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Abstract

Despite continual improvements in the performance and
reliability of large scale file systems, the management
of file system metadata has changed little in the past
decade. The mismatch between the size and complex-
ity of large scale data stores and their ability to organize
and query their metadata has led to a de facto standard
in which raw data is stored in traditional file systems,
while related, application-specific metadata is stored in
relational databases. This separation of data and meta-
data requires considerable effort to maintain consistency
and can result in complex, slow, and inflexible system
operation. To address these problems, we have devel-
oped the Quasar File System (QFS), a metadata-rich file
system in which files, metadata, and file relationships are
all first class objects. In contrast to hierarchical file sys-
tems and relational databases, QFS defines a graph data
model composed of files and their relationships. QFS in-
cludes Quasar, an XPATH-extended query language for
searching the file system. Results from our QFS pro-
totype show the effectiveness of this approach. Com-
pared to the defacto standard, the QFS prototype shows
superior ingest performance and comparable query per-
formance on user metadata-intensive operations and su-
perior performance on normal file metadata operations.

1 Introduction

The annual creation rate of digital data, already 281 ex-
abytes in 2007, is growing at a compound annual growth
rate of 60%, with a projected 10-fold increase over the
next five years [15, 14]. Sensor networks of growing
size and resolution continue to produce ever larger data
streams that form the basis for weather forecasting, cli-
mate change analysis and modeling, and homeland secu-
rity. New digital content, such as video, music, and docu-
ments, also add to the world’s digital repositories. These
data streams must be analyzed, annotated, and searched
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Figure 1: The Traditional Architecture (left), to manage
file data and user-defined metadata, places file data in
conventional file systems and and user-defined metadata
in databases. In contrast, a metadata-rich file system
(right) integrates storage, access, and search of struc-
tured metadata with unstructured file data.

to be useful; however, currently used file system archi-
tectures do not meet these data management challenges.

There are a variety of ad hoc schemes in existence to-
day to attach user-defined metadata with files, such as a
distinguished suffix, encoding metadata in the filename,
putting metadata as comments in the file, or maintaining
adjunct files related to primary data files. Application
developers needing to store more complex inter-related
metadata typically resort to the Traditional Architecture
approach shown on the left in Figure 1, storing data in
file systems as a series of files and managing annotations
and other metadata in relational databases. An example
of this approach is the Sloan Digital Sky Survey [33, 34],
in which sky objects and related metadata are stored in a
Microsoft SQL Server database and refer to the raw data
stored in regular file systems by absolute pathname.

This approach likely emerged because of file sys-
tems’ ability to store very large amounts of data, com-
bined with databases’ superiority to traditional file sys-
tems in their ability to query data. Each complemented
the other’s weakness: file systems do not support flexi-
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ble queries to identify files according to their metadata
properties, and few databases can efficiently support the
huge volume of data that must be stored. Unfortunately,
this separation increases complexity and reduces perfor-
mance and consistency in several ways. First, the meta-
data must be cast into a relational database form, even
though metadata and data conform more closely to a
graph model. Then, application developer must design
and build a relational database tailored to the application.
As the application changes, the database schema might
require modification, and all the metadata migrated to
the new schema. Using the database to retrieve meta-
data involves a two-step process of evaluating a query
and resolving a potentially large number of file names.
Furthermore, the association between metadata and files
via POSIX file names is brittle and can become inconsis-
tent when files are moved. Finally, queries cannot easily
be restricted to portions of the namespace.

The access profile of data stream ingest, annota-
tion, and analysis-oriented querying does not require the
stringent semantics and overhead of database transac-
tions [13], making it feasible to integrate a lighter-weight
index into the file system to facilitate the update and
query needs of many applications.

To address these needs, we propose, implement and
evaluate a metadata-rich, queryable file system architec-
ture that maintains user-defined metadata as an intrin-
sic part of the file data, and simultaneously provides a
sophisticated metadata query interface. Rich metadata
extends POSIX file system metadata, such as standard
names, access rights, file types, and timestamps, to in-
clude arbitrary user-defined data associated with a file,
as well as linking relationships between files [1]. Al-
though many existing file systems support storage of rich
metadata in extended attributes, none efficiently support
a graph data model with with attributed relationship links
or integrate queries against all of the extended attributes
into file system naming.

The contributions of this paper are: (1) the design and
prototype implementation of the QFS metadata-rich file
system based on a graph data model (2) the design and
prototype implementation of the Quasar path-based file
system query language specifically designed for the data
model of files, links, and attributes. (3) quantitative eval-
uation of QFS compared to the Traditional Architecture
of hierarchical file system plus relational database.

2 A Metadata-Rich File System

We define a metadata-rich file system as one that aug-
ments conventional file system I/O services (such as the
ones defined by POSIX) with an infrastructure to store
and query user-defined file metadata and attributed links
between files. Our goal in exploring metadata-rich file

systems is to examine their potential for the analysis and
management of scientific, sensor, and text data.

Under the Traditional Architecture metadata and data
are kept in different systems (see Figure 1, left). The sep-
aration has disadvantages in terms of complexity, consis-
tency and performance:
Brittle Schema—The application developer must design
a schema specialized for the application. When new at-
tribute or link types must be inserted, the schema must
be re-defined, and the database must be migrated to the
new schema, a prohibitively expensive operation.
Brittle metadata/data association—The association of
metadata to files via POSIX file names is brittle. Large
data streams require continual ingest of new data and
de-staging of older data into archives. When files get
de-staged, their filesystem-specific POSIX path names
change. Updating the database requires extra mainte-
nance of indices with considerable update and querying
overhead.
Expensive path name evaluation—A query in the Tra-
ditional Architecture returns a list of file names that need
to be retrieved from the file system. Thus retrieving data
involves a two-step process of evaluating a query and re-
solving a potentially large number of file names.
Global scope—Files are stored hierarchically. Filesys-
tem directories align to semantic meaning and access lo-
cality [22]. Yet, the Traditional Architecture does not al-
low restricting the scope of queries to a directory without
extra indexing overhead that is aggravated by the contin-
ual stream of new data entering and older data leaving
the filesystem.

In contrast (Figure 1, right), the metadata-rich file sys-
tem integrates the management of and provides a single
interface for metadata and data with a general and flex-
ible graph-based schema. Association between data and
metadata automatically remains consistent regardless of
path name changes. For improved performance, such an
integrated system can support combined data and meta-
data writes. It becomes possible to append additional
metadata items to existing files identified by resolved file
IDs. Queries presented to such systems resolve directly
to files, obviating the need to resolve file names. The
query interface, based on the XPATH standard, extends
the POSIX file system interface with syntax to select files
matching arbitrary metadata characteristics while allow-
ing the query to limit the scope of such selections using
path names.

2.1 Data Model

We represent rich metadata using file attributes (similar
to extended attributes as defined in POSIX), directional
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links between files,1 and attributes attached to links [2].
File attributes include traditional file system metadata
(similar to the Inversion File System [27]). A link is
a first-class file system object representing a directional
edge from a parent file to a child file, as shown in Fig-
ure 2.

In Figure 2, each file (circle) has a set of attributes
in the form of attribute name/value pairs. Files are con-
nected by links, which can also have attributes attached
to them. The example shows attribute/value pairs such
as [filetype, NewsStory], [IsTabular, yes], [NodeType,
SemanticTag], etc. Links can also have attribute/value
pairs, such as [LinkType, HasEntity] or [Extractor, Stan-
ford]. In the example, the attributes placed on links con-
tain the provenance of the relationship. For instance, the
depicted rightmost link was created by the Stanford Ex-
tractor, while the leftmost link was from the Unified Ex-
tractor.

Links are attached to files by object ID so that chang-
ing file path names will not break links as long as the file
remains within the same object ID name space. A file
cannot be deleted until all links from and to that file are
deleted. Note that more than one link can connect a pair
of files. There can be multiple links between two files as
long as the links can be distinguished by at least one link
attribute or by their direction.

In practice link attributes often include a name and a
type attribute. For example, a file directory can be rep-
resented by a file pointing to other files with links of the
type “child” and with “name” attributes identifying the
relative path name of a file. Thus, our data model for
metadata-rich file systems does not require extra direc-
tory objects. Whenever convenient we will refer to a file
with children as “directory”. Links can also respresent
any kind of relationship that is not necessarily hierarchi-
cal, such as provenance, temporal locality, hyperlinks,
and bibliographic citations. Files may or may not con-
tain any content other than attributes and links.

This data model addresses brittle metadata/data as-
sociations in Traditional Architectures by storing meta-
data in the corresponding file system objects such that
changes to file path names does not break metadata/data
associations. It also provides a general schema for stor-
ing metadata—attributes and links—rather than requir-
ing application developers to design customized rela-
tional schemas. The query language used to search
within this graph data model addresses the other weak-
nesses of the Traditional Architecture, i.e., expensive
path name evaluation and the global scope problem.

1QFS directional links are not to be confused with hard or symbolic
links of POSIX file systems.

2.2 Query Language
The Quasar query language is an integral part of the
metadata-rich file system that use the graph data model.
Quasar expressions are designed to replace POSIX paths
in file system calls and are used as names to query and
manipulate the metadata for files. By integrating query-
ing with naming, Quasar avoids full path name evalua-
tion required by the Traditional Architecture.

We base the language syntax around XPath [36], the
W3C standard language for XML node selection queries.
XPath syntax resembles file system paths and integrates
expressions for attribute-based search and node selection
based on matching children. Quasar integrates query-
ing into the file system name space by equating queries
and path names. Thus, Quasar (as does XPath) sub-
sumes POSIX paths by adding declarative operations to
navigational ones: matching operations require a query
plan while navigation does not. However, unlike XPath,
Quasar has syntax to differentiate between attributes on
links or on the files themselves. Additionally, as the rich-
metadata file system data model (unlike XPath’s data
model) is a graph and not a strict hierarchy, Quasar has
a search operator to match based on attributes on more
than one parent to any given node.

A Quasar query expression is a list of one or more
operations. Each operation specifies an operator and its
parameters. An operation is evaluated in the context of
a current set of file IDs (file set context) generated by
the previous operation. The final file set is the result
set of the query. The feature of each operation process-
ing the previous file set context allows the language to
combine search and navigation operations within indi-
vidual queries which solves the global scope problem of
the Traditional Architecture. A third type of operation is
presentation which translates query results into strings.
A Quasar language implementation returns the result as a
directory whose name is the query expression and whose
contents is a list of names of the final file set.

There are two search operations, attribute matching
and neighbor pattern matching. Attribute matching is
applied to files and their attributes, while neighbor pat-
tern matching involves parents and/or children of files
in the file set context. If a Quasar query begins with a
search operation, the initial file-set context is the entire
file system.

2.2.1 Search: Attribute Matching

The first search operation, attribute matching, takes one
or more attributes as parameters. Attribute search re-
turns a new file-set context containing those files whose
attributes match all attributes specified in the operation
(i.e., the parameter list of attributes is interpreted as
conjunction). An attribute may be flagged as “prohib-
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ited”, in which case, matching files are omitted from
the result set. Attribute match operations effectively
functions as filters over file sets. For example, suppose
we wish to find files with attribute/value pairs [FileType,
NewsDocument] and [IsTabular, Yes]. Our output file
set is the intersection of all files having [FileType,
NewsDocument] and all files with [IsTabular, Yes]. The
Quasar query expression is
@IsTabular=Yes;FileType=NewsDocument

2.2.2 Search: Neighbor Pattern Matching

The second search operation, neighbor pattern matching,
refines an input file set based on neighbor patterns of
each file in that set, i.e., based on attributes of parents
or children of that file set. A pattern match operator may
also specify constraints on links to parents or children
based on link attributes . A Quasar expression using a
neighbor pattern match looks like
@FileType=NewsDocument@child:SemanticType
=Location
where an input set containing files with [FileType, News-
Document] are filtered to only those whose children
match [SemanticType, Location].

2.2.3 Navigation

In contrast to search operations which filter file sets,
navigation changes the file set through the action of
following links from the file set context. The navigation
operator accepts link attributes to constrain the links to
be followed and file attributes to constrain the result file
set. The navigation operation (@navigate) follows links
in their ”forward” direction, from parent to child. There
is also a corresponding operation (@backnav) to traverse
from child to parent. For example, the query expression
@FileType=NewsDocument@navigate:ˆExtractor
=Unified
will change the result set from all files with [FileType,
NewsDocument] following links with the attribute [Ex-
tractor, Unified]. The ˆ character indicates that attribute
to match should be found on the links to be followed.

2.2.4 Presentation

The presentation operation translate each query result in
the result set into a string. These strings can be attribute
values attached to files in the results, including the files’
names. For example, the query expression
@FileType=NewsDocument&listby:FileName
lists all the files of [FileType,NewsDocument] by the val-
ues corresponding to their FileName attributes.

2.2.5 Examples

The following examples reference the example file sys-
tem metadata graph shown in Figure 2. A simple query
in Quasar only matches file attributes. For example,
@IsTabular=Yes; FileType=NewsDocument
&listby:FileName
will return all files that match (@) the listed key=value
pairs, and each file is listed by the FileName attribute
value.

To illustrate neighbor pattern matching, suppose
we have a file system containing some files with
attribute/value pair [FileType, NewsDocument] and
other files with attribute/value pairs [NodeType, Se-
manticTag]2 Each “NewsDocument” links to the
“SemanticTag” files that it contains. Each link is
annotated with a “LinkType” attribute with value
“HasEntity” ([LinkType, HasEntity]). Our input file
set consists of NewsDocument files that are tabular
(files with [FileType, NewsDocument], [IsTabular, yes]
attribute/value pairs). We refine the file set context by
a neighbor pattern match that matches links of type
“HasEntity” ([LinkType, HasEntity]) and child files that
have [NodeType, SemanticTag] and [SemanticType,
Location]. The output file-set context will contain only
those NewsDocuments that link to SemanticTags match-
ing the above criteria. In Quasar, the query expression is:

@FileType=NewsDocument/@child:ˆLinkType
=HasEntity;NodeType=SemanticTag;
SemanticType=Location.

Similarly,
@FilleType=NewsDocument@child:
SemanticType=Location;SemanticValue=New York
&listby:FileName
specifies properties that child nodes must match. First,
files of the specified FileType are matched. Second, we
narrow down the set of files by matching child nodes with
the specified SemanticType and SemanticValue file at-
tributes. Finally, using the presentation operator, we re-
turn the set according the document FileName attribute
value.
The query,
@FileName=N20090201˜N20090301@navigate
ˆLinkType=HasCoOccurence&listby:ProximityScore,

first, matches files in the specified range (in this
example files named by a date between February 1st and
March 1st, 2009). Second, it traverses links from the

2This example comes from our workload evaluation application
(see Section 4), in which text documents are annotated with semantic
entities found within. We represent the semantic entities as directories
linked from the file containing the text, and label such directories as
”nodes”, hence the use of the “NodeType” attribute.

4



FileType
 = NewsDocument
FileName 
  = N20090203
IsTabular = Yes

NodeType 
  =  CoOccurence
ProximityScore 
   = 4

NodeType
  = SemanticTag
SematicType
  =Organization
SemanticValue
 = NYSE

NodeType
  =SemanticTag
SematicType
  = Location
SemanticValue
  = New York

LinkType = HasEntity
Extractor = Stanford

Confidence = 0.8
Begin = 53

. . .

LinkType
 = HasEntity

Extractor
= Unified

. . .

LinkType
 = HasCo-
Occurence

LinkType
 = HasEntity

LinkType
 = HasEntity

Figure 2: An example of files links and attributes. Circles
represent files, arrows represent links.

matching source files (@navigate), only following links
that match the [LinkType, HasCoOccurence] attribute,,
The ˆ character indicates that the link attribute should
be matched. Finally, it lists the resulting file set by the
ProximityScore attribute.

3 Implementation

We have implemented a prototype metadata-rich, quer-
able file system called the Quasar File System (QFS).
This prototype allows us to explore the fundamental
costs, benefits, and challenges that are incurred by the
graph data model approach and by searchable metadata
within the file system.

3.1 Overview
As shown in Figure 3 QFS is implemented as a file server
running in user space and exporting a 9P interface [20].
Clients pose standard POSIX file system operations to
the Kernel Interface via systems calls. The Virtual File
System forwards the requests to the 9P File System Client
kernel module, as is standard for mountable file sys-
tems. The 9P client kernel module serializes the calls and
passes the messages to the QFS Software service running
the file server code in user space.

The 9P Service Library implements the listening part
of the service which receives the messages from the ker-
nel and decodes the specific 9P operations, which resem-
ble POSIX file systems operations. The QFS File System

9P
 Service
Library

File 
System

Interface

Metadata 
Store / Index

Manager

Query 
Parser

Query 
Processor

File Data 
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Figure 3: The QFS prototype software architecture is a
single-host file server exporting a 9P interface that allows
clients to the POSIX file system interface to pass Quasar
expressions.

Interface implements handler routines for the various 9P
operations and interacts with the other components of the
system.

To obtain a file id, the client submits a Quasar ex-
pression, which is parsed by the Query Parser and then
passed to the Query Processor. The processor generates
a query plan and then looks up query terms in the Meta-
data Store / Index Manager. The MS/IM returns posting
lists of relevant files or link ids, or may filter attributes for
a particular file. The query processor uses standard query
planning strategies using statistics on the stored meta-
data. The store manager uses the underlying file system
to store metadata structures. Once the query processor
has computed an answer to the query, it returns the list of
ids to the file system interface.

Other file system operations may go directly from the
interface operation handler to the data or metadata man-
agement components. Stat and attribute update/retrieval
calls go directly to the store manager, once the specified
file has been looked up. File data operations (read/write)
go to a File Data Placement manager. In our QFS proto-
type, this module maps file data to files stored within an
underlying local (ext2) file system. Only non-zero length
files3 are represented in the ext2 file system. Zero-length
files that contain only attributes and links are managed
solely by the metadata store and are therefore signifi-
cantly cheaper to manage than regular files. For POSIX
compliance, a zero-byte file with links is equivalent to a
directory.

3.2 QFS semantics for directory/file opera-
tions

QFS follows POSIX semantics as closely as possible,
and extend the semantics as needed for operations that in-

3or zero-byte files without links
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volve metadata and links. In particular, as many file sys-
tem operations require a pathname to a particular file, op-
erations posed to QFS may specify a “pathname query”,
which accepts any valid Quasar expression, including
POSIX paths.

A high level description of QFS behavior for common
file system calls is as follows:

stat Looks up the pathname query. If it matches a single
file, it returns the POSIX attributes for that file from
the metadata store. If more than one file match, it
returns attributes for a virtual directory.

open (create, write) Looks up the pathname query. If
no match, it creates a new file object in the meta-
data store, stores the name or attributes given in the
query expression, and looks up a parent file. If a par-
ent is found, it creates a link with parent as source
and new file as link target. It creates a file in the
underlying file system for data storage and opens
the file. If initial query matches a file, it opens the
corresponding underlying file. Finally, it returns the
handle to client.

open (read) Looks up the pathname query. If exactly
one result is found and it is not flagged as a di-
rectory, it opens the corresponding data file in the
underlying file system. Otherwise, it follows the
opendir semantics.

mkdir Same as “open create”, but sets the “DIR” flag in
the file object, but does not create or open an under-
lying file as no data storage is necessary.

opendir Looks up the pathname query. For each query
result, it looks up particular attributes to return for
the result based on a “ListBy” operator in the query.
It returns a directory handle to the client. It stores
the attribute value strings in a cache for succes-
sive readdir operations until the directory handle is
closed.

readdir Retrieves next directory entry (query result) in
the result cache.

read/write For a given open file handle, performs a
read/write operation on the corresponding file in the
underlying file system for data storage.

close(dir) Passes file handles to underlying file system
to close the file. Frees temporary structures used to
represent query results for directory listings.

chmod/chown,time Looks up the pathname query.
Then, modifies the permissions, owner, or time at-
tribute for the result file’s object structure.

rename Depending on the result of the pathname query,
will do one of the following: (1) Change the name
(or other) attribute for a file, without affecting its
parents/children (2) Change the parent of a file (3)
Update the affected link(s) and their associated at-
tributes. The pathname must resolve to a single
source file.

unlink Looks up a pathname query. If the query
matches a single file, it also looks up the parent
to the file within the query, determines the link be-
tween parent and child, and removes that link from
the metadata store.

A consequence of changing attributes of a file is that it
might invalidate the path name that an application uses to
refer to that file. For example, if an application names a
file by the attribute k = v and then subsequently changes
its attribute to k = v′, the original name does not resolve
to that file anymore. One way to provide greater name
space stability is to (1) use QFS assigned immutable file
or link IDs to address files (equivalent to inode numbers),
as both are searchable attributes in QFS, or (2) make a
unique, immutable object ID for each file and link avail-
able as attributes and include object IDs into the Quasar
name space (if applications need the convenience of their
own ID schemes). Either scheme provides applications
with names that are immune to any metadata changes.
The second approach is already used in existing systems,
for instance, document databases use DOI.

3.3 Standard Optimizations

Similarly to regular file systems, the Query Processor
maintains a name cache which maps Quasar path expres-
sions to a already computed query plan and result set
of file and link IDs. We have found that even a single
element name cache has significant performance benefit
since it can handle consecutive query operations with the
same pathname. This is a frequently recurring pattern as
applications often stat a pathname query prior to issuing
an open or opendir.

Another commonly used optimization, batching com-
mands from client to server, has also been implemented
using the 9P protocol. The client can open a dis-
tinguished “synthetic” file and batch multiple newline-
delimited Quasar metadata update expressions into a sin-
gle write operation. Additionally, reading a group of di-
rectory entries can be accomplished by a single client
command. Instead of issuing a single readdir call for
every single directory entry, the client can issue a batch-
readdir and receive a handle to a synthetic file that in-
cludes all directory entries.
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Figure 4: The schema of the QFS metadata store is opti-
mized for attribute matching, neighbor pattern matching,
and navigation.

3.4 Metadata Store / Index Manager
(MS/IM)

The MS/IM assumes a graph data model for the
metadata-rich file system and the basic Quasar opera-
tions as introduced in Section 2. The data structures of
the metadata store are a collection of arrays, sorted lists,
and red-black trees. These data structures are backed by
a memory-mapped file in the underlying file system.

The data structures are optimized for query operations
expressible in Quasar, namely attribute matching for a
given set of files, neighbor pattern matching, and nav-
igation (see Figure 4). The metadata store has a Su-
perblock, which contains references to the other struc-
tures within the store and some global statistics, such as
file and link counts. The File Table is an array and maps
file IDs to file objects (similar to inodes), each of which
includes pointers to a tree File Attributes, a list of par-
ents and a list of children (recall that “parents” are files
with links pointing to the current file and “children” are
files to which the current file’s links point). Within the
list (Parent/Child ID Lists) entries, each parent and each
child is represented as a tuple containing a file ID and
a link ID. The link source and target need not be stored
explicitly as they can be accessed through the File Table.
For instance, Neighbor pattern matching and link traver-
sal query operations start with a given set of files and
never with a set of links, so the links’ sources and tar-
gets are already known. The Link Table is an array that
maps link IDs to each Link Attribute list. The File and
Link Attribute Indices are red-black trees, and they map
attributes (name-value pairs as keys) to the Lists of File
and Link IDs (Postings).

To illustrate how these structures are used, consider

the match operator. Single Quasar match operators find
the search attribute name and value in the file attribute
index tree. Once the attribute node is located, the list of
matching file ids is returned. In the case of match op-
erators with multiple attributes, the query planner deter-
mines if (1) multiple lists should be intersected (compu-
tation time O(n1 + n2), where n1 and n2 are the lengths
of lists), or (2) the initial list of file ids should be filtered
by looking up attributes via the file table (constant time
lookup for each attribute, thus O(n1) ∗ C)

The design and careful implementation of metadata
management is key to the QFS prototype. Unlike
schemata for relational databases, which are tailored to
each application, QFS maintains a single metadata store
schema for all applications.

4 Evaluation

In this section we present a quantitative evaluation of
QFS. We evaluate QFS using metadata-intensive ingest
and query workloads. The workloads are generated by
a data management application that fits the Traditional
Architecture, similar to those used for survey astronomy
(eg. SDSS, PAN-STARRS, LSST [5, 7, 32, 34], high-
energy physics [6] and other data-intensive application
domains. Second, we explore the costs and potential ben-
efits of the use of metadata rich file systems in compar-
ison with a standard POSIX file system for normal file
system operations.

4.1 User-defined metadata: ingest and
query

To evaluate the performance of QFS on ingest and query
workloads we have extended the entity extraction bench-
mark Lextrac [9]. The benchmark stresses the novel as-
pects of QFS by the extensive use of links to express rela-
tionships among objects, and by the storage and retrieval
of searchable metadata attached to links and files.

In its original form, Lextrac processes files in a multi-
stage analysis pipeline. Each stage appends newly de-
rived metadata to the analyzed file, such as entities and
proximity scores between entities, so it is available to
the next stage along with the original content. At the
end the metadata part of each file is stored in a relational
database along with references to the corresponding files.
Thus, the result of the original Lextrac is a system of
Traditional Architecture. When the Reuters News cor-
pus sample data set is fully ingested, Lextrac has cre-
ated roughly 540,000 entities for 4000 news document
files and 59.5 million entities for 450,000 news docu-
ment files. In comparison, the most recent SDSS data
release [33] contains 59 million objects.
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We extended Lextrac so it supports the QFS storage
interface in addition to the POSIX I/O interface and can
take full advantage of the QFS data model. We also
added to Lextrac’s ingest phase a query phase which con-
sists of a set of queries that are representative for appli-
cations that make use of entity extraction. These queries
contain selection and projection critera for documents,
entities, and proximity scores, and can be posed either to
a relational database as part of a Traditional Architecture
or to QFS.

The evaluation was conducted on several configura-
tions. The “8GB HD” configuration is an Intel Xeon
quad core, dual socket server with 8GB main memory
and a 250GB SATA drive running Fedora Core 9-64 bit
(Linux kernel version 2.6.27), the ext2 file system and
PostgresSQL 8.3. For the ingest study, we additionally
used “16GB HD” and “16GB SSD” configurations con-
sisting of a Dual-Core AMD Opteron 2.8 GHz, 4 socket
server with 16GB main memory running Linux kernel
version 2.6.18, either with a 250GB SATA drive, or two
Pliant SSDs with software RAID-1 striping.

For the FS+DB/SQL configurations discussed in this
section, we have configured PostgreSQL with a schema
specific to the Lextrac application. We create indexes on
all columns within this schema to speed up SQL query
performance. In addition, we run the database without
transactions or isolation.

4.1.1 Ingest

We compare ingest performance of several workload
sizes of the Traditional Architecture vs. QFS, with the
sizes ranging from 4,000 to 450,000 documents from the
Reuters News Corpus. Exactly the same entity extrac-
tion computation is performed in either case, the dif-
ference being how the entities, proximity scores, and
other metadata are stored. As shown through the first
pair of bars based on configuration “8GB HD” for each
workload size in Figure 5, QFS completes ingest in less
than half the time of the traditional File System plus
Database (FS+DB) approach for the smaller workload
sizes (4,000-100,000 documents), and in roughly two-
thirds the time for the largest workload (450,000 docu-
ments). The second pair of bars based on configuration
“16GB SSD” show that QFS computes ingest in about
1.85 times faster than FS+DB, consistently for all mea-
sured document counts. Figure 6 presents the scalabil-
ity of QFS ingest for four different document collection
sizes, with three different hardware configurations. As
our ingest contains random reads in addition to writes,
we notice that scalability degrades at a slower rate when
16GB are available. Even with 16GB, there is degra-
dation beginning at the 100,000 document mark, when
we start to see increasing numbers of cache misses forc-
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Figure 5: Comparison of Ingest Performance: QFS vs.
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hardware configurations. The use of 16GB and SDD has
closest to linear scaling with the size of the workload.

ing random reads to the storage device. The SSD con-
figuration appears to respond to the random reads with
lower latency, suggesting that future storage systems in-
corporating SSD will better support scaling to large in-
gest workloads than HD.

4.1.2 Querying

The query study uses query templates Q0 – Q4 represen-
tative of queries that would be applied to the document
set. 4

Q0 Find all documents that contain reference to a partic-
ular entity. Example: Find all documents containing
the place “New York.”

Q1 Find all documents that contain reference to both en-
tities X and Y that have a particular proximity score
between them. Example: Find all documents that

4We thank John Compton of LLNL for his guidance in the design
of the query templates.
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contain “New York” and “NYSE” with proximity
score of “25”.

Q2 Find all proximity scores relating two particular en-
tities in documents with names in a particular range.
Example: find the proximity scores relating “New
York” and “NYSE” in documents with names in the
range of “N20090101” – “N20090331.”

Q3 Find all entities related to entity X in documents
with names in a particular range and whose prox-
imity score with X is in a particular range. Exam-
ple: find entities co-occurring with “New York” in
documents with names in the range “N20090101”
– “N20090331” whose proximity score with “New
York” is between “20” and “30”.

Q4 Find all entity pairs with a particular proximity
score. Example: find all entity pairs with proximity
score “50”.

For the query workload experiment, query terms were
selected randomly from subsets of the terms appearing in
the data. The entire collection of terms was sorted by fre-
quency of occurrence in the document set, and then the
subset was created by selecting terms from the sorted list
according to either an arithmetic or geometric series. The
arithmetic series favors terms with low document fre-
quencies (as are a majority of entities), while the geomet-
ric series samples from most frequent to least. Our pre-
liminary work with queries indicated that the use more
frequent terms resulted in longer query times than the in-
frequent terms, due to processing of long lists of results.
Thus, we developed this process to provide a meaningful
variety of terms to use in the queries, as simply selecting
the query term at random might not give good variabil-
ity. Proximity score ranges were chosen randomly from
subranges of 10 . . . 30 and document ranges were chosen
to select between 1%–10% of the total number of docu-
ments. Q0 selects entity values based on combining the
arithmetic and geometric series. 34 queries are run for
Q0 over the 20,000 document collection and 43 over the
450,000 documents. Q1-Q4 select terms randomly from
the geometric series only. We chose this approach be-
cause the geometric series contains more of the common
terms, which should increase the probability of matching
co-occurrences. We run 5,000 queries each in Q1-Q4 for
20,000, 200 queries for 450,000 documents.

As shown in Figure 7, we find that for the smaller doc-
ument collection, QFS is consistently faster than FS+DB
for all query types. For the larger document collection,
FS+DB is faster on query type Q0 and Q1, while QFS
is significantly faster on queries of type Q2, Q3 and
Q4. The small document collection FS+DB shows a
high standard deviation (wide variation in response time)
on Q1, and a lesser amount on Q2 and Q3, with QFS

Original Documents 2.0 GB
Intermediary Files 7.6 GB
Database Storage 18 GB

Table 2: Storage characteristics for FS+DB, 450000 doc-
uments

showing greater variability on Q0 and Q4. In contrast,
on the large document collection, FS+DB shows higher
variability on Q3 and Q4, while QFS is worse on Q0,
Q1, and Q2. We attribute the high variability to sensi-
tivity to terms with high term frequencies which occur in
the correlation stream more often due to the geometric
progression. We think that this sensitivity is especially
strong in QFS since high term frequencies might result
in main-memory misses and QFS’ lack of file I/O opti-
mizations.

Q
0
_
M

E
D

IA
N

Q
0
_
S

T
.D

E
V

Q
1
_
M

E
D

IA
N

Q
1
_
S

T
.D

E
V

Q
2
_
M

E
D

IA
N

Q
2
_
S

T
.D

E
V

Q
3
_
M

E
D

IA
N

Q
3
_
S

T
.D

E
V

Q
4
_
M

E
D

IA
N

Q
4
_
S

T
.D

E
V

ti
m

e
 (

s
)

0

0.005

0.01

0.015

0.02

0.025

QFS

SQL

Q
0
_
M

E
D

IA
N

Q
0
_
S

T
.D

E
V

Q
1
_
M

E
D

IA
N

Q
1
_
S

T
.D

E
V

Q
2
_
M

E
D

IA
N

Q
2
_
S

T
.D

E
V

Q
3
_
M

E
D

IA
N

Q
3
_
S

T
.D

E
V

Q
4
_
M

E
D

IA
N

Q
4
_
S

T
.D

E
V

ti
m

e
 (

s
)

0

0.01

0.02

0.03

0.04

0.05

0.06

QFS

SQL

0.055 0.047

(a) Queries Q0–Q4: 20,000 Documents

Q
0

_
M

E
D

IA
N

Q
0

_
S

T
.D

E
V

Q
1

_
M

E
D

IA
N

 

Q
1

_
S

T
.D

E
V

Q
2

_
M

E
D

IA
N

Q
2

_
S

T
.D

E
V

Q
3

_
M

E
D

IA
N

Q
3

_
S

T
.D

E
V

ti
m

e
 (

s
)

0

0.5

1

1.5

2

2.5

3

QFS

SQL

Q
4
_
M
E
D
IA
N

Q
4
_
S
T
.D
E
V

0

0.005

0.01

0.015

0.02

0.025

0.03

QFS

SQL

Q
4
_
M
E
D
IA
N

Q
4
_
S
T
.D
E
V

0

0.005

0.01

0.015

0.02

0.025

0.03

QFS

SQL

181 209 201

.001.001

(b) Queries Q0–Q4: 450,000 Documents

Figure 7: Comparison of Query Performance: QFS vs.
Relational DB

9



Document Count 4000 20000 100000 450000
Metadata storage size 677 MB 2.83 GB 13.9 GB 63.6 GB

Total Files + Directories 5.41E+05 2.72E+06 1.35E+07 6.01E+07
Links 1.82E+06 9.23E+06 4.62E+07 2.11E+08

Table 1: QFS metadata storage characteristics
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Figure 8: Measurements of QFS vs ext2, benchmarking
several file system operations. Both file systems are ac-
cessed via a FUSE interface.

4.1.3 Discussion

The performance results show that QFS ingest perfor-
mance out-performs the Traditional Architecture over a
variety of data set sizes. The query performance is ex-
cellent on small data sets, but shows variability in perfor-
mance on the larger data set. QFS is faster than FS+DB
by several hundred times on Q2, Q3, and Q4. We at-
tribute this extremely high performance to our ability to
use navigation operators to reduce the file set context
for subsequent operators. In contrast, the SQL query is
purely declarative and relies on the database query opti-
mizer to filter the candidate set.

Table 1 reveals one reason for the lower QFS perfor-
mance on queries 0, 1, and 2 in the larger data set. The
table shows the size of the metadata store used by QFS
for different document collection sizes. The metadata
store requirement of the Traditional Architecture imple-
mentation is much smaller (Table 2). For the largest doc-
ument set, QFS uses nearly 2.5 times the amount of space
for metadata as does the FS+DB approach. We are in the
process of reducing QFS’ metadata storage size to further
increase its performance, e.g. by string de-duplication.

4.2 Standard file operations

We present several measurements to compare the perfor-
mance of QFS with a conventional Linux file system,
ext2, under regular file system workloads and micro-
benchmarks that only use POSIX I/O operations. Since
the difference between QFS and ext2 is primarily in the
management of metadata, we are particularly interested
in POSIX I/O metadata-oriented operations. Therefore
the several benchmarks we devised exercise mkdir, stat,
opendir/readdir, and rename.

For this evaluation, we compare a QFS file system im-
plementation with a File System in User Space (FUSE)
interface[35] with ext2 running under FUSE. This was
necessary because the base 9P library being used [23]
did not implement all the operations being tested. Fig-
ure 8 shows three measured categories. For MKDIR
(first bars), the system creates a directory 10-ary tree with
111,110 total directories. FIND (second bars) measures
running the find command over the directory mentioned
above and that measurement exercises stat, opendir and
readdir operations. MOVE (third bars) measures 5115
individual directory moves.

In the first (MKDIR) category, we observe that QFS-
FUSE completes nearly 4 times faster than EXT2-FUSE.
With EXT2-FUSE, the mkdir operation is performed by
the ext2 file system, whereas in QFS, the operation is per-
formed by the metadata store and index manager. Addi-
tionally, our prototype implementation of QFS has been
optimized towards writing large numbers of files, as is
required to ingest metadata-rich workloads.

The second category (FIND) shows QFS-FUSE com-
pleting the procedure in 23% less time than EXT2-
FUSE. Due to the nature of the opendir/readdir interface,
the FUSE interface likely accounts for much of the mea-
sured time in both implementations. The find utility per-
forms a large numbers of lookup operations. Ext2 must
search through directory entries linearly in order to re-
solve pathnames, while QFS uses an index.

We observe a factor of 2.8 slower performance for
QFS-FUSE vs EXT2-FUSE for the MOVE benchmark.
The QFS prototype has not been optimized for quickly
moving files around, and so individual performance of
these operations may suffer at the benefit of other opera-
tions. However, we consider this an acceptable trade-off
as our example domains rarely demand that many files

10



move intra-device as performed in this example. More
often we may see many files move inter-device where
both data and metadata must be transferred between file
systems.

5 Related Work

Examples of searchable file systems using relational
databases and keyword search engines include Apple’s
Spotlight[3], Beagle for Linux [4], and Windows FS In-
dexing [25]. These systems provide full-text search and
metadata based search and have indexing subsystems
that are separate from the file systems and require no-
tification mechanisms to trigger incremental indexing. A
recent experimental file search system, Spyglass [22],
provides attribute indexing using K-D trees. The au-
thors also compare the performance of Spyglass with a
relational database and find that Spyglass has superior
query performance when executing joins over multiple
attributes.

There has been a good amount of research focused
on enhancing file systems through attribute-based paths.
The Semantic File System [16] and the Logic File Sys-
tem [28] provided interfaces that use boolean algebra
expressions for defining multiple views of files. Other
approaches have a separate systems interface to han-
dle searching and views of files, namely the Property
List DIRectory system [24], Nebula [8], and attrFS [37].
Some systems combine POSIX paths with attributes [31,
26] and directories with content [17]. Most recently,
Prospective provided a decentralized home-network sys-
tem that uses semantic attribute-based naming for both
data access and management of files [30]. While many
of these system maintained the equivalent of extended at-
tributes on files before these became part of POSIX, none
provide relational linking between files.

Like QFS, the Linking File System [1, 2] included
links with attributes between pairs of files. However,
LiFS does not implement a query language or any in-
dexing. A key assumption for the design of LiFS’ meta-
data management is the availability of non-volatile, byte-
addressable memory with access characteristics similar
to DRAM. The design of QFS does not make that as-
sumption.

CouchDB is a distributed, document-centric database
system which provides contiguous indexing and supports
views [12]. Dataspace systems are an approach to index
and manage semi-structured data from heterogenous data
sources [19]. It is not clear whether their approach as-
sumes a file system, and if so, how it would interact with
their structured data interface.

The transactional record store of [18] attempts to pro-
vide a structured storage alternative to databases that ad-
dressed the duality between file systems and databases.

This approach is a record-based file system, with much
of the focus on the transactions used to interact with
these records, but the system prototype uses a relational
database back-end.

MapReduce [10] is a framework for distributed data
processing that shows an example of the use of file sys-
tem storage for data management problems instead of re-
lational databases. Though Google designed the frame-
work for its need to build and query large distributed
indices, their success has pushed the model into other
uses in data processing and management. Hadoop has
become a popular open-source alternative for applica-
tions that wish to employ the MapReduce processing
model in Java, and there are a number of technologies
in other languages. The Pig and Dryad [21] projects pro-
vide alternatives, where they employ specialized high-
level languages that have both imperative and declarative
features, including syntax for handling joins. In addi-
tion, Dryad is a more generalized parallel data process-
ing model.

A common criticism of the approach is that it requires
imperative style programming [11], as opposed to pos-
ing queries in declarative languages such as SQL. For in-
stance, to join over multiple data sets in Hadoop, the ap-
plication programmer must implement the join function-
ality, instead of relying on a query planner. To improve
understanding of the trade-offs of these various technolo-
gies, Pavlo et al. compare and contrast Hadoop, a tradi-
tional RDBMS and Vertica, a column store DB [29].

6 Conclusion

We have presented the design and prototype implemen-
tation of a metadata-rich file system and its associated
query language. The utility of providing relational links
with attributes was demonstrated. We quantitatively an-
alyze the QFS implementation with respect to insertion
and query of metadata and links, and compared perfor-
mance to the defacto standard method of metadata man-
agement, the Traditional Architecture using a file system
plus relational database. We show that QFS can scale
to millions of objects in hundreds of thousands of files.
Using a simple, general graph model schema, QFS out-
performs the traditional architecture by a factor of 2 in
ingest and is comparable to the traditional architecture in
query. We identify directions for performance improve-
ment in the QFS implementation to improve scalability
and consistency in response time.
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