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Abstract

This paper introduces a flexible class of models for relational data
based on a hierarchical extension of the two-parameter Poisson-Dirichlet
process. The model is motivated by two different applications: 1) A
study of cancer mortality rates in the U.S., where rates for different
types of cancer are available for each state, and 2) the analysis of mi-
croarray data, where expression levels are available for a large number
of genes in a sample of subjects. In both these settings, we are interested
in improving estimation by flexibly borrowing information across rows
and columns while partitioning the data into homogeneous subpopula-
tions. Our model allows for a novel nested partitioning structure in the
data not provided by existing nonparametric methods, in which rows
are clustered while simultaneously grouping together columns within
each cluster of rows.

1 Introduction
Bayesian nonparametric (BNP) mixture models have become popular in the
last decade and have been applied in fields as diverse as finance (Kacperczyk
et al., 2003; Rodriguez & Ter Horst, 2009), econometrics (Chib & Hamilton,
2002; Hirano, 2002), epidemiology (Dunson, 2005), genetics (Medvedovic
& Sivaganesan, 2002; Dunson et al., 2007a), medicine (Kottas et al., 2002;
Bigelow & Dunson, 2007) and auditing (Laws & O’Hagan, 2002). In the
simple case where we are interested in estimating a single distribution from
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an independent and identically distributed sample y1, . . . , yn, nonparametric
mixtures assume that observations arise from a convolution

yi ∼
∫
ψ(·|θ)G(dθ)

where ψ(·|θ) is a parametric kernel indexed by θ, and then place a rich prior
on the mixing distribution G, which is often assumed to be almost surely dis-
crete. For example, assuming that G follows a Dirichlet process (DP) prior
(Ferguson, 1973; Blackwell & MacQueen, 1973; Ferguson, 1974; Sethura-
man, 1994) leads to the well known Dirichlet process mixture (DPM) models
(Lo, 1984; Escobar, 1994; Escobar & West, 1995). The discrete nature of G
induces a partition of the observations into groups, with observations on each
group assumed to be independent and identically distributed samples from the
kernel ψ(·|θ) and share a common value for θ. However, unlike traditional
clustering models, BNP mixture models automatically choose the number of
components in the mixture and provide for a straightforward predictive rule
for new observations, simplifying prediction.

In this paper, we consider nested partition models as a mechanism to gen-
erate nonparametric and semiparametric priors for matrix data. Specifically,
let the observations yij for i = 1, . . . , I and j = 1, . . . , J , be conveniently
arranged in a matrix Y = [yij] with I rows and J columns. Typically Y will
be the result from a non-replicated experiment with two crossed factors. For
example, yij might correspond to the mortality count in state i due to cancer
type j during a given calendar year, or to the expression level of gene j for
patient i in a microarray experiment. More generally, we are interested in
relational data, which describes the interactions between members of two or
more classes of objects. Focusing for simplicity of exposition on the case of
binary relations, if S and R are two sets with I and J objects respectively
(possibly withR = S and I = J), we can interpret the value yij as measuring
the strength of the relationship between the i-th object in S (patient) and the
j-th object inR (gene). In this paper we will focus on hierarchical models of
the form

yij ∼ ψ(·|xij,θij,ν) θij ∼ G
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whereG is the unknown distribution of the random effects and ψ(·|xij,θij,ν)
is the conditional distribution of observation yij given a vector of predictors
xij = (xij1, . . . , xijq), random effects θij and the vector of fixed effects ν.
In estimating the random effects, it is desirable to borrow information across
observations by exploiting the structure on the data. In particular, for crossed
experiments where both rows and columns represent levels of some categor-
ical variable (rather than replicates), we expect that observations that are in
either the same row or the same column would have a stronger correlation
with each other. For example, in the analysis of microarray experiments it is
reasonable to assume a priori that expression levels for the same gene across
two different subjects have a stronger correlation than two genes from two
different subjects. Even more, if a clustering structure is induced in the obser-
vations, we would like the same genes to be simultaneously grouped together
for all individuals in any given cluster of subjects.

A simple approach to deal with matrix data is to assume that G follows
a nonparametric prior, such as a standard Dirichlet process or a Pólya tree.
However, such a model implies that observations are conditionally exchange-
able, and therefore the correlation structure is independent of the row/column
assignment. Specific BNP mixture models for matrix data have previously
been considered in the literature. For example, Dunson et al. (2008) intro-
duced the matrix stick-breaking process (MSBP), which uses weights depen-
dent on the location of the observation in the array to construct dependent,
row-specific mixing distribution Gi. Therefore, the MSBP allows for cluster-
ing within rows but not across columns. The clustering structure generated
by other models for nested samples such as the hierarchical Dirichlet process
(HDP) (Teh et al., 2006) and the nested Dirichlet process (NDP) (Rodriguez
et al., 2008) are similarly difficult to interpret in crossed experiments.

There is a rich literature on BNP models for situations where the mixing
distribution G is allowed to depend on covariates. Models based on depen-
dent stick-breaking priors (MacEachern, 1999, 2000) have been developed
for spatial and temporal process (Gelfand et al., 2005; Griffin & Steel, 2006b;
Duan et al., 2007; Dunson & Park, 2007; Rodriguez & Ter Horst, 2008), as
well as for nonparametric analysis of variance (DeIorio et al., 2004) and mod-
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els for independent and identically distributed distribution (Teh et al., 2006;
Rodriguez et al., 2008). Alternative approaches for this problem based on lin-
ear combinations of nonparametric processes include Dunson et al. (2007b),
Müller et al. (2004) and Griffin & Steel (2006a). Unfortunately, none of these
approaches is suitable to model relational data.

Some models for relational data based on Bayesian nonparametric mod-
els have been studied in the machine learning community, where the random
blocks model (Kemp et al., 2006; Xu et al., 2006) has dominated attention.
A recent generalization of the random blocks model is the Mondrian process
(Roy & Teh, 2009), which constructs groups of cells by successive random
partitions on the previously induced subsets. The nested parition model we
discuss in this paper can be conceived as a different generalization of the in-
finite random blocks model in Kemp et al. (2006) that allows for partitions in
setR to be nested in the partitions of set S.

The rest of the paper is organized as follows: Section 2 briefly reviews
product partition models and their connection to Bayesian nonparametric mod-
els. Section 3 introduces our nested partition models. Section 4 describes a
Pólya urn representation for the nested partition process and describes a com-
putational strategy to fit these models based on Markov chain Monte Carlo
algorithms. Section 5 presents two illustrations, one on modeling contingency
tables and another one on the analysis of microarray data. Finally, Section 6
discusses additional extensions for the model as well as future directions of
work.

2 Partition models and Bayesian nonparametric
mixtures

Let S = {1, . . . , n} denote a set of labels identifying observations y1, . . . ,yn.
A partition of S, denoted η(S), is a collection of subsets S1, . . . , SL (referred
to as clusters or groups) such that S = ∪Ll=1Sl and Sl ∩ Sl′ = ∅. In many
cases, it is convenient to represent the partition η(S) using a set of indicators
ξ1, . . . , ξn such that ξi = ξi′ = l if and only if i and i′ belong to the same
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cluster Sl.
Bayesian partition models are hierarchical models that place a prior on

y1, . . . ,yn by first placing a prior on the set η(S) and then, conditional on
η(S), assume that all observations whose labels belong to cluster Sl are dis-
tributed according to some pl({yi : i ∈ Sl}). A well known example is
the class of product partition models (Hartigan, 1990; Barry & Hartigan,
1993; Quintana & Iglesias, 2003), which place a prior on η(S) such that
Pr(η(S)) ∝

∏L
l=1 c(Sl), where c(·) is a positive cohesion function and

pl({yi : i ∈ Sl}) =

∫ [∏
i∈Sl

ψ(yi|θ)

]
G0(dθ)

where ψ is the conditional distribution of the data given the cluster specific
parameters in θ, and G0 is the prior for θ, which is common to all clusters.

There is a close relationship between Bayesian partition models and non-
parametric mixture models (Quintana, 2006). For example, consider a ran-
dom sample y1, . . . ,yn where yi ∼ ψ(·|θi) and θi ∼ G with G ∼ DP(βG0)
following a Dirichlet process. Therefore,

G(·) =
∞∑
l=1

wlδφl(·) (1)

where the atoms φ1,φ2, . . . are independent and identically distributed sam-
ples from a baseline measure G0 defined on (X ,B) and the stick-breaking
weights wl = ul

∏
r<l(1− ur), with the stick-breaking ratios u1, u2, . . . being

independent and identically distributed from a Beta(1, β). The pattern of ties
in θ1, . . . ,θn induces a distribution on η(S) which agrees with that from a
product partition model with cohesion function c(Sl) = β(|Sl| − 1)!.

The Dirichlet process has limitations as a clustering procedure; for exam-
ple, the expected number of clusters in the partition tends to grow logarithmi-
cally with the number of observations n, and it tends to favor partitions with a
small number of large clusters together with a large number of small clusters.
More flexible priors on partitions can be obtained from other species sam-
pling models (McCloskey, 1965; Lijoi et al., 2005, 2007; Lee et al., 2009). In
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the sequel, we focus on the two-parameter Poisson-Dirichlet process (Pitman,
1995; Sudderth & Jordan, 2009).

We say thatG follows a Poisson-Dirichlet process with discount α, strength
β and baseline G0, denoted PY(α, β,G0), if it has the representation in (1)
with independent (but not identically distributed) stick-breaking ratios ul ∼
Beta(1 − α, β + lα), 0 ≤ α < 1 and β > −α. Note that by setting α = 0,
we recover the Dirichlet process as a special case of the Poisson-Dirichlet
process. However, for α > 0, the growth in the number of clusters follows
a power law with exponent α, allowing the model to add new clusters much
faster than the Dirichlet process. In our applications, we place priors on α and
β, which allow the data to inform us about the appropriate rate of growth in
the number of clusters.

There is a straightforward interpretation for the parameters of a Poisson-
Dirichlet process. If G ∼ PY(α, β,G0), then for any Borel set B ∈ B,

E(G(B)) = G0(B), Var(G(B)) =
1− α
1 + β

G0(B)(1−G0(B)).

Therefore, G0 and be interpreted as the centering distribution, while α and β
contol the amount of variation about this center.

The probability distribution on η(S) induced by a Poisson-Dirichlet can
be obtained using the generalized Pólya urn representation for the process
(Pitman, 1995, 1996). In terms of the indicators ξ1, . . . , ξn, we have that ξ1 =
1 and for j ≥ 2,

Pr(ξj = k|ξj−1, . . . , ξ1) =
Lj−1∑
l=1

nj−1
l − α

β + j − 1
δl(k) +

β + αLj−1

β + j − 1
δLj−1+1(k),

(2)

where the Lj−1 is the number of clusters observed among the first j−1 obser-
vations and nj−1

l is the number of observations in cluster l (l = 1, . . . , Lj−1)
among the first j − 1 observations. Since the model leading to this Pólya urn
assumes exchangeability among the observations, equation (2) also provides
the full conditional prior distribution on the cluster assignment, which can be
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used to develop computational schemes based on Markov chain Monte Carlo
methods (Ishwaran & James, 2001). Also, starting with (2), Lijoi et al. (2007)
showed that the prior probability of a partition η({1, . . . , I}) composed of L
clusters with sizes nl = |Sl| generated by a PY(α, β,G0) with non-atomic
baseline measure G0 is given by

Pr(L, n1, . . . , nL|α, β) =

∏L
l=1(β + lα)

(β + 1)I−1

L∏
l=1

(1− α)nl−1 (3)

where (a)s = a(a+ 1) . . . (a+ s− 1), irrespective of G0.

3 Nested partition models
We turn our attention now to matrix data. As before, for i = 1, . . . , I and
j = 1, . . . , J , let yij ∼ ψ(·|θij,ν) where ψ is parametric kernel indexed
by θij . When modeling gene expression data, yij might denote the expres-
sion level for gene j in subject i, and we might take θij = (µij, σij) and
yij ∼ N(µij, σ

2
ij). Our goal is to generate a nonparametric mixture model

for this data. However, for interpretation and efficiency purposes, we want to
generate a very specific clustering structure. First, we want to identify groups
of subjects with similar overall expression patterns. In addition, within each
group of subjects, we want to identify co-regulated genes with similar expres-
sion levels.

In the sequel, let θi = (θi1, . . . ,θiJ)′ be the vector of parameters corre-
sponding to row (e.g., subject) i. In order to cluster subjects, it is natural to
assume θi ∼ F , where F ∼ PY(α, β,H), i.e.,

F =
∞∑
k=1

πkδφk , (4)

is a (random) discrete distribution such that πk = vk
∏

s<k(1− vs) with vk ∼
Beta(1−α, β+ kα), and φk are independent and identically distributed from
some baseline measure H.
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To obtain cluster-specific partitions for the columns, we need to carefully
choose the baseline measure H generating the unique, cluster-specific atoms
φ1,φ2, . . .. Writing φk = (φk1, . . . ,φkJ)′, one option is to assume that, for
j = 1, . . . , J , φkj ∼ Gk where G1, G2, . . . is a sequence of independent
and identically distributed random distributions such that Gk ∼ PY(γ, ε, G0).
Using (2), this leads to a baseline measure

H(φ) =
J∏
j=1

Hj(φj|φj−1, . . . ,φ1) (5)

where

Hj(φj|φj−1, . . . ,φ1) =
Lj−1∑
l=1

nj−1
l − γ

ε+ j − 1
δφ∗l +

ε+ γLj−1

ε+ j − 1
G0, (6)

φ∗1, . . . ,φ
∗
Lj−1 are theLj−1 distinct values among φ1, . . . ,φj−1 and nj−1

l is the
number of components among φ1, . . . ,φj−1 to be assigned to the l-th cluster.
We call the process generating the matrix of random effects Θ = [θij] a nested
partition model (NPM), and write

Θ ∼ NPM(α, β, γ, ε, G0).

Notationwise, the NPM is somewhat reminiscent of the hierarchical Dirich-
let process (HDP) (Teh et al., 2006) and the nested Dirichlet process (NDP)
(Rodriguez et al., 2008). However, the nested partition model is quite differ-
ent. In particular, note that both the HDP and the NDP assume exchangeabil-
ity of cells within each row, rather than exchangeability of columns within
clusters of rows, as in the NPM (see Figure 1).

The NPM is closely related to two nonparametric models for relational
data recently introduced in the machine learning literature — the infinite ran-
dom blocks model (Kemp et al., 2006) and the Mondrian process (Roy &
Teh, 2009). However, there are differences in the partitions generated by
each of the models (see Figure 2). In particular, it is clear from our stylized
graphs that the random blocks models is but a special case of the NPM where
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Figure 1: Sample clustering structure induced in a 6 × 5 matrix by three
different nonparametric priors: (a) the HDP, (b) the NDP and (c) the NPM
respectively. Colors are used to represent clusters of rows, while patterns are
used to represent clusters of cells. The HDP (left panel) only clusters cells
across rows; the NDP (center panel) clusters rows and, within each cluster of
rows, clusters cells without regard to which column they belong to; the NPM
(right panel) clusters rows, and within clusters of rows, clusters columns of
cells together.

partitions within each group of rows have been constrained to be equal. In
addition, there are important differences in interpretation between the NPM
and the Mondrian process: by successively parititioning the matrix along both
dimensions, the Mondrian process can generate very flexible partitions of the
matrix cells; however, the resulting blocks cannot be interpreted in terms of
nested row/column clusters.

We proceed now to discuss some of the properties of the NPM. The corre-
lation between entries in the matrix can be easily be obtained (see Appendix
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Figure 2: Sample clustering structure induced in a 6×5 matrix by the random
blocks model and the Mondrian process. Again the differences between the
models are clear: The vertical cuts induced by the random blocks models (left
panel) are shared by all clusters of rows (making it a special case of the NPM)
while the Mondrian process (right panel) producess patches of clustered cells
but does not provide by itself a clustering structure across rows and columns
as the NPM does.

A), yielding

Cor(θij,θi′j′) =


1−α
1+β

i 6= i′, j = j′

1−γ
1+ε

i = i′, j 6= j′

1−α
1+β

1−γ
1+ε

i 6= i′, j 6= j′

As desired, Cor(θij,θi′j′) is smaller if both i 6= i′ and j 6= j′, in accor-
dance to what we expect the structure in the data to be. Some interesting mod-
els arise as limiting cases of the NPM. As both γ, ε → 0 we have θij = θij′
for all j = j′. Therefore, the model clusters rows assuming that the random
effect is the same for all columns on each cluster of rows. On the other hand,
if ε→∞ then θij 6= θij′ almost surely, and the model does not borrow infor-
mation across columns. Similarly letting α, β → 0 induces a model where all
rows are assumed to be in a single cluster, and columns are clustered together,
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while β → ∞ leads to a model where no information is borrowed across
rows.

Another interesting propertiy of the NPM is that it defines an exchange-
able prior on arrays, in the sense of Hoover (1979), Aldous (1981) and Di-
aconis & Janson (2007). A distribution on the entries of an array is said to
be separately exchangeable if the distribution is invariant to separate permu-
tations on each of its dimensions. Similarly, a distribution on arrays that is
invariant when the same permutation is applied to all dimensions is said to be
jointly exchangeable. Note that a squared array that is separately exchange-
able is always jointly exchangeable, but not the other way around.

Theorem 1 Let Θ ∼ NPM(α, β, γ, ε, G0) be a random matrix with I rows
and J columns. Then the joint distribution on Θ induced by the nested par-
tition model, p(Θ), is separately exchangeable. That is, for any two pairs
of permutations π1(1 : I), π2(1 : J) and ν1(1 : I), ν2(1 : J) we have
p(Θν1(1:I),ν2(1:J)) = p(Θπ1(1:I),π2(1:J)), where Θπ1(1:I),π2(1:J) is the matrix ob-
tained by permuting the rows of Θ using π1 and its columns using π2.

The proof is straightforward, and relies on the exchangeability of the joint
distribution of draws from a two-parameter Poisson-Dirichlet process (Pit-
man, 1995). Also, the result holds more generally if the Poisson-Dirichlet
process is replaced by any other species sampling model. However, note that
the model is not invariant to transpositions of the array, which implies that
choosing the ordering of the variables (if not of the observations) is impor-
tant. In the examples we discuss in Section 5 such ordering arises naturally
from the problem. More broadly, this means that the NPM is going to be most
useful for modeling directed relations.

4 Pólya urn representation and computational meth-
ods

We can derive a Pólya urn representation for the NPM, which in turn leads
to a fairly straightforward computational algorithm for inference. Since θi ∼
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F and F ∼ PY(α, β,H), exchangeability ensures that the full conditional
distribution for θi is given by

θi|{θ1, . . . , θn}\θi ∼
K−i∑
k=1

n−ik − α
β + I − 1

δφk +
β + αK−i

β + I − 1
H, (7)

where {φ1, . . . ,φK−i} are the K−i unique values among {θ1, . . . ,θn}\θi,
n−ik is the number of values in the set {θ1, . . . ,θn}\θi that are equal to φk,
and H is given in equations (5) and (6). Similarly, conditional exchangeability
within each cluster of rows implies that the full conditional distribution for the
entries of φk is given by

φkj|{φk1, . . . ,φkJ}\φkj ∼
L−jk∑
l=1

m−jkl − γ
ε+ J − 1

δφ∗kl +
ε+ γL−jk
ε+ J − 1

G0 (8)

where {φ∗k1, . . . ,φ
∗
kL−jk
} are theL−jk unique values among {φk1, . . . ,φkJ}\φkj

and m−jku is the number of values in the set {φk1, . . . ,φkJ}\φkj that are equal
to φ∗ku.

Equations (7) and (8) can be used to develop a collapsed (marginal) sam-
pler (MacEachern, 1994; Escobar, 1994; Escobar & West, 1995; Neal, 2000).
First, we consider the case where the baseline measure G0 is conjugate to the
kernel ψ(·|θ). To develop the sampler, we introduce a collection of indicators
{ζi} such that ζi = k if and only if θi = φk, as well as indicators {ξkj} such
that ξkj = l if and only if φkj = φ∗kl. This collapsed sampler sequentially
samples the parameters in the model from its full conditional distributions to
generate (after a suitable burn-in period) a dependent sample from the poste-
rior distribution of interest.

First, note that the unique φ∗kls are conditionally independent given the
indicators. Therefore, updating them is straightforward as the full conditional
distributions are given by

φ∗kl| · · · ∼

 ∏
{(i,j):ζi=k,ξζij=l}

ψ(yij|φ∗kl,ν)

G0(φ∗kl).
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Next, we show how to update the partition of columns within each cluster
of rows. Since G0 is conjugate to ψ, we can explicitly integrate out the φ∗kls,
and the full conditional posterior distribution for ξkj is given by

Pr(ξkj = l| · · · ) =

L−jk∑
u=1

qkuδu(l) + qk,L−jk +1δL−jk +1(l)

where

qku ∝ (m−jku − γ)

∫ [∏
(r,s)∈Ωjk∪Ω−jku

ψ(yrs|φ)
]
G0(dφ)∫ [∏

(r,s)∈Ω−jku
ψ(yrs|φ)

]
G0(dφ)

for u ≤ L−jk , and

qk,L−jk +1 ∝ (ε+ γL−jk )

∫  ∏
(r,s)∈Ωjk

ψ(yrs|φ)

G0(dφ).

In the previous expression, Ωj
k = {(r, s) : ζr = k, s = j} is the set of

observations in the k-th cluster of rows that fall in column j, and Ω−jku =
{(r, s) : ζr = k, ξks = u, s 6= j} is the set of observations in the k-th cluster
of rows that fall in the u-th cluster of columns, possibly excluding those in the
j-th column.

Now, we discuss the updates to the partition of rows. In principle, a sim-
ilar Pólya urn sampler to the one discussed above could be used to sample
ζi given ζ1, . . . , ζI\ζi. However, even if G0 is conjugate to ψ, computing∫ ∏

i∈Λ ψ(yi|φ)H(dφ) involves a sum with a number of terms that grows
very fast with I , making the operation unwieldy for moderately large I . To
avoid this problem, we explicitly condition on the indicators {ξkj}, but inte-
grate out the φ∗kl. More concretely, we update ζi by sampling

Pr(ζi = k| · · · ) =
K−i∑
u=1

w−iu δu(k) + wK−i+1δK−i+1(k),
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where

w−iu ∝ (n−iu − α)
Lu∏
l=1

∫ [∏
(r,s)∈Λiul∪Λ−iul

ψ(yrs|φ)
]
G0(dφ)∫ [∏

(r,s)∈Λ−iul
ψ(yrs|φ)

]
G0(dφ)

for u ≤ K−i, and

wK−i+1 ∝ (β + αK−i)

LK−i+1∏
l=1

∫  ∏
(r,s)∈Λi

K−i+1,l

ψ(yrs|φ)

G0(dφ).

Λi
ul = {(r, s) : ξus = l, r = i}, Λ−iul = {(r, s) : ζr = u, ξus = l, r 6= i}

have interpretations analogous to Ωj
k and Ω−jkl , and ξK−i+1,1, . . . , ξK−i+1,J is

randomly sampled according to (2), i.e., ξK−i+1,1 = 1 and

ξK−i+1,j|ξK−i+1,j−1, . . . , ξK−i+1,1 ∼
Lj−1

K−i+1∑
u=1

mj−1
K−i+1,u

− γ
ε+ j − 1

δu(l)

+
ε+ γLj−1

K−i+1

ε+ j − 1
δLj−1

K−i+1
+1(l).

If ζi = K−i + 1 (which implies that it has been assigned to a new compo-
nent of its own) then we retain the (ξK−i+1,1, . . . , ξK−i+1,J) used to compute
wK−i+1 as the column indicators corresponding to this new component.

Since the quadruplet (α, β, γ, ε) controls the prior distribution on the parti-
tions, it is important to learn about these parameters from the data. For (α, β),
this can be done by treating (3) as the full conditional likelihood, which can
be combined with a prior distribution to generate the full conditional posterior
distribution. In particular, in our applications we consider a prior p(α, β) =
p(α)p(β|α) such that α ∼ Beta(aα, bα) and log(β + α)|α ∼ N(aβ, b

2
β). Since

the resulting posterior does not follow any standard distribution, we need a
Metropolis-Hastings step to update these parameters. In the applications dis-
cussed in Section 5, we employ independent Gaussian random walks for α
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and β. A similar approach can be used to sample the pair (γ, ε), with the
difference that the conditional likelihood is now formed as the product of dis-
tributions of the form (3) over K clusters.

Finally, the fixed effects ν can updated by sampling from its full condi-
tional distribution given by

ν| · · · ∼

[
I∏
i=1

J∏
j=1

ψ(yij|φ∗ζiξζij ,ν)

]
p(ν).

This full posterior is model-specific, but for appropriate choices of p(ν) it will
typically have a standard form.

IfG0 is not a conjugate prior to the kernel ψ, we can still use a very similar
algorithm that does not integrate out the component specific parameters, such
as the no-gaps algorithms (MacEachern & Müller, 1998; Neal, 2000).

4.1 Missing data and predictions
It is common in many applications for entries in the data matrix to be missing.
For example, in gene expression experiments, local defects in the array might
lead to missing spots or in the case of cancer mortality data, not all states
might report statistics for the same set of cancer types. Additionally, very low
mortality counts that are below a certain threshold are often truncated, since
such numbers are inherently unreliable. In such situations, we will usually be
interested in analyzing the full data set (including the available information
contained in rows and columns with some missing or truncated entries), and
in providing predictions for the missing values in the sample by borrowing
strength from other members of the cluster.

Since we employ Markov chain Monte Carlo algorithms to fit the nested
partition model, handling missing data and providing predictions for the miss-
ing entries is straightforward using data-augmentation approaches that are al-
ready standard in the Bayesian literature. Indeed, by construction, the ob-
servations are conditionally independent from each other given the row and
column indicators, the cluster-specific random effects {φ∗kl}, and the fixed
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effects ν. Therefore, for the pairs (i, j) where yij is missing in our original
dataset, we can augment our sampler by generating yij ∼ ψ(·|xij,φ∗ζi,ξζi,j ,ν)
conditionally on the current value of these parameters. For the case of trun-
cated observations, we can sample from the corresponding truncated distribu-
tion. In turn, sampling for the parameters given the observations and imputed
values can proceed along the lines discussed earlier without the need for any
modification. The resulting sampler converges to the posterior distribution of
interest, and point and interval predictions for the missing/truncated values
can be obtained through summaries of the samples of their posterior distribu-
tions.

4.2 Summarizing the posterior distributions
Once a sample from the posterior distribution has been obtained by means
of the MCMC sampler described above, computing posterior summaries for
the random effects {θij}, the fixed effects ν, the shape parameters α, β, γ
and ε, and any missing/truncated value is straightforward. In particular, point
estimators that are optimal with respect to squared error loss functions can be
obtained by computing a simple average of the sampled values, while uncer-
tainty in the point estimator can be evaluated by computing posterior credible
intervals from the quantiles of the sample.

The situation is not as simple when summarizing the clustering structure
generated by the NPM, which is described by the indicators {ζi} and {ξkj}.
In general, we will be interested in providing point estimators for the partition
of both rows and columns, and in providing some mechanism to asses the un-
certainty associated with these partitions. One option is to report the partition
with the largest posterior probability as the point estimator. However, since
the size of the space of partitions grows exponentially with the number of ob-
servations being clustered, MAP estimators are notably difficult to obtain in
this setting. As an alternative, we focus on extending the method described
Lau & Green (2006) to deal with the nested clustering structure generated by
our model.

If we were interested only in clustering rows, we could follow Lau &
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Green (2006) directly and introduce a loss function of the form

L({ζ̂i}, {ζi}) =
I∑
i=2

i−1∑
i′=1

[
a11(ζi 6=ζi′ )1(ζ̂i=ζ̂i′ )

+ a21(ζi=ζi′ )
1(ζ̂i 6=ζ̂i′ )

]
(9)

where ζ̂i is the point estimator for ζi and 1A denotes the indicator function
of the set A. Note that this utility function, which was originally proposed in
Binder (1978), is invariant under label switching on both the true indicators
and their point estimators. The constants a1 and a2 control the loss caused by
the two types of errors considered by this loss function: a1 is the loss incurred
by clustering together two observations that belong to separate clusters, while
a2 is the loss produced by putting in separate groups two observations that in
reality are clustered together. Therefore, when a1 is much larger than a2, our
point estimators tend to consist of a relatively large number of groups, while
if a1 is much smaller than a2 we tend to favor partitions with a very small
number of clusters. Since the point estimate might depend on the choice of
these constants, a sensitivity analysis can provide insights into the uncertainty
associated with the point estimator provided.

Lau & Green (2006) show that minimizing the expected loss under (9) is
equivalent to maximizing the expected utility function

U({ζ̂}) =
I∑
i=2

i−1∑
i′=1

1(ζ̂i=ζ̂i′ )
(ρii′ − C) (10)

where ρii′ = Pr(ζi = ζj|Y), the posterior probability that rows i and i′ are
clustered together, can be easily obtained from the Monte Carlo samples and
C = a2

a1+a2
is the relative cost of misclassification of two items as not being

in the same cluster. Maximization of this expected utility function can be
accomplished through an iterative algorithm were labels are updated one at a
time in order to conditionally optimize the value of the utility function.

In the sequel we employ this estimation procedure in two steps. In the
first step, we apply the original Lau & Green (2006) approach as described
at the beginning of this Section to obtain a point estimator ζ̂ for the partition
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of the rows. Then, we rerun our MCMC algorithm keeping the row clusters
fixed at ζj = ζ̂j , and apply again the Lau & Green (2006) algorithm within
each cluster of rows but using the point estimates for the pairwise clustering
probabilities obtained from this new MCMC run.

5 Illustrations

5.1 Contingency tables
As a first illustration of the NPM we analyzed data on cancer mortality in the
United States that occurred during the year 2000. Mortality data in the US
are based on death certificates that are filed by certifying physicians and is
collected and maintained by the National Center for Health Statistics (http:
//www.cdc.gov/nchs) as part of the National Vital Statistics System.
Accurate and timely counts of cancer mortality are very useful in the can-
cer surveillance community for puposes of efficient resource allocation and
planning. Estimation of current and future cancer mortality broken down by
geograhic area (state) and tumor have been discussed in recent articles (Tiwari
et al., 2004; Ghosh & Tiwari, 2007; Ghosh et al., 2007, 2008).

We used the SEER*Stat software (http://seer.cancer.gov/seerstat)
provided by The Surveillance, Epidemiology and End Results (SEER) pro-
gram (http://seer.cancer.gov) of the National Cancer Institute to
access the data on cancer mortality. The particular SEER*Stat database used
in this paper is titled “Mortality-Cancer, Total U.S. (1950-2000), National
Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics
Branch, released April 2003.” The data was obtained in the form of a 2-way
table classified according to the following criteria: (a) the state where the
death occurred (this has 51 possible values, including District of Columbia
listed alphabetically in the form of a 2-letter abbreviation) indicating the row
and (b) the type of tumor (there were 25 different categories) indicating the
column. Along with the mortality counts in each of the 51 × 25 cells, we
also obtained the population counts for 2000 in each of the states using the
SEER*Stat software. The corresponding SEER*Stat database used is titled
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“Populations -Total US (1990-2002), National Cancer Institute, DCCPS, Surveil-
lance Research Program, Cancer Statistics Branch, released November 2004.”
Our primary goal is to cluster the states into groups and, within each group of
states, cluster the tumors into groups. In addition, we would like to be able to
impute any missing/truncated values and provide error bands on the imputed
values.

The mortality data were modeled as follows. Let yij be the number of
deaths due to cancer j in state i and let ni be the population of state i (1 ≤
i ≤ 51, 1 ≤ j ≤ 25.) We assume that ni’s are fixed and completely known.
Our assumed model is given by yij|λij ∼ Poi(ni × 10−5 × λij) and λij ∼
NPM(α, β, γ, ε, G0), where G0 ≡ G(a, b). We choose a = 0.54, b = 0.016,
α ∼ Beta(1, 1), log(β + α)|α ∼ N(0, 1), γ ∼ Beta(1, 1) and log(ε + γ)|γ ∼
N(0, 1). The choice of a and bwere made based on empirical Bayes estimates.
Results are based on 30,000 iterations after a burn-in of 30,000. Figure 3
gives heatmaps for the resulting clustering of rows (states) for three different
relative cost structures. In particular, C = .5 gave rise to 10 clusters of states,
which is presented in Table 1.

The results provide interesting insights into cancer mortality patterns in
the US, as these seem to cluster roughly along geographical lines. Cluster 2
is the biggest and consists of 11 states mostly from the rural south and the
midwest. Similarly, cluster 8 consists entirely of states from the midwest and
northern plains. Cluster 10 consist entirely of members from the northeast as
does cluster 4. Two of the most populous states are in cluster 9 while cluster
6 consists of states with some of the tallest mountains in the US.

In order to better understand the way states are clustered by the model, we
show in Figure 4 the clustering of cancers for C = .5 for state clusters 2, 5
and 8. We can see some common patterns for all three clusters of states, for
example, the mortality rate of oral cancer (Ora) and melanoma (Mel) always
cluster together, as do the rates of thyroid cancer (Thy) and Hodgkin lym-
phoma (Hod). However, there are also important differences, for example,
note that in cluster 8, the mortality rate for corpus and uterus cancer (Cor)
is similar enough to the mortality rates for oral cancer and melanoma for all
three to be clustered in a single group, whereas corpus and uterus cancer does
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Table 1: Clustering of the states for the cancer mortality data for C = .5.
Cluster Members

1 AZ, GA, WA, ID, WY
2 AL, AR, IN, IA, KY, LA, MS, MO, OH, OK, TN
3 FL, RI, WV
4 DC, ME, MA, PA
5 DE, KS, MD, MI, NV, NC, OR, SC, VA
6 AK, CO, UT
7 CT, IL, NJ, NY
8 MN, MT, NE, ND, SD, WI
9 CA, HI, NM, TX

10 NH, VT

not seem to cluster with any other type of cancer in the other two groups of
states. Also, for cluster 5 we see that esophagus (Eso) and brain cancer (Bra)
rates are clustered together, while for the other two clusters of states esoph-
agus clusters with bladder cancer instead. In general, we can see that most
of the common cancers such as lung, breast and prostate cluster individually,
but the rarer cancers tend to cluster together with a pattern that is specific to
each cluster of states. Therefore, the model allows us to improve estimation
of mortality rates for rare cancers by selectively borrowing information across
cancer types and states.

Now we turn our attention to prediction and missing value imputation.
Cell entries with values below 25 in the 2-way table of cancer mortality counts
are often deemed unreliable in the cancer surveillance community. Our anal-
ysis treated these values as censored observations and imputed them as part
of the MCMC algorithm. The results presented in Table 2. In addition to
providing a way of validating the sparse counts, our method also provides a
measure of their reliability. Note that in all the cases that we have presented,
the reported value falls inside the 95% prediction interval.

Finally, to ascertain the robustness of our model we also re-ran our anal-
ysis asssuming some of the cell entries were actually missing. The missing
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Table 2: Imputed mortality counts < 25 in the 2000 cancer mortality figures.
State and tumor Reported value Imputed value

Median 95% interval
NM, Testis 2 2 (0, 6)
MN, Thyroid 22 21 (14, 24)
WY, Larynx 7 7 (2, 13)
NV, Hodgkin Lymphoma 6 8 (3, 15)

Table 3: Imputed missing values in the 2000 cancer mortality figures.
State and tumor Reported value Imputed value

Median 95% interval
AK, Breast 61 65 (50, 82)
TX, Brain 844 903 (836, 970)
NY, Melanoma 450 485 (440, 532)

entries were chosen at random and they were imputed using the methods de-
scribed earlier. The results of their imputation is given in Table 3. As before,
the 95% interval contains the reported figure.

5.2 Gene expression data
In our second illustration we analyze gene expression data associated with
lymph node positivity status (LNPos) in human breast cancer; this dataset
has been previously analyzed in Pittman et al. (2004) and Hans et al. (2007).
The data comprises of information on 4512 genes on 148 subjects, of which
100 are low-risk (node-negative) and 48 are high-risk (node-positive). Due to
computational constrains, our analysis focuses on a subset of 500 genes.

Our goal is to identify groups of subjects with similar overall expres-
sion profiles while simultaneously identifying co-regulated genes within each
group of subjects. We analyzed the data using a nested partition mixture
model with Gaussian kernels. More concretely, we let yij be the expression
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level of gene j for subject i, and set

yij ∼ N(µij, σ
2
ij), Θ = [µij, σ

2
ij] ∼ NPM(α, β, γ, ε, G0),

where G0 = NIG(µ0, κ0, ϕ0, ς0) is a normal inverse gamma distribution. We
let µ0 = 0, ϕ0 = 1, and assigned priors κ0 ∼ G(1, 1), ς0 ∼ G(1, 1),
α ∼ Beta(1, 1), log(β + α)|α ∼ N(0, 1), γ ∼ Beta(1, 1) and log(ε + γ)|γ ∼
N(0, 1). The algorithm described in Section 4 was used to fit the model. In-
ference is based on 10,000 iterations obtained after a burn-in period of 5,000.
Visual inspection of the trace plots did not reveal any obvious mixing or con-
vergence problems.

The resulting clustering for the subjects is shown in Figure 5 for three cost
structures. The clustering of rows is quite robust, with C = 0.2 and C = 0.5
producing the same 17 groups, and C = 0.8 differing only on the assignment
of one single subject. Therefore, all further analysis was performed condi-
tional on the clustering induced by C = 0.5. Cluster sizes vary dramatically,
with the largest clusters having 20, 19 and 16 subjects respectively, and the
three smallest clusters being singletons. The largest cluster is particularly
interesting as 13 out of its 20 subjects are lymph positive. This cluster is char-
acterized by two small groups of corregulated genes (see table 4), with the
rest of the genes not showing any discernible pattern. The first cluster com-
prises 12 overexpressed genes, including STARD8 (D80011) which is a tumor
growth inhibitor, and XRCC6 (AF052148), which is involved in the repair of
double-strand break and transposition damage. Therefore, it is reasonable to
assume that all elements in this cluster are involved in a common pathway
that seems to be protective against the development of tumors. The second
group comprises 19 underexpressed genes including EAN57 (Z82180), which
has been shown to be associated with breast cancer recurrence (Huang et al.,
2003), ZMIZ2, which interacts with androgen receptor (AR) and enhances
AR-mediated transcription, and H2A Histonine (Z80776), which is over ex-
pressed in prostate cancer (Ernst et al., 2002). Hence, this cluster seems to
correspond to genes that play a role in the occurrence of cancer. Overall, the
expression pattern for this cluster of subjects seems to suggest patients who,
in spite of their lymph-node status, are less predisposed to suffer from cancer.

22



6 Discusssion
A straightforward extension of the NPM involves allowing a different γ and ε
parameter for each cluster of rows. This provides additional flexibility without
a significant increase in computational expense. Another interesting extension
of the NPM involves the use of other species sampling models, such as those
described in Lijoi et al. (2005) and Lee et al. (2009), instead of the Poisson
Dirichlet process we employed in this paper.

As a simple alternative to the NPM model, nested clustering problem can
in principle be solved by sequentially applying traditional clustering proce-
dures, such as hierarchical or K-means clustering. However, our approach
has a number of theoretical and practical advantages. First of all, our ap-
proach automatically accounts for uncertainty in the number of clusters and
allows us to estimate these parameters without any additional computational
cost. Second, sequential clustering approaches ignore the uncertainty in the
clustering at the lowest levels of the sequence when clustering at the higher
levels. Finally, such approaches cannot deal with missing data or generate
predictions for new observations, and cannot be easily incorporated into hier-
archical models.
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A Correlation structure
Note that

E(θijθi′j′) = E

{
∞∑
k=1

∞∑
k′=1

∞∑
l=1

∞∑
l′=1

Pr(ζi = k, ζi′ = k′, ξkj = l, ξk′j′ = l′)φ∗klφ
∗
k′l′

}
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Table 4: List of clustered genes and their descriptions.
GeneBank Description

Accession Number
D80011 Human mRNA for KIAA0189 gene

AL080191 Homo sapiens mRNA
AF052177 Homo sapiens clone 24510 mRNA sequence
AF070536 Homo sapiens clone 24566 mRNA sequence

S83374 Glutamate transporter II variant B/HBGT IIB
M90357 Human basic transcription factor 3a (BTF3a) gene
W27762 Homo sapiens cDNA 37c6

AF052148 Homo sapiens clone 24507 mRNA sequence
AJ001481 Homo sapiens mRNA for DUX1 protein
AA492299 Homo sapiens cDNA ng80e03.s1

U57843 Human phosphatidylinositol 3-kinase delta catalytic
subunit mRNA

M16653 Human pancreatic elastase IIB mRNA, complete cds
AC005329 Homo sapiens chromosome 19, cosmid R34382

Z80776 Homo sapiens H2A/g gene
Z82180 Human DNA sequence from clone E81G9 on chromosome 22

AL022165 dJ71L16.4 (putative Chondroitin 6-Sulfotransferase like protein)
AF054910 Homo sapiens testicular tektin B1-like protein mRNA
AB015330 Homo sapiens HRIHFB2007 mRNA, partial cds
AJ011654 Homo sapiens mRNA for triple LIM domain protein
AA524802 Homo sapiens cDNA nh33h11.s1
AC004794 Homo sapiens chromosome 19, cosmid F20569
AF060865 Homo sapiens chromosome 16 zinc finger protein ZNF210
AC004410 Homo sapiens chromosome 19, fosmid 39554
AC004523 Homo sapiens chromosome 19, cosmid F22329

Z30643 Homo sapiens mRNA for chloride channel (putative)
D63789 Homo sapiens DNA for SCM-1beta precursor, complete cds

AI200373 Homo sapiens cDNA, 3’end, qf98c03.x1
X95289 Homo sapiens mRNA for HCGIX protein
X73079 Homo sapiens encoding Polymeric immunoglobulin receptor
D89094 Homo sapiens mRNA for 3,5 -cyclic GMP phosphodiesterase
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When i 6= i′ and j 6= j′,

Pr(ζi = k, ζi′ = k′, ξij = l, ξi′j′ = l′) = Pr(ζi = k)Pr(ζi′ = k′)Pr(ξkj = l)Pr(ξk′j′ = l′)

and therefore

E(θijθi′j′) =
∞∑
k=1

∞∑
k′=1

∞∑
l=1

∞∑
l′=1

E(wkwk′πklπk′l′)EG0(φ
∗
klφ
∗
k′l′)

=
∞∑
k=1

∞∑
l=1

E(w2
k)E(π2

kl)EG0(φ
∗2
kl )−

∞∑
k=1

∞∑
l=1

E(w2
k)E(π2

kl) {EG0(φ
∗
kl)}

2 +

∞∑
k=1

∞∑
k′=1

∞∑
l=1

∞∑
l′=1

E(wkwk′)E(πklπk′l′) {EG0(φ
∗
kl)}

2

= VarG0(φ
∗
11)

∞∑
k=1

∞∑
l=1

E(w2
k)E(π2

kl) + {EG0(φ
∗
11)}2

=
(1− α)

(1 + β)

(1− γ)

(1 + ε)
VarG0(φ

∗
11) + {EG0(φ

∗
11)}2

because
∞∑
k=1

E(w2
k) = Pr(ζ1 = ζ2) =

1− α
1 + β

and
∞∑
k=1

E(π2
kl) = Pr(ξk1 = ξk2) =

1− γ
1 + ε

.

Similarly, when i = i′ and j 6= j′,

Pr(ζi = k, ζi′ = k′, ξkj = l, ξk′j′ = l′) =

{
Pr(ζi = k)Pr(ξkj = l)Pr(ξkj′ = l′) k = k′

0 k 6= k′
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and therefore

E(θijθi′j′) =
∞∑
k=1

∞∑
l=1

∞∑
l′=1

E(wkπklπk′l′)EG0(φ
∗
klφ
∗
kl′)

=
∞∑
l=1

∞∑
l′=1

E(π1lπ1l′)EG0(φ
∗
1lφ
∗
1l′)

= VarG0(φ
∗
11)

∞∑
l=1

E(π1lπ1l′) + {EG0(φ
∗
11)}2 =

1− γ
1 + ε

VarG0(φ
∗
11) + {EG0(φ

∗
11)}2 .

Finally, when i 6= i′ and j = j′,

E(θijθi′j′) =
∞∑
k=1

E(w2
k)EG0(φ

∗2
k1)−

∞∑
k=1

E(w2
k) {EG0(φ

∗
kl)}

2 +

∞∑
k=1

∞∑
k′=1

∞∑
l=1

∞∑
l′=1

E(wkwk′)E(πklπk′l′) {EG0(φ
∗
kl)}

2

= VarG0(φ
∗
11)

∞∑
k=1

E(w2
k) + {EG0(φ

∗
11)}2 =

1− α
1 + β

VarG0(φ
∗
11) + {EG0(φ

∗
11)}2 .
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MACEACHERN, S. N. & MÜLLER, P. (1998). Estimating mixture of Dirich-
let process models. Journal of Computational and Graphical Statistics 7,
223–238.

MCCLOSKEY, J. W. (1965). A Model for the Distribution of Individuals by
Species in an Environment. Ph.D. thesis, Michigan State University.

MEDVEDOVIC, M. & SIVAGANESAN, S. (2002). Bayesian infinite mix-
ture model-based clustering of gene expression profiles. Bioinformatics
18, 1194–1206.
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(a) C = .2
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(b) C = .5
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(c) C = .8

Figure 3: Heatmap showing the clustering of the 50 states and the District
of Columbia in the cancer mortality data resulting from three different cost
structures. C is the proportion of cost in misclassifying two units into the
same cluster. C = 0.2, C = 0.5 and C = 0.8 result in 9, 10 and 13 clusters
of states respectively.
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(a) State cluster 2
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(b) State cluster 5
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(c) State cluster 8

Figure 4: Heatmap showing the clustering of the 25 different types of cancer
for 3 selected clusters of states, using C = 0.5.
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(c) C = .8

Figure 5: Heatmap showing the clustering of the 148 subjects in the microar-
ray data resulting from three different cost structures. C is the relative cost of
misclassifying two units into the same cluster. C = 0.2 and C = 0.5 give rise
to 17 clusters, while C = 0.8 give rise to 20 clusters.

35


