

A locking discipline is a mapping VAR → 2LOCK. The locking
discipline of a program tells us what variables are protected by
which lock, and is defined in the program’s variable declaration.
In our language, variable accesses in command C are protected by
a lock m through the synchronization command sync m in C.
Such a command may disallow observable preemptions by other
threads from occurring through an underlying mutual exclusion
mechanism. A variable may not have a declared lockset; a racy
access is an access to such a variable.

A program’s synchronization structure is the set of sync com-
mands and racy accesses in the program. A synchronization struc-
ture defines the set of program points S where preemptions are
intended to occur: the program points before and after sync com-
mands and racy accesses.

A yielding discipline is the set of yield commands in the
program. A yield specifies a program point where the programmer
explicitly expects preemptions to possibly occur. We indicate a
yielding discipline’s preemption points with Y .



[E-SKIP]
T (t) = E[skip ; C]
T ′ = T [t := E[C]]

〈π, σ, T 〉 −→skip 〈π, σ, T ′〉

[E-ASSIGN]
T (t) = E[x := e]
σ(e) = v

σ′ = σ[x := v]
T ′ = T [t := E[skip]]

〈π, σ, T 〉 −→x := e 〈π, σ′, T ′〉

[E-YIELD]
T (t) = E[yield]
T ′ = T [t := E[skip]]

〈π, σ, T 〉 −→yield 〈π, σ, T ′〉

[E-SYNC]
T (t) = E[sync m in C]

π(m) = unlocked
T ′ = T [t := E[in-sync m in C]]
π′ = π[m := locked]

〈π, σ, T 〉 −→sync m in C 〈π′, σ, T ′〉

[E-INSYNC]
T (t) = E[in-sync m in skip]

π(m) = locked
T ′ = T [t := E[skip]]
π′ = π[m := unlocked]

〈π, σ, T 〉 −→in-sync m in skip 〈π′, σ, T ′〉

[E-WHILE]
T (t) = E[while b do C ]
T ′ = T [t := E[if b then (C ; while b do C ) else skip]]

〈π, σ, T 〉 −→while b do C 〈π, σ, T ′〉

[E-IFTRUE]
T (t) = E[if b then C else D]
σ(b) = true
T ′ = T [t := C]

〈π, σ, T 〉 −→if b then C else D 〈π, σ, T ′〉

[E-IFFALSE]
T (t) = E[if b then C else D]
σ(b) = false
T ′ = T [t := D]

〈π, σ, T 〉 −→if b then C else D 〈π, σ, T ′〉

Figure 2. Evaluation Rules

3.1 Consistency

A yielding discipline is consistent with respect to the synchroniza-
tion structure if for every pair of elements (C, D) in a thread’s syn-

chronization structure such that C+ sequentially comes before D−

in the thread command, there exists a yield command between C+

and D−.
A consistent yielding discipline is easily obtained by wrapping

every other command between two yield commands. A consistent
yielding discipline is excessive if removing one yield command still
maintains a consistent yielding discipline.

4. Effect System for Concurrent IMP

A type-and-effect system is a type system augmented with special
rules to reason about computational effects that may occur during
run time [4]. Type-and-effect systems are widely used to statically
check for a variety of program effects, such as memory allocation
and exception throwing.

We have the following effect system to check for consistency of
synchronization structure and yield discipline (Figure 3). A type-
and-effect system may be straightforwardly obtained by adding in
typing judgments for arithmetic and boolean expressions.

The effect judgment Φ ⊢ C : ε judges command C to have
effect ε in the environment Φ, consisting of the available lock set.

Specifically, Φ ⊆ 2LOCK.
An effect is a static approximation of program behavior:

S is the empty effect - nothing of interest happens; it is also the
identity effect for sequencing;

R implies a race condition;

Y means a preemption may occur;

RY is the sequential effect of an R then Y;

YR is the sequential effect of a Y then R;

BAD is an error condition.

When sequentially composing two effects via the ; command,
we summarize the combined effect as listed in Figure 4.

s(ε1, ε2) R YR RY S Y

R BAD R BAD R RY

YR BAD YR BAD YR Y

RY R R RY RY RY

S R YR RY S Y

Y YR YR Y Y Y

Figure 4. Sequential Effect Combination

The sequential combination of BAD and any other effect is still
BAD. We may also flag a warning to indicate excessive yields for
the following four effect combinations:

Y ; Y

Y ; YR

RY ; Y

RY ; YR

The sync command executes its nested command while holding
some lock. The while command also has a nested command; this



[T-ASSIGNRACE]
LS(x) = ∅

Φ ⊢ x := v : R

[T-ASSIGNSKIP]
LS(x) ⊆ Φ

Φ ⊢ x := v : S

[T-SYNC]
Φ ∪ {m} ⊢ C : εc

ε = k(εc)

Φ ⊢ sync m in C : ε

[T-YIELD]

Φ ⊢ yield : Y

[T-SEQ]
Φ ⊢ C1 : ε1

Φ ⊢ C2 : ε2

ε = s(ε1, ε2)

Φ ⊢ C1 ; C2 : ε

[T-IF]
Φ ⊢ C1 : ε1

Φ ⊢ C2 : ε2

ǫ = ε1 ⊔ ε2

Φ ⊢ if b then C1 else C2 : ε

[T-WHILE]
Φ ⊢ C : εc

ε = w(εc)

Φ ⊢ while b do C : ε

[T-SKIP]

Φ ⊢ skip : S

Figure 3. Effect System

sync m in C while b do C
ε k(ε) w(ε)
S R S

Y R Y

R R BAD

RY RY RY

YR YR YR

BAD BAD BAD

Figure 5. Effect of a Synchronization Block or While Loop

may be executed zero or more times. We list the effect of a sync
command and if command in Figure 5.

The if command executes one of two nested commands. To
summarize the effect of the if command, we find the join (or least
upper bound) of two effects within a lattice of effects (Figure 6).

BAD

R

RY YR

S

Y

Figure 6. Joining Effects for if Command: ε1 ⊔ ε2

Four functions summarize effect combination:

s(ε1, ε2) for the sequencing command;

k(ε) for a nested effect within a sync command;

w(ε) for a nested effect within a while loop;

ε1 ⊔ ε2 for two nested effects within an if command.

5. Examples

1. Unintentional races are caught by the effect system.

var x guarded_by m

x := 2

2. Intentional races are fine, as long as the yielding discipline is
consistent. This program thread has two racy accesses on y but
no intervening yield in between; the program effect is BAD.

var x guarded_by m
var y

y := 0;
sync m {

x := 2;
y := 1;

}

3. Here is a well-synchronized program. The yielding discipline is
consistent.

var x guarded_by m

sync m {
x := 2;
x := 3

}

4. Another well-synchronized program.

var x guarded_by m
var y guarded_by m
var z guarded_by m

sync m {
x := 3;
y := 2;
z := 1;
x := 4

}

5. A similar program to above, but with an intentional race on
x and a yield to indicate a race. Without the yield, the
program’s effect is BAD. With the yield, the program’s effect
is R.

var x
var y guarded_by m
var z guarded_by m

sync m {
x := 3;
yield;
y := 2;
z := 1;
x := 4

}

6. The then branch of the if command has a race, while the else
branch doesn’t. We conservatively summarize the effect of the
if command as R.

var x
var y guarded_by m



sync m {
if b then
x := 1

else
y := 2

}

7. A while command’s effect can be summarized by sequentially
composing the nested effect with itself. Since the while com-
mand executes a racy access, two consecutive racy accesses
with no intervening yield is BAD.

var x

while b do
x := 1

8. A more complicated example with two threads. The yielding
discipline is excessive but consistent with the program’s syn-
chronization structure.

var x
var y guarded_by m
var z guarded_by n

sync m in {
sync n in {
while b1 do

x := 3;
yield;
if b2 then
x := 2;
yield

else
y := 3

;
yield;
x := 2;
yield

}
}

sync n in {
z := 3

};
x := 1

References

[1] Cormac Flanagan and Stephen N. Freund. Type inference against
races. Sci. Comput. Program., 64(1):140–165, 2007.

[2] Martı́n Abadi, Andrew Birrell, Tim Harris, and Michael Isard.
Semantics of transactional memory and automatic mutual exclusion.
In POPL, pages 63–74. ACM, 2008.

[3] Glynn Winskel. The formal semantics of programming languages: an

introduction. MIT Press, Cambridge, MA, USA, 1993.

[4] Daniel Marino and Todd D. Millstein. A generic type-and-effect
system. In TLDI, pages 39–50, 2009.

[5] Martı́n Abadi and Gordon D. Plotkin. A model of cooperative threads.
In POPL, pages 29–40, 2009.

[6] Cormac Flanagan and Martı́n Abadi. Types for safe locking. In ESOP,
pages 91–108, 1999.


