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Tracy Holsclaw,1 Ujjaini Alam,2 Bruno Sansó,1 Herbie Lee,1 Katrin Heitmann,2 Salman Habib,3 and David Higdon4

1Department of Applied Mathematics and Statistics,

University of California, Santa Cruz, CA 95064
2ISR-1, MS D466, Los Alamos National Laboratory, Los Alamos, NM 87545
3T-2, MS B285, Los Alamos National Laboratory, Los Alamos, NM 87545

4CCS-6, MS F600, Los Alamos National Laboratory, Los Alamos, NM 87545

(Dated: September 17, 2009)

The major aim of ongoing and upcoming cosmological surveys is to unravel the nature of dark
energy. In the absence of a compelling theory to test, a natural approach is to first attempt to
characterize the nature of dark energy in detail, the hope being that this will lead to clues about
the underlying fundamental theory. A major target in this characterization is the determination of
the dynamical properties of the dark energy equation of state w. The discovery of a time variation
in w(z) could then lead to insights about the dynamical origin of dark energy. This approach
requires a robust and bias-free method for reconstructing w(z) from data, which does not rely on
restrictive expansion schemes or assumed functional forms for w(z). We present a new nonparametric
reconstruction method for the dark energy equation of state based on Gaussian Process models.
This method reliably captures nontrivial behavior of w(z) and provides controlled error bounds. We
demonstrate the power of the method on different sets of simulated supernova data. The GP model
approach is very easily extended to include diverse cosmological probes.

PACS numbers: 98.80.-k, 02.50.-r

I. INTRODUCTION

The discovery of the accelerated expansion of the Uni-
verse [1, 2] poses perhaps the greatest puzzle in funda-
mental physics today. A solution of this problem will pro-
foundly impact cosmology and could also provide key in-
sights in reconciling gravity with quantum theory. Driven
by these motivations, the fundamental aim of ground and
space based missions such as the the Sloan Digital Sky
Survey III, the Dark Energy Survey, the Joint Dark En-
ergy Mission (JDEM), the Large Synoptic Survey Tele-
scope – to name just a few – is to unravel the secret of
cosmic acceleration. In search of the underlying explana-
tion, theoretical approaches fall into two main categories:
(i) dark energy – invoking a new substance, the simplest
being a cosmological constant, and (ii) modified gravity
– invoking new dynamics of space-time.

A fundamental difficulty in dark energy investigations
is the absence of a single compelling theory to test against
observations. Data analysis efforts therefore focus on
characterizing w and its time-dependence. A key objec-
tive of upcoming surveys is to determine the evolution of
the dark energy equation of state w = −p/ρ (p=pressure,
ρ=density). Observations are consistent with a cosmo-
logical constant, Λ, (w = −1), at the 10% level, the time-
variation being unconstrained (for recent constraints on
w, see e.g. Ref. [3]). The implied value of Λ is in utter
disagreement with estimates of the vacuum energy, be-
ing too small by a factor > 1060. It is therefore an adhoc
addition with no hint of a possible origin, hence the fo-
cus on dynamical explanations, e.g., field theory models
or modified gravity. The dynamical imprints on obser-
vations must necessarily be subtle, otherwise they would
have been discovered already.

It is essential to constrain the behavior of w in a non-
parametric way and avoid biasing of results due to spe-
cific assumptions regarding its functional form. It was
first pointed out in Ref. [4] that a reconstruction program
for dark energy directly from observational data is indeed
possible. This work was followed by a large number of
papers suggesting many different ways of reconstructing
diverse properties of dark energy. For a recent review on
dark energy reconstruction methods, see, e.g., Ref. [5].

The common method currently used to constrain the
evolution of w is to employ simple parametrizations, e.g.,
w = w0 + w1z [6] or w = w0 − w1z/(z + 1) [7, 8]. These
have obvious shortcomings due to lack of generality and
error control. Recently, principal component analysis
(PCA) has become popular (see, e.g., Refs. [9, 10]).
In this approach, w(z) is written in terms of a compact
set of (uncorrelated) principal components, the number
of the components depending on the data quality (better
data usually implies more components).

In the current paper, we propose a new, nonparamet-
ric reconstruction approach for w(z) based on Gaussian
Process (GP) models. GP modeling is a nonparametric
regression approach particularly well suited for interpo-
lation of smooth functions. The GP is simply a gen-
eralization of the Gaussian probability distribution, ex-
tending the notion of a Gaussian distribution over scalar
or vector random variables to function spaces. While
a Gaussian distribution is specified by a scalar mean µ
or a mean vector and a covariance matrix, the GP is
specified by a mean function and a covariance function.
GPs have been successfully applied in astrophysics and
cosmology to construct prediction schemes for the dark
matter power spectrum and the cosmic microwave back-
ground (CMB) temperature angular power spectrum [11–



13], to model asteroseismic data [14], and to derive pho-
tometric redshift predictions [15]. Here we will use the
GP modeling approach to directly model w(z) from su-
pernova data. Supernova data hold by far the most infor-
mation about possible time dependence of w(z), though
baryon acoustic oscillation and CMB measurements hold
complementary information (see, e.g., Ref. [16] for a re-
cent combined reconstruction analysis). Our approach
can be very easily extended to accommodate more than
one observational probe. For clarity we will restrict our-
selves in this paper to supernova measurements only, a
more inclusive approach will be developed in future work.

Since current data quality does not allow to place
strong constraints on a possible redshift dependence of
w(z), we create a set of simulated data of JDEM qual-
ity to demonstrate our new method. We consider a con-
stant equation of state and two models with varying w(z).
Our approach performs extremely well in capturing non-
trivial deviations from a constant equation of state.

The paper is organized as follows. In Section II we
provide a brief overview on how supernova data are used
to constraint the equation of state of dark energy. We
describe the simulated data sets and their error proper-
ties in Section III. In Section IV we introduce different
reconstruction methods and describe in detail our new
approach. We present our results in the same section,
contrasting our method with the most commonly used
parametric approach by Chevallier & Polarski and Lin-
der [7, 8]. We conclude in Section V.

II. MEASURING THE EXPANSION HISTORY

OF THE UNIVERSE WITH SUPERNOVAE

Currently, supernova measurements are the best source
of information about possible deviation of w(z) from a
constant. Supernovae allow us to measure the luminosity
distance DL which is directly connected to the expansion
history of the Universe described by the Hubble param-
eter H(z). For a spatially flat Universe, the relation is
given by:

H(z) =
ȧ

a
=

1

c

[

d

dz

(

DL(z)

1 + z

)]−1

, (1)

where a(z) is the scale factor and c is the speed of light.
The assumption of spatial flatness is well justified from
CMB observations. It is convenient to scale out H0

(h(z) = H(z)/H0) leading to:

h(z) =
H0

c

[

d

dz

(

DL(z)

1 + z

)]−1

, (2)

or equivalently:

DL(z) =
c(1 + z)

H0

∫ z

0

ds

h(s)
. (3)

Instead of DL(z), the data is usually given in terms of the
distance modulus µ as function of redshift. The relation

between µ and the luminosity distance is given by

µ(z) = m − M = 5 log10 DL(z) + 25. (4)

Writing out the expression for the Hubble parameter
h(z) in Eqn. (3) explicitly in terms of a general equation
of state leads to

µ(w(z), z) = 25 + 5 log10

{

c(1 + z)

H0

∫ z

0

ds(1 + s)−
3
2

×
[

Ωm + (1 − Ωm)e3
R

s

0
w(u)
1+u

du
]− 1

2

}

. (5)

Currently, the quality of supernova data is not good
enough to reconstruct the equation of state beyond a cos-
mological constant. The error bars have to be improved
and the number of supernovae especially at high redshifts
z needs to be larger to get firm constraints on a possi-
ble variation in w (for a recent discussion, see, e.g. [17]).
Nevertheless, future supernova surveys, especially space
based, hold the promise to change this. In the following
we explore a new method on constraining possible red-
shift dependence in w(z) using simulated data. These
data mimic the expected quality of future space based
observations. Following Ref. [17], we will use Eqn. (5) as
foundation for our analysis.

III. DESCRIPTION OF THE SYNTHETIC

DATA SETS

In this section we introduce three synthetic data sets
which we will use to gauge how the GP approach com-
pares to more conventional methods to estimate w(z).
Synthetic data sets have three major advantages: (i) We
know the truth and therefore can get a quantitative mea-
sure on how well each method performs. (ii) We can
control the data quality. The errors for current super-
nova data are too large to allow us to distinguish models
of dark energy other than a cosmological constant. We
can mimic the data quality which will be available from
future space-based supernova surveys. (iii) We can inves-
tigate dark energy models with very different equations
of state w(z).

All of the data sets have space mission quality, we
assume the measurement of n ≃ 2000 supernovae, dis-
tributed over a redshift range of z = 0 − 1.7 with larger
concentration of supernovae in the mid-range redshift
bins (z = 0.4 − 1.1). For each supernova, we provide a
measurement for the distance modulus µi and we assume
a statistical error of τi = 0.06, as expected from future
surveys such as JDEM [18]. We represent the measured
points in the following form:

µi = α(zi) + ǫi. (6)

In this notation, ǫi encapsulates the distribution of the
error terms which is in our case a normal distribution
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FIG. 1: Three simulated data sets. The upper row shows ∆µ (the data itself minus the corresponding value for a ΛCDM
model) as a function of redshift z, the lower panels show the corresponding behavior of the equation of state w(z) as a function
of redshift. The first model we consider is a cosmological constant, the second model is based on a quintessence model. The
third data set, also based on a quintessence model, has been chosen to test our method on a non-trivial equation of state.

with mean zero and a standard deviation τiσ. τi is the
observed error and σ accounts for a possible rescaling
of the error. The observations µi follow also a normal
distribution with mean α(zi) and standard deviation τiσ.
In addition, we assume that the errors are independent.
For each of the data sets we fix Ω0 = 0.27 and H0 = 72.0
(km/s)/Mpc. The three simulated data sets with errors
and the corresponding equation of state are shown in
Figure 1.

Data Set 1: The first data set is simply a constant
equation of state, w = −1.

Data Set 2: The second data set is based on a
quintessence model with a minimally coupled scalar field
with the equation of motion φ̈ + 3Hφ̇ + dV

dφ
= 0 and the

potential V (φ) = V0φ
−2 [19]. The equation of state is

given by

w =
1
2 φ̇2 − V (φ)
1
2 φ̇2 + V (φ)

. (7)

This model leads to a slight variation in the equation of
state as a function of z as can be seen in the middle panel
in the lower row in Figure 1.

Data Set 3: The third model is a variable dark energy
model with the following equation of state [20]:

w(z) = w0 + (wm − w0)
1 + e

1
∆t(1+zt)

1 − e
1

∆t

(8)

×



1 +
e

1
∆t

−e
1

∆t(1+zt)

e
1

∆t(1+z) + e
1

∆t(1+zt)



 ,

with the values w0 = −1.0, wm = −0.5, zt = 0.5, ∆t =
0.1. Model 3 has w > −1 everywhere, so it can be realized
by a quintessence field. We choose this third data set
because it cannot easily be fit by any of the currently
used parametric reconstruction methods. The equation
of state has an S-shaped form shown in the right lower
panel in Figure 1.

The upper panels in Figure 1 demonstrate impres-
sively the difficult task ahead: shown are the differences
∆µ for each data set with respect to a ΛCDM model
with w = −1. The deviations from the straight line are
marginal. We will demonstrate in the following that the
GP model is an excellent approach which enables us to
pick out these marginal differences and reconstruct the
dark energy equation of state reliably.



IV. RECONSTRUCTION OF THE DARK

ENERGY EQUATION OF STATE

Measuring the equation of state of dark energy seems
to be currently the most promising venue to gain at least
some understanding of the nature of dark energy. Al-
most any dynamical origin of dark energy, such as a
quintessence field, would lead to a time variation in w(z).
Unfortunately, we cannot measure the equation of state
directly. Instead, we measure the luminosity distance
redshift relation given in Eqn. (5) from supernovae which
contains information about w(z). In order to extract the
temporal behavior of the equation of state, one approach
would be to fit the measurements of µ as a function of z
and extract w(z) by taking two derivatives. Due to the
noise in the data, this approach is inapplicable and even
if the data is smoothed before fitting them, results are
usually unsatisfactory.

Another approach is to assume a certain parametric
form for w(z). For example, if we assume w=const., the
integral over w(z) in Eqn. (5) can be solved analytically
and the best-fit value for w can then be determined from
measurements of µ via e.g. a χ2-minimization. Current
data is in good agreement with a constant w at the 10%
level (for the most recent analysis see Ref. [3] and ref-
erences therein for earlier results). The next step is to
assume a weak redshift dependence of w(z). One way
to realize this is an expansion of w(z) in its redshift
evolution of the form w = w0 + w1z, which was sug-
gested in, e.g., Ref. [6]. It was pointed out in Ref. [8]
that this parametrization is not well suited for z > 1
which is the regime that holds the most promise to distin-
guish different models of dark energy. Ref. [8] therefore
proposed a different parametrization for w of the form
w = w0 −w1z/(z + 1) which had been already suggested
two years earlier in Ref. [7]. This parametrization has
several nice features: it is well behaved beyond z = 1, it
still has only two parameters and therefore is relatively
easy to constrain, and it captures in general the behav-
ior of different classes of dynamical dark energy models.
The major disadvantage is that the parametrization will
allow only to reconstruct a monotonic behavior of w(z).
More involved parametrizations have been suggested to
address this problem. For an overview we refer the reader
to the reviews [5, 21] and references therein.

Nonparametric reconstruction methods have been
studied less so far, in part because the current data qual-
ity does not require more sophisticated methods for re-
construction. Nevertheless, with future data quality in
mind, nonparametric method will be much more pow-
erful to extract information about w(z). Nonparamet-
ric models will be able to capture more complex behav-
ior of w(z) and should prevent bias due to a restricted
parametrization. Currently, the most popular method is
to use a principal component analysis. This method has
been used recently by the JDEM Figure of Merit Science
Working Group [22] to access the performance of JDEM
with respect to constraining the dark energy equation

of state and for analyzing recent supernova, large scale
structure, and CMB measurements (see Ref. [23] for the
latest analysis of currently available data and references
therein).

In this paper we will study the ansatz w=const. and
the parametrization suggested in Refs. [7, 8] to compare
them with the GP model approach. We will show results
for the reconstructed equation of state as a function of
redshift. We first assume that we know the values for Ω0

and H0 exactly. While this would be of course not true
for real data, this is mainly to simplify the analysis. In
the next step, we drop this assumption and include these
parameters in our estimations.

A. Parametric Reconstruction

For our parametric reconstruction study we use a
Bayesian analysis approach following Ref. [24]. We fo-
cus the analysis on two of the most popular models for
w: w = const. = a and w(z) = a − b z

z+1 . We use

Markov Chain Monte Carlo (MCMC) algorithms to per-
form the analysis [25]. This results in posterior estimates
and probability intervals for Ωm, H0, and any variables
that are needed in the parametric form being assumed
for w(z). We use consistent priors in all of our models
(including the GP model described in the next section)
so the results are readily comparable:

π(a) ∼ U(−25, 1), (9)

π(b) ∼ U(−25, 25), (10)

π(H0) ∼ N(72, 12), (11)

π(Ωm) ∼ N(0.27, 0.032), (12)

π(σ2) ∼ IG(10, 9), (13)

and the likelihood

L(σ, θ) ∝

(

1

τiσ

)n

e
− 1

2

Pn
i=1

“

µi−µ(zi,θ)

τiσ

”2

, (14)

where θ encapsulates the cosmological parameters to be
constraint, i.e. a subset or all of {a, b,H0,Ωm}. Some
comments about the notation: the “∼” simply means
“distributed according to”. U is a uniform prior, N is
a Gaussian (or normal distributed) prior. The square
at the second parameter in N(a, b2) is used to indicate
that b is the standard deviation. (There is no standard
convention about the second parameter after the comma,
it could be also the variance. The square makes it very
clear that we mean the standard deviation.) IG is an in-
verse Gamma distribution prior. (The mean of a Gamma
distribution Γ(a, b) is given by a/b and the standard de-

viation by
√

a/b2.)

1. A Constant Equation of State

The simplest assumption we can make for w(z) is that
it is redshift independent. In this case, Eqn. (5) simplifies
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FIG. 2: Reconstruction results for w for data sets 1-3 (left to right) assuming w =const. The red dashed line shows the truth,
the black line the reconstruction results, the dark blue shaded region indicates the 68% convidence level, while the light blue
shaded region extends to 95%. The assumption w =const. makes it obviously impossible to capture any time dependence in w
in data sets 2 and 3. It is interesting to note that the best fit model is highly influenced by the value of w at lower redshifts.
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FIG. 3: Upper row: same as in Figure 2, but this time we include uncertainties in the knowledge of Ωm and H0. The lower
row shows the 68% and 95% confidence levels for the two cosmological parameters Ωm and H0 for the three data sets. The
result for data set 1 is very accurate – the predictions for w, Ωm, and H0 are close to the truth. As before, the predictions for
data sets 2 and 3 are not very good for w and Ωm is biased towards an incorrect value too.

to

µ(w, z) = 25 + 5 log10

{

c(1 + z)

H0

∫ z

0

ds
[

Ωm(1 + s)3

+ (1 − Ωm)(1 + s)3(1 + s)3w
]− 1

2

}

. (15)

Current data are in very good agreement with this as-
sumptions. We will use the ansatz for w=const.=a as a
first test and attempt to reconstruct all three data sets.
As discussed earlier we use an MCMC algorithm for our
analysis. We run the chain about 10,000 times reaching



TABLE I: w=const - 95% PIs

Set a Ωm H0 σ2

1 −1.000+0.006

−0.005 0.27 72 1.00+0.05

−0.05

2 −0.860+0.005

−0.005 0.27 72 1.02+0.05

−0.05

3 −0.907+0.005

−0.005 0.27 72 1.13+0.05

−0.06

1 −1.003+0.031

−0.033 0.272+0.010

−0.010 71.95+0.32

−0.32 1.00+0.05

−0.05

2 −0.834+0.049

−0.050 0.255+0.016

−0.016 72.10+0.31

−0.33 1.02+0.06

−0.05

3 −1.187+0.054

−0.056 0.351+0.008

−0.008 72.12+0.30

−0.28 1.02+0.05

−0.05

convergence very quickly within the first one hundred it-
erations.

Figure 2 shows the results for the case where we fix
Ωm and H0 to their known values. As to be expected,
the reconstruction works extremely well for the model
where w=const. (left panel). The best fit value for a is
given in Table I and is very close to the truth with small
error bars. Also not surprising, the results for the models
which have a time varying w are rather inaccurate. The
best fit value for a in both cases seems to be more guided
by the value of w(z) at low redshift, while one might have
expected it to settle more on the average value for w(z).
On the other hand, there are many more data points at
low z which most likely led to this result.

In the next step, we do not fix Ωm and H0 at their
known values but include them in the analysis. The as-
sumed priors are given in Eqs. (12) and (11). The results
for w (including the truth) and the confidence levels for
Ωm and H0 are shown in Figure 3. The best fit values
including error bars are given in Table I. Since Ωm and a
are highly correlated they have to be sampled jointly with
a covariance structure obtained after running the process
for some time. As in the case of Ωm and H0 fixed, the
analysis works very well for the case of w =const. Not
surprising, the error bands are increased but the best fit
value is well predicted for all parameters. In the two cases
of varying w the strong degeneracy between w and Ωm

becomes very apparent, see the middle and right panel
in Figure 3. For the second data set, the estimate for w
is higher over the whole z range than the truth, which in
turn lowers the prediction for Ωm considerably. For the
third case, the situation is reversed, the prediction for w
is much too low leading to an overestimation of Ωm. In
both cases, the prediction for H0, which is mainly an-
chored by the amplitude of the measurements for µ is
close to the truth. We note that the “truth” for Ωm and
H0 is of course not exact since we are working with one
realization for each data set. For example, for the first
data set, the best fit value for H0 is slightly lower in this
realization than the input value.

TABLE II: w = a − bz/(1 + z) - 95% PIs

Set a b Ωm H0 σ2

1 −1.009+0.026

−0.027 −0.056+0.150

−0.149 0.27 72 1.00+0.05

−0.05

2 −0.830+0.022

−0.022 0.171+0.128

−0.124 0.27 72 1.02+0.05

−0.05

3 −1.099+0.022

−0.023 −1.047+0.118

−0.117 0.27 72 1.02+0.06

−0.05

1 −1.001+0.050

−0.047 −0.061+0.571

−0.484 0.266+0.031

−0.037 71.97+0.37

−0.36 1.00+0.05

−0.05

2 −0.832+0.048

−0.046 0.044+0.429

−0.366 0.257+0.034

−0.042 72.09+0.36

−0.37 1.02+0.06

−0.05

3 −1.165+0.069

−0.072 −1.055+0.442

−0.313 0.285+0.039

−0.042 72.35+0.30

−0.30 1.02+0.06

−0.05

2. Chevallier-Polarski-Linder Parametrization

Next, we investigate a commonly used parametrization
of the dark energy equation of state which is given by

w(z) = a − b
z

1 + z
. (16)

The parametrization was introduce independently by
Refs. [7] and [8].

As for the case w=const., one integral in Eqn. (5) can
be solved analytically and the expression simplifies to:

µ(a, b, z) = 25 + 5 log10

{

c(1 + z)

H0

∫ z

0

ds
[

Ωm(1 + s)3

+ (1 − Ωm)(1 + s)3(1 + s)3(a−b+1)e
3bs
1+s

]− 1
2

}

.

(17)

This parametrization allows for a weak monotonic time
dependence in w and should be able to capture the be-
havior of our second model reasonably well. Of course
with the introduction of a new parameter compared to
the first parametrization, error bars will increase. As
for the previous case, we first fix Ωm and H0 to their
known values. Again, 10,000 simulation runs lead to an
acceptance for w(z) within 10-40%. The results are sum-
marized in Figure 4 and Table II. For the w=const. data
set the parametrization picks up a very small variation
in w but the prediction w = −1 is well within error bars.
The mild variation with z in the second data set is cap-
tured rather well with this parametrization. For the third
data set the parametrization is not quite flexible enough.
While the overall behavior (the rise at high redshift) is
captured, the S-shape of the underlying equation of state
cannot be extracted from the data. The parametrization
is reliably finding a time dependence in w in this case but
not the specific form of w which would be important for
distinguishing different models of dark energy.

The results including estimations for Ωm and H0 are
similar. As for the w=const. parametrization, the pa-
rameters are all sampled jointly because of their strong
correlations. The strong correlations between the pa-
rameters degrade the accuracy of the prediction for w
somewhat. For the first data set, the prediction for Ωm

is slightly low which in turn amplifies a time dependence
in the best fit w which is does not exist in the data set.
Again, the error bars are large and clearly w = −1 is well
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FIG. 4: Upper row: same as in Figure 2, but this time the reconstruction is based on Eqn. (16). The parametrization captures
the variation in data set 2 reasonably well, but is still not flexible enough to reconstruct an equation of state with less smooth
changes as in data set 3. The lower row shows the 68% and 95% confidence levels for the fitting parameters w0 and w1 in
Eqn. (16) for the three data sets.

within them. For the second data set, the prediction for
Ωm is even lower. The prediction for b which captures
the time dependence of w is too low and the overall time
variation of w(z) is underpredicted. For data set 3, Ωm is
overpredicted which leads to a slight degradation in the
prediction for w itself.

Overall, the parametrization works rather well, espe-
cially for moderately varying w, as to be expected. The
draw backs are obvious: sudden changes in w cannot be
captured and the data quality has to be very good in
order to get reasonable constraints.

B. Nonparametric Reconstruction: Gaussian

Process Model

After having explored the standard parametric recon-
struction methods, we now turn to our new, nonpara-
metric method based on GP modeling [26]. A Gaussian
process is a stochastic process such that when sampled at
any finite collection of points, the values jointly follow a
multivariate normal (MVN) distribution. Thus the pro-
cess can be defined by its mean and correlation functions.
This model is advantageous in that it allows for a flex-

TABLE III: GP model - 95% PIs

Set Ωm H0 σ2

1 0.27 72 1.00+0.05

−0.05

2 0.27 72 1.02+0.06

−0.05

3 0.27 72 1.13+0.06

−0.05

1 0.272+0.018

−0.022 71.94+0.40

−0.41 1.00+0.05

−0.05

2 0.260+0.020

−0.017 72.18+0.41

−0.44 1.02+0.06

−0.05

3 0.257+0.022

−0.020 72.23+0.45

−0.42 1.02+0.06

−0.05

ible fit to a function, w(z), based on probability theory
rather than assuming a parametric form like the previ-
ous models. We still assume that the errors of the data
follow a Gaussian distribution as in the previous models
and we use the same likelihoods. We are using Bayesian
techniques including the MCMC algorithm which allows
us to estimate the parameters of the correlation function
along with the other parameters in the model at the same
time [25].

For the GP, we assume that w(z1), ..., w(zn) for any
collection of z1, ..., zn follow multivariate Gaussian dis-
tributions with mean negative one and exponential co-
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FIG. 5: Upper row: same as in Figure 4 but this time we include uncertainties in Ωm and H0. The results are very similar to
Figure 4 – though the error bands are as to be expected larger.

variance function written as

K(z, z′) = κ2ρ|z−z′|α . (18)

The value for α influences the smoothness of the predic-
tion: for α = 2 we will obtain very smooth realizations
with infinitely many derivatives, α = 1 leads to rougher
realizations which are good for modeling continuous non-
differentiable functions. In the current paper we will use
α = 1 to allow for maximum flexibility in reconstruct-
ing w. The mean of the GP is fixed in our results but
we explored other means and found very similar results;
the final choice is made to improve the stability of the

MCMC. ρ has a prior of Beta(6, 1) and κ2 has a vague
prior IG(25, 9). As in the other models, Ωm and H0 are
given priors based on currently available estimates.

Following the notation of Eqn. (5) we set up the fol-
lowing GP for w:

w(u) ∼ GP(−1,K(u, u′)). (19)

Recall that we have to integrate over w(u) (Eqn. 5):

y(s) =

∫ s

0

w(u)

1 + u
du. (20)
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FIG. 6: Same as in Figure 2, but this time the reconstruction is based on the GP model approach. For all three data sets the
GP model captures the true behavior of w very well. The results at higher z are slightly worse due to the sparser supernova
sampling beyond z = 1.1.
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FIG. 7: Upper row: same as in Figure 6 including uncertainties in Ωm and H0. The reconstruction again works very well for
all three cases.

We use the fact that the integral of a GP is also a GP
with mean and correlation dependent on the original GP
[26]. The integral of a GP can be found by integrating
the correlation function. We therefore set up a second

GP for y(s):

y(s) ∼ GP

(

− ln(1 + s), κ2

∫ s

0

∫ s′

0

ρu−u′

dudu′

(1 + u)(1 + u′)

)

.

(21)
The mean value for this GP is simply obtained by solving
the integral in Eqn. (20) for the mean value of the for
w(u), negative one. We can now construct a joint GP for



y(s) and w(u):

[

y(s)
w(u)

]

∼ MVN

[[

− ln(1 + s)
−1

] [

Σ11 Σ12

Σ21 Σ22

]]

, (22)

with

Σ11 = κ2

∫ s

0

∫ s′

0

ρu−u′

dudu′

(1 + u)(1 + u′)
, (23)

Σ22 = κ2ρ|z−z′|α , (24)

Σ12 = κ2

∫ s

0

ρu−u′

du

(1 + u)
. (25)

The mean for y(s) given w(u) can be found through the
following relation:

y(s)|w(u) = − ln(1 + s) + Σ12Σ
−1
22 (w(u) − (−1)) . (26)

Now only the outer integral is left to be solved in Eqn. (5)
which can be computed by standard numerical methods.
Note that we have never to calculate the double integral
in Σ11 which would be numerically costly. In addition,
the method does not require the inversion of one large
covariance method and is therefore rather efficient. More
details about each step in the GP model algorithm are
given in Appendix A.

As for the parametrized reconstruction methods, we
first apply our new method assuming we know the exact
values for Ωm and H0. The results are shown in Figure 6.
The predictions from the GP model for w(z) are remark-
ably accurate for all three data sets. The slight noise in
the predictions is due to the choice of the functional form
of the covariance function. In particular, the prediction
for the third data set, which was not captured very well
by the other two methods, is very good. The GP model
approach is able to capture the true behavior of w very
well.

Last, we study the results from the GP model including
uncertainties in Ωm and H0. As for the two parametriza-
tions, degeneracies degrade the results slightly. For the
case of w=-1 the prediction for Ωm is slightly high, lead-
ing to a value smaller than w = −1. For the second
model, we find the opposite: the best fit value for Ωm

is slightly low and the prediction for w above the truth.
While for the third data set the best fit value for Ωm is
also on the low side, the GP model approach captures
the overall behavior of the true w(z) well. All these re-
sults will certainly improve if we include different data
sets, e.g., CMB or baryon acoustic oscillation measure-
ments to break the degeneracies. The main point here is
to show that the GP model is able to capture non-trivial
behavior in w(z) extremely well.

V. CONCLUSIONS

The nature and origin of dark energy is currently a
complete mystery. With the lack of a compelling the-
ory to test against, the major aim is to first characterize
dark energy w by measuring its equation of state. Field
theoretical models of dark energy predict a slight time
variation in w and if future surveys could capture such a
time dependence we hope to be able to understand or at
least learn something about the nature of dark energy.
Supernova measurements are a very promising probe for
w and future surveys like JDEM promise to measure w(z)
with high accuracy.

In order fully exploit such measurements, we need a
reliable and robust reconstruction method. In this pa-
per we have introduced a new reconstruction approach
based on GP modeling. This approach is a nonparamet-
ric method and the modeling parameters are constraint
directly from the data. We have demonstrated that we
can extract non-trivial behavior of w as a function of red-
shift with data of JDEM quality. We have also contrasted
our new method versus two standard parametrizations.
While the z-dependent parametrization leads to good re-
sults for capturing small variations in w(z) it cannot re-
construct complex forms of w(z).

The GP model approach outlined in this paper for the
analysis of supernova measurements can very easily be
extended to include different cosmological probes. This
analysis will be carried out in future work. A paper on
applying our new method on currently available data is
in preparation.

APPENDIX A: GP MODEL ALGORITHM

In this appendix we give a detailed description of the implementation of the algorithm of the GP to extract w(z).

1. Initialize all variables: θ = θ1, ρ = ρ1, κ2 = κ2
1, and wo(u) = wo

m,1(u). w(u) will be a vector with m points in
our GP and y(s) will have m ·h points. We will run this algorithm q = 1, ..., Q times. Set all tuning parameters,
δ1,2,3,4, which will need to be tuned until good mixing occurs. Also, all proposals used are symmetric and will
not need a jumping function in αMH .

2. Propose ρ∗ = Unif(ρ1 − δ1, ρ1 + δ1)

(a) Compute the covariance matrix K22ρ∗ = ρ∗|uj−ui|
α



(b) Compute the Cholesky decomposition for K22ρ∗ = U ′
ρ∗Uρ∗

(c) Compute the special K12ρ∗ =
∫ s′

0
ρ∗|u−s|α

1+u
du with Chebyshev-Gauss quadrature.

(d) We want yρ∗(s) = θq−1 ln(1 + s) + [κ2
q−1K12∗][κ

2
q−1K

−1
22∗](wρ∗(u) − θq−1)

where: wρ∗(u) = [κq−1U
′
ρ∗ ]wo

m,q−1 + θq−1

yρ∗(s) = θq−1 ln(1 + s) + [κ2
q−1K12∗][κ

2
q−1K22∗]

−1(
(

κq−1U
′
ρ∗wo

m,q−1 + θq−1

)

− θq−1)

yρ∗(s) = θq−1 ln(1 + s) + κq−1K12∗[(U
′
ρ∗Uρ∗)−1U ′

ρ∗ ]wo
m,q−1

yρ∗(s) = θq−1 ln(1 + s) + κq−1K12∗[U
−1
ρ∗ ]wo

m,q−1

(e) L(zi, µi, τi|wρ∗ , σ2
q−1) = e

− 1
2

P

„

µi−T (zi,wρ∗ (u))

τiσi

«2

where the definite integrations in T (zi, wρ∗(u)) are done
numerically through summations of the trapezoid algorithm.

(f) If we accept αMH =
Lρ∗π(ρ∗)

Lρq−1
π(ρq−1)

then we will let ρq = ρ∗

3. Draw κ2∗ = Unif(κ2
q−1 − δ2, κ

2
q−1 + δ2)

(a) Compute yκ2∗(s) = θq−1 ln(1 + s) + κ∗K12ρq
[U−1

ρq−1
]wo

m,q−1

(b) L(zi, µi, τi|wκ2∗ , σ2
q−1) = e

− 1
2

P

„

µi−T (zi,w
κ2∗ (u))

τiσi

«2

where the definite integrations in T (zi, wκ2∗(u)) are done
numerically through summations of the trapezoid algorithm.

(c) If we accept αMH =
Lκ2∗π(κ2∗)

L
κ2

q−1
π(κ2

q−1)
then we will let κ2

q = κ2∗

4. We propose a non-standard w∗
m for the GP. We start by drawing a proposal for wo∗ ∼ MV N(wo

q−1, δ3Imxm)

(a) Compute y∗(s) = θq−1 ln(1 + s) + κqK12q[U
−1
q ]wo∗

m,

(b) Lzi,µi,τi|w∗
new(u),σ2

q−1
= e

− 1
2

P µi−T (zi,w∗
new(u))

τiσ

2

(c) If we accept αMH =
Lw∗

new(u)MV N(wo∗
m |0,I)

Lwq−1
MV N(wm,q−1|0,I) then wo

m,q(u) = wo∗
m (u) and the GP realization is wm,q(u) =

w∗
m(u)

5. Draw θ∗ = Unif(θq−1 − δ4, θq−1 + δ4)

(a) Compute y∗(s) = θ∗ ln(1 + s) + κqK12q
[U−1

q ]wo
m,q

(b) L(zi, µi, τi|wθ∗ , σ2
q−1) = e

− 1
2

P

“

µi−T (zi,wθ∗ (u))

τiσi

”2

where the definite integrations in T (zi, wθ∗(u)) are done
numerically through summations of the trapezoid algorithm.

(c) If we accept αMH = Lθ∗π(θ∗)
Lθq−1

π(θq−1)
then we will let θq = θ∗

6. σ2
q |... ∼ IG

(

n
2 + 2.01, 1

2

∑

(

µi−T (z|...)
τi

)2

+ 1

)

7. Repeat steps 2-6, Q times and rerun the entire algorithm as needed after resetting the tuning parameters
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