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Abstract. We propose a prior probability model for two distributions that are ordered according to

a stochastic precedence constraint, a weaker restriction than the more commonly utilized stochastic

order constraint. The modeling approach is based on structured Dirichlet process mixtures of nor-

mal distributions. Full inference for functionals of the stochastic precedence constrained mixture

distributions is obtained through a Markov chain Monte Carlo posterior simulation method. A

motivating application involves study of the discriminatory ability of continuous diagnostic tests

in epidemiologic research. Here, stochastic precedence provides a natural restriction for the dis-

tributions of test scores corresponding to the non-infected and infected groups. Inference under

the model is illustrated with data from a diagnostic test for Johne’s disease in dairy cattle. We

also apply the methodology to comparison of survival distributions associated with two distinct

conditions, and illustrate with analysis of data on survival time after bone marrow transplantation

for treatment of leukemia.
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1 Introduction

In certain applications, including problems in the biomedical sciences, that involve comparison

of two populations, there is interest in incorporating a stochastic relationship between the corre-

sponding distributions. In this context, the Bayesian paradigm provides an attractive modeling

framework, since any probability order constraint incorporated in the prior model is preserved to

the posterior analysis. In general, a key argument for forcing a particular order restriction in the

model (or estimation technique) for the two distributions is that the order constraint of interest

may not hold for the empirical distribution functions, especially, for small to moderate sample sizes.

Moreover, incorporation of the order restriction, if appropriate, can improve estimation efficiency

and predictive accuracy.

The most extensively studied probability order constraint in the applied probability literature

is stochastic ordering. The stochastic order relationship quantifies the notion that random variable

X1 tends to be smaller than random variable X2 by ordering the respective distribution functions F1

and F2. In particular, F1 is stochastically smaller than F2 (denoted by F1 ≤st F2) if F1(x) ≥ F2(x),

for all x. Furthermore, with regard to statistical modeling for data analysis, stochastic ordering is

the most commonly utilized type of probability order restriction. In particular, Bayesian testing

methods for stochastic ordering among a set of categorical random variables are discussed in Evans

et al. (1997), and a Bayesian nonparametric estimation method for stochastically ordered survival

functions is developed in Arjas and Gasbarra (1996). The more recent Bayesian nonparametrics

literature contains further modeling approaches for stochastic ordering, including Dirichlet process

based models (Gelfand and Kottas, 2001; Hoff, 2003; Dunson and Peddada, 2008), and methods

based on Pólya tree priors (Karabatsos and Walker, 2007; Hanson, Kottas and Branscum, 2008).

See Müller and Quintana (2004) and Hanson, Branscum and Johnson (2005) for reviews of Dirichlet

process and Pólya tree priors and their use in Bayesian nonparametric data analysis.

The stochastic order constraint is arguably restrictive for applications where a stochastic rela-
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tionship between two distributions is anticipated, but the ordering of the respective distribution

functions over their entire support is not a plausible constraint, especially, in the tails of the distribu-

tions. Arcones, Kvam and Samaniego (2002) introduced stochastic precedence, a weaker constraint

than stochastic order, which builds the restriction through Pr(X1 ≤ X2) for two independent ran-

dom variables X1 and X2 with distribution functions F1 and F2, respectively. Specifically, X1 is

said to stochastically precede X2 if Pr(X1 ≤ X2) ≥ 0.5, denoted by X1 ≤sp X2 or, equivalently,

F1 ≤sp F2. For example, the normal distribution is stochastic precedence constrained with respect

to its mean, in particular, N(θ1, σ
2
1) ≤sp N(θ2, σ

2
2) if and only if θ1 ≤ θ2, with no further restriction

needed on the variances σ2
1 and σ2

2 . Arcones, Kvam and Samaniego (2002) discussed potential ap-

plications for stochastic precedence, and developed classical nonparametric stochastic precedence

constrained estimators for F1 (with F2 assumed known) and for both F1 and F2.

Note that, under the Bayesian setting, the independence of random variables X1 and X2 in

the stochastic precedence definition is replaced with conditional independence. The conditioning

involves the parameters of distributions F1 and F2 under a parametric framework, or the random

distributions under a nonparametric prior model. Using the (conditional) independence of X1 and

X2, we have Pr(X1 ≤ X2) = EF2{F1(X2)} = EF1{1 − F2(X1)}, where the superscript indicates

the distribution with respect to which the expectation is taken. Hence, the stochastic precedence

assumption, F1 ≤sp F2, implies EF2{F1(X2)} ≥ 0.5 and EF1{F2(X1)} ≤ 0.5.

With regard to Bayesian estimation methods under stochastic precedence constraints, we are

only aware of the approach by Chen and Dunson (2004) for discrete random variables with finite

support. The approach is based on a prior for the cumulative probabilities of random variables

X1 and X2, which arises from the conjugate “product of independent ordered Dirichlet densities”

prior by direct truncation to incorporate the restrictions on the cumulative probabilities induced by

constraints EF2{F1(X2)} ≥ 0.5 and EF1{F2(X1)} ≤ 0.5. The resulting estimation method is applied

to stochastic precedence constrained survival functions, given right censored data, by partitioning

the support of the corresponding survival distributions into a finite number of intervals.
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We propose a semiparametric prior probability model, which, to our knowledge, represents

the first attempt to Bayesian modeling and inference for continuous distributions subject to the

stochastic precedence constraint. We achieve this through structured Dirichlet process mixtures

of normal distributions, using a result that yields a sufficient condition to preserve under mixing

the stochastic precedence property of the normal distribution. A posterior simulation method is

developed to obtain full inference for the stochastic precedence constrained distributions given data

that may include censoring.

The methodology is applied to a motivating problem from epidemiologic research involving study

of the discriminatory ability of a continuous diagnostic test for a particular infection (or disease). In

this application, stochastic precedence can be motivated as a practically important restriction for

the distributions of diagnostic test scores associated with the groups of non-infected and infected

subjects in the study. In particular, it forces a natural constraint on the values of the area under

the receiver operating characteristic (ROC) curve, a widely used graphical measure of the accuracy

of the continuous diagnostic test. Moreover, we consider applications to survival analysis problems

involving comparison of survival distributions associated with two distinct conditions.

The paper is organized as follows. In Section 2, we present the modeling approach, including

methods for posterior inference and prior specification, with technical details provided in the two

appendices. The methodology is illustrated in Section 3 with data on survival times after bone

marrow transplantation for treatment of leukemia, and on diagnostic test scores for Johne’s disease

in dairy cattle. Finally, Section 4 concludes with a summary.

2 Methods

Section 2.1 develops the semiparametric prior model for two stochastic precedence constrained

distributions. Posterior inference under the resulting Bayesian model is addressed in Section 2.2,

and an approach to prior specification is presented in Section 2.3. Section 2.4 discusses the extension
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to semiparametric regression modeling under the stochastic precedence restriction.

2.1 The modeling approach

We develop a semiparametric modeling approach for two continuous distributions F1 and F2, asso-

ciated with random variables X1 and X2, that are ordered according to the stochastic precedence

constraint. (We will use F1 and F2 to denote, depending on the context, either the distributions or

the corresponding distribution functions.) In particular, we seek a structured semiparametric prior

probability model for the pair of distribution functions (F1, F2) such that prior realizations F1 and

F2 satisfy the stochastic precedence restriction, F1 ≤sp F2, that is, Pr(X1 ≤ X2) ≥ 0.5. This will,

of course, preserve the restriction to the posterior realizations for F1 and F2. Such an approach is

in contrast to working with independent prior models for F1 and F2, and forcing by truncation the

F1 ≤sp F2 restriction in the posterior estimation method for F1 and F2.

We take the support for F1 and F2 to be the real line, R. The application to survival analysis

involves random variables T1 and T2 on R
+ corresponding to two survival distributions that we

wish to estimate under the stochastic precedence constraint, Pr(T1 ≤ T2) ≥ 0.5. But then, we

can apply the model for (F1, F2) on R to random variables X` = log(T`), ` = 1, 2, and use the

straightforward transformation to report inference for the survival functions on the original scale

(as in the data example of Section 3.1). Analogously, the illustration with epidemiological data

(Section 3.2) involves log-transformed test scores, although, in that case, inference on R suffices.

The proposed stochastic precedence constrained prior for (F1, F2) is based on semiparametric

location normal mixtures. Denote by N(m, s2) the normal distribution with mean m and variance

s2, and by FN (·;m, s2) and fN(·;m, s2) the corresponding distribution function and density func-

tion, respectively. The key result to building the prior model is given by the following lemma whose

proof is included in Appendix A.

Lemma. Consider the representation of F1 and F2 in terms of general location normal mixtures,

F`(x) ≡ F`(x;H`, σ
2
` ) =

∫

FN (x; θ, σ2
` ) dH`(θ), ` = 1, 2
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with stochastically ordered mixing distributions H1 and H2, that is, H1 ≤st H2. Then, F1 ≤sp F2.

The lemma provides a sufficient condition to preserve under mixing the stochastic precedence

property of the normal distribution discussed in the Introduction. Note that, although the result

is stated for the class of normal mixtures on which we focus, the proof can be readily extended for

general mixtures
∫

K(·; θ, ϕ`) dH`(θ), ` = 1, 2, provided the mixture kernel K(·; θ, ϕ) satisfies the

stochastic precedence restriction in the θ component of its parameter vector (θ, ϕ).

The result of the lemma gives rise to a constructive approach to defining a semiparametric

stochastic precedence prior model for (F1, F2). Along with parametric priors for σ2
1 and σ2

2 , what is

required is a nonparametric stochastically ordered prior for the pair of mixing distribution functions

(H1,H2). An approach to defining such a prior, which balances model flexibility and computational

complexity, is to use latent distribution functions on R, say G1 and G2, such that H1(·) = G1(·)

and H2(·) = G1(·)G2(·). Placing nonparametric priors on G1 and G2, taken to be independent for

computational convenience, induces a nonparametric prior on the space of stochastically ordered

distributions (H1,H2). In fact, it will be useful to think of H1 and H2 as the distribution of θ and

max{θ, φ}, respectively, where θ ∼ G1 and, independently, φ ∼ G2. This approach was discussed in

Gelfand and Kuo (1991), developed in Gelfand and Kottas (2001), and also used in Kottas, Branco

and Gelfand (2002) and Hanson, Kottas and Branscum (2008).

Now, the choice of the Dirichlet process (DP) prior (Ferguson, 1973) for G1 and G2 becomes

attractive as it yields a DP mixture structure for F1 and F2 (Antoniak, 1974; Escobar and West,

1995). We will use the generic notation G ∼ DP(α,G0) to indicate that a DP prior is assigned to

random distribution G, where α is the DP precision parameter and G0 is the DP centering distri-

bution. For later reference, it is useful to recall the costructive definition of the DP (Sethuraman,

1994). Based on this definition, the DP generates (almost surely) discrete distributions with a

countable number of possible values drawn independently from G0. The corresponding weights are

generated using a stick-breaking mechanism based on independent draws, {zr : r = 1, 2, ...}, from
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a Beta(1, α) distribution; specifically, the first weight is equal to z1 and, for i = 2, 3, ..., the i-th

weight is given by zi
∏i−1

r=1(1 − zr).

Hence, assuming independent DP priors for G1 and G2, we obtain the stochastic precedence

model for (F1, F2) as follows:

F1(x;G1, σ
2
1) =

∫

FN (x; θ, σ2
1)dG1(θ)

F2(x;G1, G2, σ
2
2) =

∫∫

FN (x;max{θ, φ}, σ2
2)dG1(θ)dG2(φ) (1)

G` | ψ`
ind.
∼ DP(α`,N(µ`, τ

2
` )), ` = 1, 2

where ψ` = (α`, µ`, τ
2
` ) are the hyperparameters of the DP prior for G`, ` = 1, 2. We place (in-

dependent) priors on the components of ψ`, specifically, for ` = 1, 2, p(µ`) = N(c`, d`), p(τ2
` ) =

inv-gamma(w`, e`), and p(α`) = gamma(aα`
, bα`

). Here, inv-gamma(a, b) denotes an inverse gamma

distribution with mean b/(a − 1) (provided a > 1), and gamma(a, b) stands for the gamma distri-

bution with mean a/b. Finally, we take p(σ2
` ) = inv-gamma(aσ`

, bσ`
), ` = 1, 2.

We note that, although its motivation and development is different, the final form of model

(1) is related to the DP mixture models from Kottas and Gelfand (2001) and Gelfand and Kottas

(2001). The former utilizes scale normal DP mixtures, with a common location parameter and

stochastically ordered mixing distributions, to model a particular form of variability order. The

latter develops a model for F1 ≤st F2 under which F1 and F2 are represented as in (1) albeit with

σ2
1 = σ2

2 ≡ σ2. Recall that the normal distribution satisfies the stochastic precedence constraint

in its mean with no further restriction on the variance parameters, i.e., N(θ1, σ
2
1) ≤sp N(θ2, σ

2
2)

if and only if θ1 ≤ θ2. However, stochastic ordering requires a common variance parameter, i.e.,

N(θ1, σ
2
1) ≤st N(θ2, σ

2
2) if and only if θ1 ≤ θ2 and σ2

1 = σ2
2 . Interestingly, location mixing with

stochastically ordered mixing distributions preserves this structure of the normal mixture kernel to

the resulting mixture distributions.
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2.2 Posterior inference

Let data = {x1,x2}, where x1 = {x1i : i = 1, ..., n1} and x2 = {x2j : j = 1, ..., n2}, be the data

vectors from distributions F1 and F2. The model for the data can be expressed in hierarchical form

by introducing latent mixing parameters θ = {θi : i = 1, ..., n1, n1 +1, ..., n1 +n2}, which, given G1,

are i.i.d. from G1, and φ = {φj : j = 1, ..., n2}, with the φj, given G2, i.i.d. from G2. Specifically,

x1i | θi, σ
2
1

ind.
∼ fN (x1i; θi, σ

2
1), i = 1, ..., n1

x2j | θn1+j , φj , σ
2
2

ind.
∼ fN (x2j ;max{θn1+j , φj}, σ

2
2), j = 1, ..., n2

θi | G1
i.i.d.
∼ G1, i = 1, ..., n1 + n2

φj | G2
i.i.d.
∼ G2, j = 1, ..., n2

G` | ψ`
ind.
∼ DP(α`,N(µ`, τ

2
` )), ` = 1, 2

(2)

with priors for ψ` = (α`, µ`, τ
2
` ) and σ2

` , for ` = 1, 2, as discussed in Section 2.1. The introduction of

the additional mixing parameters θn1+j , j = 1, ..., n2, is key for implementation of posterior simula-

tion, since the augmented vector θ preserves the first stage conditionally independent specification

in the hierarchical model after marginalizing in (2) the random distributions G1 and G2 over their

DP priors.

The hierarchical model formulation in (2) assumes fully observed realizations from distributions

F1 and F2. To handle censoring, the normal density in the first stage specification of the model is

replaced by appropriate functions of the corresponding distribution function. For instance, assume

that F1 and F2 model survival times, on the logarithmic scale, for two distinct groups of subjects.

Consider data, on the original scale, for the first group that comprise observed survival times

{t1i : i = 1, ..., n1o} and right censored survival times {t+1k : k = 1, ..., n1c}, and thus n1 = n1o +n1c.

Then, the first stage of model (2) becomes
∏n1o

i=1 fN (x1i; θi, σ
2
1)

∏n1c

k=1{1 − FN (x+
1k; θk, σ

2
1)}, where

x1i = log(t1i) and x+
1k = log(t+1k). A similar modification is applied to the second stage of model (2)

if the data vector from the second group includes right censored survival times, and the approach

is analogous for left or interval censored observations.
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The full posterior distribution corresponding to model (2) can be written as

p(G1, G2,θ,φ, σ2
1 , σ

2
2 ,ψ1,ψ2 | data) = p(G1 | θ,ψ1)p(G2 | φ,ψ2)p(θ,φ, σ2

1 , σ
2
2 ,ψ1,ψ2 | data)

where p(θ,φ, σ2
1 , σ

2
2 ,ψ1,ψ2 | data) is the marginal posterior that arises from model (2) by inte-

grating out G1 and G2 over their DP priors. Appendix B provides details on Markov chain Monte

Carlo (MCMC) sampling from this posterior distribution given data that may include censored

observations.

To obtain inference for G`, ` = 1, 2, we use the draws {θb,φb, σ
2
1,b, σ

2
2,b,ψ1,b,ψ2,b : b = 1, ..., B}

from p(θ,φ, σ2
1 , σ

2
2 ,ψ1,ψ2 | data) to sample from p(G1 | θ,ψ1) and p(G2 | φ,ψ2). Based on results

from Antoniak (1974), the former is a DP distribution with precision parameter α1 + n1 + n2 and

centering distribution G′
1,0(·;θ,ψ1) = α1(α1+n1+n2)

−1N(·;µ1, τ
2
1 ) + (α1+n1+n2)

−1
∑n1+n2

i=1 δθi
(·);

the latter denotes a DP with precision parameter α2+n2 and centering distribution G′
2,0(·;φ,ψ2) =

α2(α2+n2)
−1N(·;µ2, τ

2
2 ) + (α2+n2)

−1
∑n2

j=1 δφj
(·). (Here, δy(·) denotes a point mass at y.) To sam-

ple from p(G1 | θ,ψ1) and p(G2 | φ,ψ2), we employ the DP stick-breaking representation, discussed

in Section 2.1, with a truncation approximation (e.g., Gelfand and Kottas, 2002; Kottas, 2006).

In particular, the posterior samples for G`, ` = 1, 2, are of the form G`,b(·) =
∑K`

k=1 ω
(`)
k,bδy

(`)
k,b

(·).

Here, the y
(1)
k,b , k = 1, ...,K1, are i.i.d. from G′

1,0(·;θb,ψ1,b), the y
(2)
k,b , k = 1, ...,K2, are i.i.d. from

G′
2,0(·;φb,ψ2,b), and the stick-breaking weights {ω

(1)
k,b : k = 1, ...,K1}, and {ω

(2)
k,b : k = 1, ...,K2}, are

built from i.i.d. Beta(1, α1,b + n1 + n2) and Beta(1, α2,b + n2) draws, respectively. The truncation

levels can be chosen such that the DP weights mass is covered up to any desired tolerance ε; for

example, K1 and K2 can be specified from {(n1 + n2 + maxb α1,b)/(n1 + n2 + 1 + maxb α1,b)}
K1 =

{(n2 + maxb α2,b)/(n2 + 1 + maxb α2,b)}
K2 = ε.

Having collected posterior samples for G`, ` = 1, 2, we can obtain full inference for F1(·;G1, σ
2
1)

and F2(·;G1, G2, σ
2
2), and for any of their functionals that may be of interest. For instance, for

any specified point x0 in R, {f1,b(x0) =
∫

fN(x0; θ, σ2
1,b)dG1,b(θ) : b = 1, ..., B} and {f2,b(x0) =

∫∫

fN(x0;max{θ, φ}, σ2
2,b)dG1,b(θ)dG2,b(φ) : b = 1, ..., B} are samples from the posteriors of the
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mixture densities f1(x0;G1, σ
2
1) and f2(x0;G1, G2, σ

2
2) at x0. Sampling from these posterior distri-

butions over a grid of x0 values, yields B posterior realizations for the random density functions

f1(·;G1, σ
2
1) and f2(·;G1, G2, σ

2
2), which can be summarized with point and interval estimates.

Furthermore, consider the survival analysis application involving comparison of two groups

with associated random variables T1 and T2 on R
+, which are modeled through F1 and F2 on

the logarithmic scale. Then, S1,b(t0) = 1 − F1,b(log(t0)) = 1 −
∫

FN (log(t0); θ, σ2
1,b)dG1,b(θ), for

b = 1, ..., B, yields the posterior distribution for the survival function of T1 at any specified point t0

in R
+. Repeating over a grid of t0 values, produces B posterior realizations for the random survival

function of the first group, which can be further inverted (with interpolation) to provide posterior

samples for the corresponding median survival time, or, more generally, for any percentile survival

time of interest. Inference for the survival function and median survival time of the second group

is obtained in the same fashion.

Of interest will also be inference for the probability that forms the basis of the stochastic

precedence constraint definition. Again, let X1 and X2 be random variables with distributions

F1(·;G1, σ
2
1) and F2(·;G1, G2, σ

2
2). Then, using the same derivation as in Appendix A,

Pr(X1 ≤ X2;G1, G2, σ
2
1 , σ

2
2) =

∫ ∫

EFN (·;max{θ,φ},σ2
2){FN (U ; θ, σ2

1)}dG1(θ)dG2(φ), (3)

where the expectation is taken with respect to random variable U with distribution N(max{θ, φ}, σ2
2).

With F−1
N (·;m, s2) denoting the inverse distribution function of the N(m, s2) distribution, we can

write A(θ, φ, σ2
1 , σ

2
2) ≡ EFN (·;max{θ,φ},σ2

2){FN (U ; θ, σ2
1)} =

∫ 1
0 FN (F−1

N (1−z;max{θ, φ}, σ2
2); θ, σ2

1) dz,

which thus allows efficient numerical integration for A(θ, φ, σ2
1 , σ

2
2) over a bounded interval. Finally,

using the posterior samples for (G1, G2) and (σ2
1 , σ

2
2), we obtain posterior realizations {Pr(X1 ≤

X2;G1,b, G2,b, σ
2
1,b, σ

2
2,b) : b = 1, ..., B} through either direct evaluation or, more efficiently, Monte

Carlo integration of (3).

The prior distribution for Pr(X1 ≤ X2;G1, G2, σ
2
1 , σ

2
2) can be obtained in a similar fashion by

sampling, with a truncation approximation, from the DP prior distributions for G1 and G2. Anal-
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ogously, we can sample from the prior distribution for any functional of the mixture distributions

F1(·;G1, σ
2
1) and F2(·;G1, G2, σ

2
2).

2.3 Prior specification

Prior specification for model (1) requires choosing the prior parameter values for the normal kernel

variances σ2
1 and σ2

2 , the DP precision parameters α1 and α2, and the normal centering distributions

means, µ1 and µ2, and variances, τ 2
1 and τ2

2 . Relatively vague inverse gamma priors for σ2
1 and σ2

2

are obtained by setting their means equal to, say, (R/6)2 using a guess, R, at the range of the data

from both populations. In general, we set to 2 the shape parameters, aσ`
and w`, ` = 1, 2, of the

inverse gamma priors, resulting in infinite variances (thus, dispersed priors) and prior means given

by the rate parameters, bσ`
and e`, ` = 1, 2.

The DP precision parameters α1 and α2 control the prior distribution for the number of distinct

components n∗
θ and n∗

φ in vectors θ and φ (e.g., Escobar and West, 1995). For instance, for

moderately large n1 and n2, E(n∗
θ | α1) ≈ α1 log{(α1 +n1 +n2)/α1} and E(n∗

φ | α2) ≈ α2 log{(α2 +

n2)/α2}. Then, the choice of the parameters for the gamma priors on α1 and α2 can be guided by

E(n∗
θ) and E(n∗

φ) the values of which can be approximated by averaging E(n∗
θ | α1) and E(n∗

φ | α2)

over the particular gamma priors.

Finally, to specify the priors for (µ1, τ
2
1 ) and (µ2, τ

2
2 ), we work with the prior predictive den-

sities, E(f1(·;G1, σ
2
1)) and E(f2(·;G1, G2, σ

2
2)), which depend on parameters of the DP centering

distributions, but not on the DP precision parameters. Specifically,

E(f1(x0;G1, σ
2
1)) =

∫

fN (x0; θ0, σ
2
1)fN (θ0;µ1, τ

2
1 )p(µ1)p(τ2

1 )p(σ2
1)dθ0dσ2

1dµ1dτ2
1

and

E(f2(x0;G1, G2, σ
2
2)) =

∫∫

fN (x0;max{θ0, φ0}, σ
2
2)fN (θ0;µ1, τ

2
1 )fN (φ0;µ2, τ

2
2 )

p(µ1)p(τ2
1 )p(µ2)p(τ2

2 )p(σ2
1)p(σ2

2)dθ0dφ0dσ2
1dσ2

2dµ1dτ2
1 dµ2dτ2

2 .

Now, having chosen the prior for σ2
1 , the priors for (µ1, τ

2
1 ) can be specified by matching E(f1(·;G1, σ

2
1))

with rough prior guesses at the center and range of the data from the first population. After the
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priors for (µ1, τ
2
1 ) are determined, a similar approach can be used for the priors of (µ2, τ

2
2 ). For

a less informative, and simpler, specification, we replace E(f2(·;G1, G2, σ
2
2)) with the correspond-

ing prior predictive density under independent DP mixture prior models for F1 and F2, i.e., with

E(f2(·;G2, σ
2
2)) that has the same form with E(f1(·;G1, σ

2
1)). Then, the same priors for (µ1, τ

2
1 ) and

(µ2, τ
2
2 ) can be used based on a proxy for the center and range of the data from both populations.

2.4 Regression modeling under stochastic precedence constraints

Here, we discuss a possible extension of the modeling approach for two stochastic precedence

constrained distributions to survival regression settings, where the stochastic precedence restriction

for the response X = log(T ) is with respect to the values of a binary covariate, for instance,

corresponding to different treatments. Let z0 denote this covariate (with values z0 = 1, 2) and z

be the vector of other covariates, which are common to both groups of responses induced by z0.

It is useful to recall that the stochastic order restriction can be readily incorporated in tra-

ditional survival regression models, e.g., accelerated failure time or proportional hazards models.

For instance, under the accelerated failure time regression setting, X = z0β0 + z′β + ε, where

the response distribution is defined through a baseline survival function, S0(t), for exp(ε). (The

vector z can be augmented with a vector of ones so that β includes an intercept term.) Then, the

survival function for responses associated with the first group (where z0 = 1) is given by S1(t) =

S0(t exp(−β0 − z
′β)), whereas for z0 = 2, S2(t) = S0(t exp(−2β0 − z

′β)). Hence, the prior restric-

tion β0 > 0 implies stochastic ordering, X1 ≤st X2, for the response random variables X` = log(T`),

` = 1, 2, corresponding to the two groups. In particular, if a N(0, σ2) distribution is assumed for

ε (implied by a lognormal baseline survival distribution), we obtain N(θ` + z′β, σ2) distributions

for X`, ` = 1, 2, where θ1 = β0 and θ2 = 2β0, which are stochastically ordered when β0 > 0. The

more general assumption of a N(0, σ2
z0

) distribution for ε results in the stochastic precedence order

constraint X1 ≤sp X2, again, under the β0 > 0 prior restriction.

A semiparametric DP mixture extension of the parametric model above can be developed fol-
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lowing an approach similar to the one in Section 2.1. In this case, the mixture model for X` assumes

the form F`(x;H`, σ
2
` ,β) =

∫

FN (x; θ + z′β, σ2
` ) dH`(θ), ` = 1, 2, with H1 ≤st H2. The proof of the

lemma in Appendix A can be extended to show that X1 ≤sp X2 (and thus T1 ≤sp T2), that is, we

obtain stochastic precedence constrained regressions under the two groups defined by covariate z0.

The methods of Section 2.2 (and Section 2.3) can also be readily modified to develop predictive

inference under this regression setting.

3 Data Illustrations

3.1 A survival analysis data example

For an application of the model to a survival analysis setting, we consider a data set involving

survival time in days after bone marrow transplantation for treatment of acute leukemia. The

data samples three populations, an ALL (acute lymphoblastic leukemia) group, an AML (acute

myeloctic leukemia) low-risk group, and an AML high-risk group. The data set is provided in Klein

and Moeschberger (1997, Section 1.3) where further details can be found. Here, we focus on the

ALL group and the AML high-risk group. Both sample sizes are fairly small, 38 for the ALL group,

including 14 right censored survival times, and 45 for the AML high-risk group, including 11 right

censored observations. The Kaplan-Meier estimates for the corresponding survival functions are

plotted in Figure 1, with “+” denoting the censored survival times for each group.

The data suggest larger survival times for the ALL group compared to the AML high-risk group.

Hence, to illustrate inference for two survival distributions subject to the stochastic precedence

constraint, we apply model (1) with F1(·;G1, σ
2
1) and F2(·;G1, G2, σ

2
2) representing the survival

distributions on the log scale for the AML high-risk group and ALL group, respectively.

We adopt priors following the approach of Section 2.3. In particular, we take: N(5, 4) priors

for µ1 and µ2; inv-gamma(2, 5) priors for τ 2
1 and τ2

2 ; inv-gamma(2, 4) priors for σ2
1 and σ2

2 ; and

gamma(2, 2) priors for α1 and α2. Given the small sample sizes in this example, there was limited
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learning for some of the DP prior hyperparameters, in particular, for the τ 2
` and α`, ` = 1, 2.

However, posterior inference for functionals of the mixture distributions was fairly robust to more

dispersed priors that were studied for all hyperparameters.

Figure 1 plots point (posterior mean) and 95% interval estimates for the survival functions.

The uncertainty bands are compatible with the small sample sizes and the level of censoring. In

fact, in the AML high-risk group, the censored times are larger than all but one of the observed

survival times. This suggests the possibility of a heavy tail for this population, which is supported

by the posterior mean estimate of the AML high-risk group survival function. Figure 1 shows also

the posterior densities for median survival time under the two groups.

Finally, with regard to analysis of the data without an order restriction, note that Gelfand and

Kottas (2002) studied this data set also working on the log scale, but with unrestricted location-scale

DP mixtures of normals. Based on that model, point (posterior median) and 95% interval estimates

for the difference of median survival times between the ALL and AML high-risk group were 271.7

and (−52.8, 1123.3). The corresponding posterior estimates under the stochastic precedence DP

mixture model are 153.2 and (−1.4, 914.1). The reduced uncertainty in the posterior distribution for

the contrast of median survival times indicates that the incorporation of the stochastic precedence

restriction in the modeling has improved estimation efficiency.

3.2 ROC data application

The evaluation of the discriminatory ability of a continuous diagnostic measure is an important task

in both human and veterinary epidemiologic research. Here, we consider the gold standard setting

under which infection (or disease) status is assumed known, and thus the data comprise samples

of n1 and n2 individuals drawn from the non-infected and infected populations, respectively. A

continuous diagnostic test is applied to all sampled individuals, resulting in n1 + n2 test outcomes.

We generically refer to the data as serology scores. Serology scores measure the concentration

of antigen-specific antibodies in serum. Commonly used continuous diagnostic measures result in
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an optical density value or a serum-to-positive ratio for an enzyme linked immunosorbent assay

(ELISA) serological test. A relatively large serology score indicates that the test detected a high

concentration of analytes that are suggestive of infection presence. A relatively low serology score

indicates the absence of such analytes. Let X1 and X2 be the random variables that represent

serology scores of the non-infected and infected populations, respectively, and denote by F1 and F2

the corresponding distribution functions.

The ROC curve is a commonly utilized graphical measure of the accuracy of a continuous

diagnostic test. It represents a plot of all possible pairs of true positive probability versus false

positive probability across all cutoff values k that could be used to dichotomize the data into test

positive or negative categories. That is, the ROC curve represents the plot (1 − F1(k), 1 − F2(k))

for all cutoff values k, and is thus defined by ROC(u) = 1 − F2(F
−1
1 (1 − u)), u ∈ (0, 1). A

standard summary performance measure based on the ROC curve is the area under the curve,

AUC =
∫ 1
0 ROC(u) du. The AUC has a useful interpretation as the probability that a randomly

selected infected individual has a serology score that is greater than that for a randomly selected

non-infected individual, i.e., AUC = Pr(X1 ≤ X2) (e.g., Bamber, 1975).

In practice, distributions F1 and F2 often exhibit non-standard features such as multimodality

and skewness. This is especially true for the distribution of serology scores for the infected pop-

ulation, which is typically a composite of individuals in different stages of infection. In this case,

individuals in an advanced infection stage are expected to have higher serology scores as compared

to newly infected individuals. In general, parametric distributions will not be sufficiently flexible to

model F1 and F2. Indeed, there is a vast literature on nonparametric frequentist techniques (e.g.,

Pepe, 2003), whereas the amount of existing Bayesian work is, by comparison, limited. Bayesian

nonparametric methods include Erkanli et al. (2006), based on normal DP mixtures, and Hanson,

Kottas and Branscum (2008) where both DP mixture prior and mixture of Pólya tree prior models

were used subject to the stochastic order restriction F1 ≤st F2.

From a biological point of view, incorporating some form of stochastic relationship in the model
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for F1 and F2 is essentially always appropriate, since serologic values for infected individuals tend

to be larger than serologic values for non-infected individuals, provided the diagnostic test has

reasonable discriminatory ability. In fact, AUC ≥ 0.5 specifies a natural constraint on ROC curves

that effectively any diagnostic test must satisfy. But then, stochastic precedence, F1 ≤sp F2,

emerges as a key model restriction that can be studied alternative to, or in conjunction with, the

stochastic order constraint.

To illustrate, we consider one of the data sets analyzed in Hanson, Kottas and Branscum (2008)

involving a commercially available ELISA kit (developed by the Synbiotic Corp. in San Diego,

California) designed to detect antibodies to Johne’s disease (Mycobacterium avium paratuberculosis,

MAP) in dairy cattle. In the U.S., Johne’s disease is an endemic, incurable wasting disease that

leads to appreciable annual economic loss sustained by the dairy industry. The data set comprises

log-transformed serology scores from n1 = 345 non-infected and n2 = 258 infected cows. The non-

infected cows came from 7 Minnesota herds that satisfied certain disease freedom criteria. Infected

cows came from 7 Wisconsin herds with positive Johne’s disease herd level prevalence; individual

cows from infected herds were defined to be cases if MAP organisms were identified through fecal

culture. The data is part of a study conducted by Collins et al. (2005), where details on data

collection and diagnostic testing procedures can be found.

We employ the stochastic precedence constrained DP mixture model (1), where F1(·;G1, σ
2
1) and

F2(·;G1, G2, σ
2
2) correspond to the serology score distributions (on the log scale) for the non-infected

and infected groups, respectively. Following again the approach of Section 2.3, the priors used in the

analysis were as follows: µ1, µ2 ∼ N(2, 4), τ 2
1 , τ2

2 ∼ inv-gamma(2, 5), α1, α2 ∼ gamma(5, 0.5), and

σ2
1 , σ

2
2 ∼ inv-gamma(2, 2.5). There was prior to posterior learning for all model hyperparameters,

the more sensitive to the prior choice being τ 2
1 and τ2

2 . Moreover, posterior inference for the

mixture distributions, including all the results discussed below, was essentially unaffected from

choices involving higher levels of prior dispersion for µ1, µ2, τ2
1 , τ2

2 and σ2
1 , σ2

2, as well as less

dispersed priors for α1, α2.
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In Figure 2 we plot posterior mean and 95% interval estimates for the non-infected and infected

group density functions. These are obtained as discussed in Section 2.2, in particular, the solid lines

correspond to the estimates for E(f1(x0;G1, σ
2
1) | data) and E(f2(x0;G1, G2, σ

2
2) | data) over a grid

of x0 values in (−1.5, 6.5). Contrasting with the prior predictive densities indicates the amount of

prior to posterior learning, as well as a relatively non-informative prior specification. The model

captures the bimodal shape of the infected group density, and, consistent with the available sample

sizes, yields narrower uncertainty bands for the non-infected group density. The top panels of Figure

3 show the analogous inference for the non-infected and infected group distribution functions. Also

included in Figure 3 are posterior mean and 95% interval estimates for the ROC curve, and the

posterior density for the AUC, both suggesting a moderately accurate ELISA test. Comparison of

the prior and posterior AUC densities indicates again a fair amount of learning from the data.

We also consider comparison with the stochastically ordered DP mixture model discussed at

the end of Section 2.1, and applied to this data set in Hanson, Kottas and Branscum (2008). Under

this model, the serology score distribution (on the log scale) for the non-infected group is assumed

stochastically smaller than the one for the infected group. The priors for µ1, µ2, τ2
1 , τ2

2 , and α1,

α2 were the same with the ones above for the stochastic precedence constrained model, and the

common σ2 parameter was assigned an inv-gamma(2, 2.5) prior. Figure 4 compares the posterior

mean estimates for the non-infected and infected group distribution functions under the two models.

By construction, the stochastic order model forces uniform domination of one distribution function

by the other, whereas under the stochastic precedence model, the estimated distribution functions

cross each other in their left tails, i.e., for log(serology score) values up to about 1. Noting that

such values are within the range of the data for both groups, suggests that stochastic precedence

may be a more appropriate constraint than stochastic order for this data set.

This is further supported by formal model comparison between the stochastic order and stochas-

tic precedence models, using the posterior predictive loss criterion from Gelfand and Ghosh (1998).

In general, this model comparison approach is based on the mean, E(M)(x∗
i | data), and variance,
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Var(M)(x∗
i | data), under model M, of the posterior predictive distribution for replicate responses x∗

i

corresponding to observed responses xi, i = 1, ..., n. The criterion favors the model, M, that mini-

mizes the predictive loss measure, D(M) = P (M)+G(M), where P (M) =
∑n

i=1 Var(M)(x∗
i | data)

is a penalty term for model complexity, and G(M) =
∑n

i=1{xi − E(M)(x∗
i | data)}2 is a goodness-

of-fit term. Under our setting, since both models induce structured dependence in the distributions

for the non-infected and infected groups, it seems appropriate to consider the two components

of the criterion for all responses from both groups. Hence, the goodness-of-fit term comprises

G(M) =
∑n1

i=1{x1i − E(M)(x∗
1i | data)}2 +

∑n2
j=1{x2j − E(M)(x∗

2j | data)}2, and the penalty

term P (M) =
∑n1

i=1 Var(M)(x∗
1i | data) +

∑n2
j=1 Var(M)(x∗

2j | data). All the required expressions

are readily estimated under both models by sampling from the posterior predictive distributions

P (x∗
1i | data), for i = 1, ..., n1, and P (x∗

2j | data), for j = 1, ..., n2. In particular, under the stochas-

tic precedence model, P (x∗
1i | data) =

∫

FN (x∗
1i; θi, σ

2
1)p(θi, σ

2
1 | data) dθidσ2

1 , and P (x∗
2j | data) =

∫

FN (x∗
2j ;max{θn1+j, φj}, σ

2
2)p(θn1+j , φj , σ

2
2 | data) dθn1+jdφjdσ2

2 . Based on the results, reported

in Table 1, the stochastic order model performs slightly better with regard to the penalty term,

whereas the stochastic precedence model fares better with the goodness-of-fit term; overall, the

criterion favors the stochastic precedence DP mixture model.

4 Summary

Stochastic precedence relaxes the restriction of the familiar stochastic ordering constraint, and

thus, provides a practically useful setting for comparison of two distributions that are anticipated

to be ordered in a stochastic fashion. We have developed a semiparametric Bayesian model for two

stochastic precedence constrained continuous distributions, along with the corresponding inference

framework. The modeling approach is based on location normal Dirichlet process mixtures, which

are appropriately structured to ensure that all realizations from the prior probability model sat-

isfy the stochastic precedence restriction. We have presented applications of the methodology to
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problems from survival analysis and epidemiologic research, including two data illustrations, one

comprising survival times after bone marrow transplantation for treatment of leukemia, and one

involving diagnostic test scores for Johne’s disease in dairy cattle.
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Appendix A: Proof of the lemma of Section 2.1

Let X`, ` = 1, 2, be random variables, defined on a common probability space, with distributions

F`(·) ≡ F`(·;H`, σ
2
` ) =

∫

FN (·; θ, σ2
` ) dH`(θ), ` = 1, 2. Assuming that H1 ≤st H2, we need to prove

that F1(·;H1, σ
2
1) ≤sp F2(·;H2, σ

2
2), i.e., that Q = Pr(X1 ≤ X2;H1,H2, σ

2
1 , σ

2
2) ≥ 0.5.

The probability of interest can be expressed as follows:

Q = EF2(·;H2,σ2
2){F1(X2;H1, σ

2
1)}

=
∫ ∞
−∞ F1(u;H1, σ

2
1)f2(u;H2, σ

2
2) du

=
∫ ∞
−∞{

∫

θ1∈R
FN (u; θ1, σ

2
1)dH1(θ1)}{

∫

θ2∈R
fN (u; θ2, σ

2
2)dH2(θ2)}du

=
∫

θ1∈R

∫

θ2∈R
{
∫ ∞
−∞ FN (u; θ1, σ

2
1)fN (u; θ2, σ

2
2) du}dH1(θ1)dH2(θ2)

=
∫

θ1∈R

∫

θ2∈R
Pr(Y1 ≤ Y2; θ1, θ2, σ

2
1 , σ

2
2) dH1(θ1)dH2(θ2)

where Y1 and Y2 are random variables, defined on the same probability space, which are condition-

ally independent, given θ1, θ2, σ2
1 and σ2

2 , with distributions N(θ1, σ
2
1) and N(θ2, σ

2
2), respectively.

Therefore, we will have Pr(Y1 ≤ Y2; θ1, θ2, σ
2
1 , σ

2
2) ≥ 0.5 if and only if θ1 ≤ θ2 with probability 1.

Next, consider θ1 ∼ H1 and θ2 ∼ H2, and recall the characterization of the stochastic order

restriction H1 ≤st H2, which is assumed for the mixing distributions H1 and H2. Based on this

characterization, H1 ≤st H2 if and only if there exist copies θ′1 and θ′2 of θ1 and θ2 (i.e., random

variable θ′` has the same distribution with θ`, ` = 1, 2), which are defined on the same probability
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space, and θ′1 ≤ θ′2 with probability 1 (see, e.g., Shaked and Shanthikumar, 1994, Theorem 1.A.1).

Hence, using the stochastic precedence property of the normal distribution, we finally obtain

Pr(X1 ≤ X2;H1,H2, σ
2
1 , σ

2
2) =

∫

θ1∈R

∫

θ2∈R
Pr(Y1 ≤ Y2; θ1, θ2, σ

2
1 , σ

2
2) dH1(θ1)dH2(θ2)

≥ 0.5
∫

θ1∈R

∫

θ2∈R
dH1(θ1)dH2(θ2) = 0.5.

Appendix B: MCMC posterior simulation methods

Here, we provide details on the MCMC posterior simulation method from the marginal posterior

p(θ,φ, σ2
1 , σ

2
2 ,ψ1,ψ2 | data) of model (2) developed in Sections 2.1 and 2.2.

MCMC sampling for fully observed responses. Consider first the case where there are

no censored observations among the data. Then, we have

p(θ,φ, σ2
1 , σ

2
2 ,ψ1,ψ2 | data) ∝ p(ψ1)p(ψ2)p(σ2

1)p(σ2
2)p(θ | ψ1)p(φ | ψ2)

n1
∏

i=1
fN(x1i; θi, σ

2
1)

n2
∏

j=1
fN(x2j ;max{θn1+j, φj}, σ

2
2)

where p(ψ`), ` = 1, 2, are the priors for the DP hyperparameters discussed in Section 2.1, and

p(σ2
1), p(σ2

2) are the inverse gamma priors for σ2
1 , σ2

2 . Moreover, p(θ | ψ1) and p(φ | ψ2) denote

the priors for the vectors of mixing parameters induced by the DP priors after marginalizing G1

and G2 in model (2). These prior distributions are built from a generalized Pólya urn scheme

(Blackwell and MacQueen, 1973). In particular, for θ, θ1 follows a N(µ1, τ
2
1 ) distribution, and

for any i = 2, ..., n1 + n2, θi, conditionally on θ1,...,θi−1, follows a mixed distribution with point

masses (α1 + i− 1)−1 at θr, r = 1, ..., i − 1, and continuous mass α1(α1 + i− 1)−1 on the N(µ1, τ
2
1 )

distribution. Hence,

p(θ | ψ1) = fN(θ1;µ1, τ
2
1 )

n1+n2
∏

i=2

{

α1(α1 + i − 1)−1fN (θi;µ1, τ
2
1 ) + (α1 + i − 1)−1

i−1
∑

r=1

δθr
(θi)

}

(B.1)

and, analogously,

p(φ | ψ2) = fN(φ1;µ2, τ
2
2 )

n2
∏

i=2

{

α2(α2 + i − 1)−1fN (φi;µ2, τ
2
2 ) + (α2 + i − 1)−1

i−1
∑

r=1

δφr
(φi)

}

.
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To sample from p(θ,φ, σ2
1 , σ

2
2 ,ψ1,ψ2 | data), we use an MCMC algorithm that combines tech-

niques from Escobar and West (1995) and Neal (2000). Regarding the MCMC updates for θ

and φ, note that based on (B.1), the prior full conditional for each θi, p(θi | {θr : r 6= i},ψ1),

i = 1, ..., n1 + n2, has point masses (α1 + n1 + n2 − 1)−1 at θr, r 6= i, and continuous mass

α1(α1 + n1 + n2 − 1)−1 on the N(µ1, τ
2
1 ) distribution. Analogously, each φj , j = 1, ..., n2, has a

mixed prior full conditional distribution, p(φj | {φr : r 6= j},ψ2), with point masses (α2 +n2−1)−1

at φr, r 6= j, and continuous mass α2(α2 + n2 − 1)−1 on the N(µ2, τ
2
2 ) distribution. Therefore, it

is straightforward to sample directly from the posterior full conditional for each θi, i = 1, ..., n1,

since it is a mixed distribution with point masses at (the distinct values among) the θr, r 6= i,

and continuous mass on a normal distribution with mean (x1iτ
2
1 + µ1σ

2
1)/(σ

2
1 + τ2

1 ) and vari-

ance τ2
1 σ2

1/(σ
2
1 + τ2

1 ). The weight associated with this normal distribution is proportional to

α1{2π(σ2
1 + τ2

1 )}−1/2 exp(−0.5(x1i − µ1)
2/(σ2

1 + τ2
1 )); the weights corresponding to the θr, r 6= i,

are proportional to fN (x1i; θr, σ
2
1).

For each j = 1, ..., n2, the posterior full conditional for the pair of latent mixing parameters

(θn1+j , φj) is proportional to

fN (x2j ;max{θn1+j, φj}, σ
2
2)p(θn1+j | {θr : r 6= n1 + j},ψ1)p(φj | {φr : r 6= j},ψ2).

We update each pair (θn1+j , φj) with a Metropolis-Hastings (M-H) step, which involves proposed

draws (θ̃n1+j, φ̃j) from p(· | {θr : r 6= n1 + j},ψ1) × p(· | {φr : r 6= j},ψ2) that are ac-

cepted with probability min{1, fN (x2j ;max{θ̃n1+j , φ̃j}, σ
2
2)/fN (x2j ;max{θ

(old)
n1+j, φ

(old)
j }, σ2

2)}, where

(θ
(old)
n1+j , φ

(old)
j ) is the current state of the chain.

Note that the discreteness of the DP priors for G1 and G2 induces a clustering of θ and φ in

their prior, and thus also in their posterior. In particular, once all the updates above for the θ i,

i = 1, ..., n1, and for the (θn1+j, φj), j = 1, ..., n2, are completed, we obtain the number of and values

of the distinct components in θ and φ. Denote these by n∗
θ (≤ n1 + n2) and {θ∗k : k = 1, ..., n∗

θ} for

vector θ, and by n∗
φ (≤ n2) and {φ∗

k : k = 1, ..., n∗
φ} for vector φ.

21



The posterior full conditional for µ1 is proportional to p(µ1)
∏n∗

θ

k=1 fN(θ∗k;µ1, τ
2
1 ) resulting in a

normal distribution with mean (c1τ
2
1 +d1

∑n∗
θ

k=1 θ∗k)/(d1n
∗
θ +τ2

1 ) and variance d1τ
2
1 /(d1n

∗
θ +τ2

1 ). Sim-

ilarly, the full conditional for µ2 is normal with mean (c2τ
2
2 +d2

∑n∗
φ

k=1 φ∗
k)/(d2n

∗
φ + τ2

2 ) and variance

d2τ
2
2 /(d2n

∗
φ + τ2

2 ). The posterior full conditional for τ 2
1 is proportional to p(τ 2

1 )
∏n∗

θ

k=1 fN (θ∗k;µ1, τ
2
1 ),

which yields an inverse gamma distribution with shape parameter w1 + 0.5n∗
θ and rate parameter

e1 + 0.5
∑n∗

θ

k=1(θ
∗
k − µ1)

2. Similarly, the full conditional for τ 2
2 is an inv-gamma(w2 + 0.5n∗

φ, e2 +

0.5
∑n∗

φ

k=1(φ
∗
k − µ2)

2) distribution. The DP precision parameters α1 and α2 are updated using the

data augmentation technique from Escobar and West (1995).

Finally, σ2
1 has an inv-gamma(aσ1 + 0.5n1, bσ1 + 0.5

∑n1
i=1(x1i − θi)

2) posterior full conditional

distribution, and σ2
2 an inv-gamma(aσ2 + 0.5n2, bσ2 + 0.5

∑n2
j=1(x2j − max{θn1+j , φj})

2) posterior

full conditional.

MCMC method for censored data. The approach discussed above can be extended to handle

censoring in a relatively straightforward fashion. We provide details for (fixed) right censoring,

although the method is similar for left or interval censored observations.

Consider, as in Section 2.2, log transformed data from distribution F1 that comprise observed

survival times x1i = log(t1i), i = 1, ..., n1o, and right censored survival times x+
1k = log(t+1k),

k = 1, ..., n1c, with n1 = n1o + n1c. Similarly, the data vector, on the log scale, from distribution

F2 contains observed survival times x2j = log(t2j), j = 1, ..., n2o, and right censored survival times

x+
2m = log(t+2m), m = 1, ..., n2c, with n2 = n2o+n2c. In this case, the marginal posterior distribution

p(θ,φ, σ2
1 , σ

2
2 ,ψ1,ψ2 | data) is proportional to

p(ψ1)p(ψ2)p(σ2
1)p(σ2

2)p(θ | ψ1)p(φ | ψ2)
n1o
∏

i=1
fN(x1i; θi, σ

2
1)

n1c
∏

k=1

{1 − FN (x+
1k; θk, σ

2
1)}

n2o
∏

j=1
fN(x2j ;max{θn1+j, φj}, σ

2
2)

n2c
∏

m=1
{1 − FN (x+

2m;max{θn1+m, φm}, σ2
2)}

with all the priors as before.

The updates for α1, α2, µ1, µ2, τ2
1 , τ2

2 , for the θi, i = 1, ..., n1o, and for the (θn1+j, φj),
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j = 1, ..., n2o, remain the same as in the case without censoring. The updates for each (θn1+m, φm),

m = 1, ..., n2c, involve a similar M-H step with the one used without censoring replacing the normal

density in the acceptance probability with 1 − FN (x+
2m;max{θn1+m, φm}, σ2

2).

For each k = 1, ..., n1c, the posterior full conditional distribution for θk is proportional to

{1−FN (x+
1k; θk, σ

2
1)}p(θk | {θr : r 6= k},ψ1), and thus, no longer easy to sample directly. We utilize

a M-H step based on proposed draws θ̃k from p(· | {θr : r 6= k},ψ1), which are accepted with

probability min{1, (1 − FN (x+
1k; θ̃k, σ

2
1))/(1 − FN (x+

1k; θ
(old)
k , σ2

1))}, where θ
(old)
k is the current state

of the chain.

Finally, modifications are also needed in the updates for σ2
1 and σ2

2 . For instance, the posterior

full conditional for σ2
1 is proportional to

inv-gamma(σ2
1 ; aσ1 + 0.5n1o, bσ1 + 0.5

∑n1o

i=1
(x1i − θi)

2) ×

n1c
∏

k=1

{1 − FN (x+
1k; θk, σ

2
1)}.

Although this full conditional is no longer available in a form that can be sampled directly, an effi-

cient M-H step emerges by using the inverse gamma distribution above as the proposal distribution.

Hence, the proposed draw σ̃2
1 from inv-gamma(aσ1 + 0.5n1o, bσ1 + 0.5

∑n1o

i=1(x1i − θi)
2) is accepted

with probability min{1,
∏n1c

k=1(1−FN (x+
1k; θk, σ̃

2
1))/

∏n1c

k=1(1−FN (x+
1k; θk, σ

2(old)
1 ))}, where σ

2(old)
1 is

the current state of the chain. For σ2
2 , the M-H step involves proposing from inv-gamma(aσ2 +

0.5n2o, bσ2 +0.5
∑n2o

j=1(x2j−max{θn1+j , φj})
2), with the proposed value, σ̃2

2, accepted with probabil-

ity min{1,
∏n2c

m=1(1−FN (x+
2m;max{θn1+m, φm}, σ̃2

2))/
∏n2c

m=1(1−FN (x+
2m;max{θn1+m, φm}, σ

2(old)
2 ))},

where σ
2(old)
2 is the current state of the chain.
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Table 1: Synbiotic ELISA test data. Results from the posterior predictive loss criterion, D(M) =

G(M) + P (M), for comparison of the stochastic precedence and stochastic order models. Here, the

goodness-of-fit term, G(M) = G1(M) + G2(M), where G1(M) =
∑n1

i=1{x1i − E(M)(x∗
1i | data)}2

and G2(M) =
∑n2

j=1{x2j − E(M)(x∗
2j | data)}2. Moreover, the penalty term, P (M) = P1(M) +

P2(M), where P1(M) =
∑n1

i=1 Var(M)(x∗
1i | data) and P2(M) =

∑n2
j=1 Var(M)(x∗

2j | data).

G(M) P (M) D(M)

G1(M) G2(M) P1(M) P2(M)

Stochastic precedence model 60.55 51.12 82.81 129.47 323.95

Stochastic order model 73.17 46.76 117.10 93.15 330.18
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Figure 1: Bone marrow transplantation data. The upper panels include posterior mean estimates

(solid lines) and 95% interval estimates (dashed lines) for the survival function of the AML high-risk

and ALL groups. Also plotted are the corresponding Kaplan-Meier estimates (red dotted lines).

The bottom panels compare the survival function posterior mean estimates (left panel) and the

median survival time posterior densities (right panel); in both panels, the solid line corresponds to

the AML high-risk group and the dashed line to the ALL group.
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Figure 2: Synbiotic ELISA test data. Posterior mean estimates (solid lines) and 95% interval

estimates (dashed lines) for the non-infected and infected group density functions, overlaid on

corresponding data histograms. The red dotted lines denote the prior predictive densities.
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Figure 3: Synbiotic ELISA test data. Posterior mean estimates (solid lines) and 95% interval

estimates (dashed lines) for the distribution function of the non-infected group (upper left panel),

the distribution function of the infected group (upper right panel), and the ROC curve (lower left

panel). The lower right panel shows the prior and posterior density of the AUC denoted by the

dotted and solid line, respectively.
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Figure 4: Synbiotic ELISA test data. Comparison of posterior mean estimates for the distribution

functions of the non-infected group (dashed lines) and the infected group (solid lines), under the

stochastic precedence and stochastic order models.
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