
Technical Report UCSC-SOE-09-26.

Reading Challenging Barcodes with Cameras

Orazio Gallo and Roberto Manduchi

{orazio, manduchi}@soe.ucsc.edu, University of California, Santa Cruz.

Abstract

Reading barcodes with standard cameras, such as cell phone cameras, enables interesting opportunities for ubiquitous
computing. Unfortunately, current camera-based barcode readers do not work well when the image has low resolution, is
out of focus, or is blurred due to motion. One main reason for this poor performance is that virtually all existing algorithms
perform some sort of binarization, either by gray scale thresholding or by finding the bar edges. We propose a new approach
to barcode reading that never needs to binarize the image. Instead, we use deformable barcode digit models in a maximum
likelihood setting. We show that the particular nature of these models enables efficient integration over the space of defor-
mations. Global optimization over all digits is then performed using dynamic programming. Experiments with challenging
UPC-A barcode images show substantial improvement over other state-of-the-art algorithms.

1. Introduction
Virtually every packaged good is labeled with at least one form of barcode, generally a flavor of either the EAN or the UPC

standards. The success of barcode technology for identification, tracking, and inventory derives from its ability to encode
information in a compact fashion with very low associated cost.

Barcode reading via dedicated scanners is a mature technology. Commercial laser-based, hand-held barcode scanners
achieve robust reading with a reasonable price tag. Recently, however, there has been growing interest in accessing barcodes
with regular cellphones rather than with dedicated devices. Since cellphones are of ubiquitous use, this would enable a
multitude of mobile applications. For example, a number of cellphone apps have appeared recently that provide access to the
full characteristics and user reviews for a product found at a store, or to on-line price comparisons via barcode reading.

Unfortunately, images taken by cellphone cameras are often of low quality. Many cellphone cameras on the market
are equipped with low-grade lenses, generally lacking focusing capability, which frequently produce blurred images. Only
few cellphones have flashes so motion blur and noise are an extremely common problem for pictures taken in low light
conditions. All of these factors, possibly combined with low image resolution, make barcode reading difficult in certain
situations. Indeed, all existing image-based barcode readers have limited performance when it comes to images taken in
difficult light conditions, or when the barcode is at a certain distance from the camera.

This paper presents a new algorithm for barcode reading that produces excellent results even for images that are blurred,
noisy, and with low resolution. Quantitative comparisons on existing and new barcode image databases show that our tech-
nique outperforms other state-of-the-art softwares and compares favorably with other reported results.

A unique characteristic of our algorithm is that it never performs binarization of the graylevel brightness profile before
processing. We argue that this early-commitment operation, executed by virtually all existing algorithms, translates into un-
recoverable information loss, thus complicating all further processing. This is especially the case for low-resolution images,
where binarization errors may have catastrophic effects. For example, Fig. 1 shows a challenging barcode, which would be
hardly decoded using binarization.

This paper is organized as follows. After a review of the previous work in Sec. 2, we present our algorithm in Sec. 3.
Comparative experimental tests are shown in Sec. 4, and the conclusions are given in Sec. 5. The Appendix describes a
simple algorithm for barcode localization, which was necessary to extract the portion of the image to be decoded by our
reader.

1

Technical Report UCSC-SOE-09-26.

28 30 32 34 36 38

150

200

250

n

I
(n

)

(a) (b)

Figure 1. A challenging barcode image that is correctly decoded by our algorithm. The intensity profile from the segment highlighted in
red on the blue scanline is plotted in (a). The underlying sequence of spaces and bars is shown in (b). Note how blur and low resolution
affect the intensity profile. A system that binarizes the intensity would be hard-pressed to detect the correct pattern.

2. Previous work
Barcode decoding has been studied and optimized for decades and it now represents a consolidated industrial standard.

(Pavlidis et al. provide an interesting analysis of this technology from an information theory standpoint [7].) Until recently,
however, barcode reading was performed almost exclusively with dedicated, generally expensive hardware. Despite the rapid
growth of interest in camera-based readers, most of the challenges posed by this new approach are yet to be solved.

Commercial scanners, such as those used in supermarkets, shine a light on the code and measure the intensity of its
reflection, thus being virtually insensitive to ambient illumination. Mirrors then allow for the acquisition of multiple images
of the code, which is also assumed to be fairly close to the scanner. As a consequence, the extracted scanlines are of very
high quality.

Camera-based methods generally produce much lower quality scanlines. Moreover, the barcode generally does not com-
pletely fill the image; the first step to barcode interpretation is therefore its localization. We argue that this stage is intrinsically
more robust to noise than the actual decoding, for it requires a lower accuracy. Existing methods for this step apply to the
binarized image methods based on Hough transforms [4], edge orientation histograms [13], morphological operators [2],
or wavelet transforms [12]. Other approaches simplify the problem assuming that the center of the image falls within the
barcode area [5, 11].

Although decoding is a far more delicate process than localization, virtually all current techniques use some kind of
binarization for this stage as well; even with the many successful thresholding algorithms that have been proposed [6, 8], a
moderate amount of blur in the original image can dramatically affect the results (see Fig. 1).

Decoding can be performed by estimating the width of all the bars in the barcode from the binarized image [1, 2, 4].
Wachenfeld et al., instead, use an adaptive thresholding [11]. They then model the different digits and find the combination
that best explains the scanline. Although they report a very high accuracy, they do not present any comparative test.

Krešić-Jurić et al. find potential edges differentiating the scanline and then use hidden Markov models to remove false
positives [3]. Their method compares favorably with previous approaches although it was implemented on commercial
barcode scanners. Tekin and Coughlan propose an elegant Bayesian framework for barcode decoding [9]. Their approach
aims to find the edges of the bars in a fashion similar to Krešić-Jurić et al. [3] but they allow for both false positive and false
negative. These methods are robust to a certain amount of noise in the data, however, they still need to make a hard decision
as for where the edges are. Tekin and Coughlan made their database available and in Sec. 4 we compare our results with
theirs.

Our main contribution is an algorithm capable of decoding 1-D barcodes from noisy pictures, whether the source of noise
be motion blur or lack focus. Our method also proves effective on highly compressed pictures. Additionally, we propose

2

Technical Report UCSC-SOE-09-26.

a simple method to segment the barcode out of the picture. Finally, we created a dataset of barcode images (which will
be made public after publication) and evaluate our algorithm on it by means of comparison with publicly available barcode
readers. The comparisons show that the proposed method outperforms existing methods, in particular as the quality of the
image worsens.

2.1. UPC-A Barcodes - Syntax

UPC (Universal Product Code) is a technology to encode numbers with 12 decimal digits as an alternating sequence of
black bars and white bars (spaces) with different widths. (The last digit is an error correcting check digit.) Each bar may
have width equal to r × w, where r (the module width) is an integer between 1 and 4, and w, the base width (sometime
called X-dimension), is the width of the narrowest bar. The code is divided into two halves separated by a sequence of three
spaces and two bars (guard bars), all of unitary module width. At the two ends of the barcode there is a sequence of two bars
separated by a space, all of unitary module width (start and end patterns). The start and end patterns are separated from the
edge of the barcode by a space of width equal to at least 9 times the base width, although this requirement is often violated in
real-world instances. Between the start pattern and the guard bars, the code is divided into 6 equally spaced digit segments,
each of which with length equal to 7 times the base width. Thus, the overall length of the barcode is equal to 95 base widths.
Each digit segment represents one digit as a sequence of two spaces and two bars. The value k of a digit is encoded by the
sequence of module widths (rk

1 , r
k
2 , r

k
3 , r

k
4) of the bars and spaces in the digit segment. The standardized UPC-A sequences

for the left half of the code are shown in Fig. 2. In the right half of the code, the same sequence of widths is used to encode a
digit, however the role of spaces and bars is inverted.

3. The algorithm
Given an image containing a barcode, two distinct operations are needed for accessing the information contained in the

barcode: localization and reading. Localization typically relies on the strong textural content of the barcode, without the
need to exactly measure and interpret the width distribution of the bars. Reading can be performed on one or more scanlines,
provided that they are within a certain angular span from the normal direction to the bars.

Although our work focuses on barcode reading, we implemented a simple and fast localization algorithm (described in
the Appendix), that assumes that the bars are approximately vertical. This algorithm is by no means optimal but it works
reasonably well in our studies, as it only serves as a necessary pre-processing stage to enable the experiments of Sec. 4. We
also implemented other algorithms from the literature [13, 10] and none outperformed our simple method even with a higher
computational load.

Our reading algorithm analyzes a single scanline contained in the detected barcode area. The only requirement is that
the beginning and the end of the barcode pattern in the scanline are detected with a certain accuracy. For example, in our
implementation we assume a localization tolerance in either end point equal to twice the width of the narrowest bar. Note
that this task is much simpler than localizing all bars in the code, an operation that we avoid altogether. The UPC-A standard,
in fact, requires that the initial and final bars be separated from the edge of the barcode by a quiet area of a width equal to at
least 9 times the base width to facilitate localization.

Here is the algorithm outline. First, based on the detected endpoints of the scanline, we compute the spatial location
of each digit segment in the barcode. For each of the 12 digits in the barcode, we compare the intensity profile of the
corresponding segment of the scanline with binary templates, each representing a specific digit value as shown in Fig. 2. In
order to account for inaccuracy in the localization of the spatial extent of each digit, we allow these templates to shift and
scale in the horizontal direction. After defining a likelihood function to measure how well a deformed (shifted and scaled)
template explains the observed intensity, one may be tempted to search for the deformation parameters that maximize it (that
is, the shifted and scaled template that best explains the data), hoping not to end up in one of the many existing local maxima.
We take a better, and theoretically more sound, route: we integrate the likelihood over the space of deformations, having
defined a prior distribution of the deformation parameters. One important contribution of this work is to derive an algorithm
that computes this marginalization integral exactly and in affordable computing time.

The scanline could finally be decoded choosing the digit values that maximize the likelihood of the data within each digit
segment; however, this may lead to incorrect results due to noise, blur, or other causes. The risk of such errors can be reduced
by exploiting global constraints on the overall sequence of digit values. The idea is that the “optimal” deformed templates
should sit side by side on a scanline, without overlaps or gaps. We define a global cost function that, for each possible
sequence of digit values, penalizes overlaps or gaps in the sequence of deformed templates, with the deformation parameters
obtained by least squares regression. The minimum cost sequence can then be found via dynamic programming.

3

Technical Report UCSC-SOE-09-26.

M0

-1 0 3 5 6 7 8

-1
0
1

M1

-1 0 2 4 6 7 8

-1
0
1

M2

-1 0 2 3 5 7 8

-1
0
1

M3

-1 0 1 5 6 7 8

-1
0
1

M4

-1 0 1 2 5 7 8

-1
0
1

M5

-1 0 1 3 6 7 8

-1
0
1

M6

-1 0 1 2 3 7 8

-1
0
1

M7

-1 0 1 4 5 7 8

-1
0
1

M8

-1 0 1 3 4 7 8

-1
0
1

M9

-1 0 3 4 5 7 8

-1
0
1

Figure 2. Each digit in a UPC-A code is encoded with a sequence of two bars and two spaces, represented in these graphs by values of 1
and -1.

Algorithmic details are provided in the next subsections.

3.1. Deformable models

We define a model (or template)Mk for digit k as a continuous piecewise constant function that alternates between -1
and 1, where a value of -1 (1) represents a black (white) bar (see Fig. 2). A modelMk for a digit in the left half of a UPC-A
barcode begins with a ‘-1’ segment and ends with a ‘1’ segment, where both such segments have length of 1. The lengths of
the i-th constant segment between these two end segments is equal to the module width rk

i (as defined in Sec. 2.1.) A model
is therefore an archetypical representation of one digit of a standardized scanline, which also includes one bar from each
one of the nearby digits. These two additional bars have base width and known polarity; adding such bars to the template
increases robustness of the matching process.

A parameterized model is a shifted and scaled (deformed) version of the original model:

Mk
o,w(x) =Mk((x− o)/w), (1)

where o represents the starting point of the pattern and w represents the base width. (Note that models are functions of the
continuous line, while the observation I(n) is defined over the discrete space of pixels.) An example of deformed model is
shown in Fig. 3.

3.2. Digit segment – conditional likelihood

Once the barcode has been localized in the image, and the endpoints (oS , oE) of the selected scanline have been estimated,
the approximated position of each digit segment of the barcode is computed. More precisely, the j-th digit segment in the
left side of the barcode is assumed to start at

o = oS + 3w + 7w (j − 1), (2)

where:
w =

oE − oS

95
(3)

and w is the estimated base width. These expressions derive from the fact that the overall length of the barcode is (ideally)
equal to 95 times the base width, that each digit uses a segment (support) equal to 7 times the base width, and that the first 3
bars are guard bars.

We should stress the fact that, for a generic digit being considered, the value of o as computed in (2) is, in general, an
incorrect estimate of the actual left edge of the digit segment, as a consequence of error in the estimation of the endpoints
(oS , oE) and/or image distortion as due, for example, to perspective. However, suppose for a moment that the estimated
location o and minimum bar width w are indeed correct. Then, in order to read the value of the digit, we could simply
compare the intensity I(n) within the segment with the modelsMk

o,w for 0 ≤ k ≤ 9, and pick the model that best fits the
data. More precisely, we define the likelihood of the intensity within a generic digit segment when the digit takes a value of
k (conditioned on o and w) as

pk(I|o, w) ∝ e−D(I,Mk
o,w), (4)

where I(n) represents the intensity profile of the considered scanline. The log-likelihood term D can be expressed as

D(I,Mk
o,w) =

bo+8wc∑
n=do−we

D
(
I(n),Mk

o,w(n)
)
, (5)

4

Technical Report UCSC-SOE-09-26.

25 30 35 40 45 50

50

100

150

200

250

n

I(
n)

µb

µw

7wo

ō2 7w̄2

Figure 3. A sample of intensity profile in a scanline (blue line). The segment [o, o+ 7w] represents the location of the initial digit segment
obtained from (2)-(3), whereas the segment [ō2, ō2 + 7w̄2] is the estimated support segment as by (12) for k = 2. The red line represents
the deformed modelM2

ō2,w̄2 . For the sake of graphical clarity, the model was scaled in amplitude so that it alternates between µb and µw

(as defined in Sec. 3.2).

where the variable n takes on only integer values (see Fig. 3). Note that this sum is computed over all pixels that fall within
the segment [o− w, o+ 8w], which is the support ofMk

o,w(x).
A variety of functions can be considered for the log-likelihood D modeling the discrepancy between model and observa-

tion. We use the following robust formulation, which gave good results in the experiments. First, the quantities µw and µb

representing the mean of the largest 50% and smallest 50% values of I(n) are computed, along with the cumulative variance
σ. Then,

D(I(n),−1) =
[max(I(n)− µb, 0)]2

2σ2
(6)

and

D(I(n), 1) =
[min(I(n)− µw, 0)]2

2σ2
. (7)

This function penalizes values of I(n) that are small whenMk
o,w(n) = 1 or large whenMk

o,w(n) = −1.

3.3. Digit segment – total likelihood

A maximum likelihood approach based on the likelihood described above can be extremely sensitive to the even small
errors of o and w. Such errors derive from the expected error in the estimation of the endpoints oS and oE . Assume for
example that both oS and oE are computed with a tolerance of ±∆o. Then, barring deformations or perspective effects,
o has a tolerance of ±∆o as well, whereas w has a tolerance of ±2∆o/95. Thus, a method for taking uncertainty of the
deformation parameters into account is necessary.

We approach this problem by first defining a probability density function p(o, w) over the space of deformations. We then
compute the total likelihood pk(I) by averaging pk(I|o, w) over such density:

pk(I) =
∫ ∫

pk(I|o, w)p(o, w) do dw. (8)

Computing this integral may seem like a daunting task, especially if this needs to be performed in real time over an embedded
computer such as a cell phone. On the contrary, we show that due to the particular nature of the modelMk, and assuming
a simple form for the prior p(o, w), the integral in (8) can be computed exactly via numerical means with reasonably small
complexity.

Our derivation exploits the fact that D(I,Mk
o,w) is piecewise constant in the (o, w) space. This can be seen by breaking

up the sum in (5) into six pieces, corresponding the segments in whichMk
o,w(x) takes on constant values of 1 or -1. More

precisely, we notice that within segment [di, di+1], where di = o + w
∑i

l=0 r
k
l for 0 ≤ i ≤ 5 and we set rk

0 = −1 and
rk
5 = 1, the functionMk

o,w(x) is identically equal to (−1)i.

D(I,Mk
o,w) =

5∑
i=1

Ai, (9)

5

Technical Report UCSC-SOE-09-26.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

o
w

Figure 4. Partition of the space (o, w) into the cells {Vt
2} (i.e. for digit ‘2’) within the rectangle [−1, 1] × [−0.5, 0.5]. If (o1, w1) and

(o2, w2) fall within the same cell, the conditional likelihoods p2(I|o1, w1) and p2(I|o2, w2) are identical. In other words, instead of
computing the integral in (8) over every point of the space, the problem can be made tractable by only considering one point per cell
without introducing any approximation (see Sec. 3.3).

with

Ai =
bdic∑

n=ddi−1e

D(I(n), (−1)i). (10)

Hence, a variation of o or w determines a change of Ai (and therefore of pk(I|o, w)) only when it causes di−1 or di to cross
over an integer value. Consequently, pk(I|o, w) is piecewise constant, and the integral in (8) becomes a sum. Next, we show
how to compute the terms in this sum.

Let {Vt
k} be the minimum partition of the (o, w) plane such that pk(I|o, w) is constant within each cell Vt

k (with t
representing the index of cells in the partition). Then

pk(I) ∝
∑

t

e−Dt

∫ ∫
Vt

k

p(o, w) do dw, (11)

where Dt = D(I,Mk
o,w) for any (o, w) in Vt

k. Note that the cells Vt
k are polygonal, as they are defined by the lines of

equation o+ w(
∑i

l=0 r
k
l − 1) = s, where s is any integer, and i is any integer between 0 and 5 (see Fig. 4). The list of cells

{Vt
k}, as well as the integral of p(o, w) within each cell, can be computed offline and stored for online use. In fact, one easily

sees that the cells form a periodic pattern (with period equal to 1 both in o and w), hence only the cells within such a period
need to be stored.

Regarding the implementation of this procedure, the following observations are in order:

1. The computation of the likelihood in (11) can be sped up by precomputing the sequencesD(I(n), 1) andD(I(n),−1).
Then, for each cell, one only needs to add together selected samples from the two sequences.

2. At run time, a specific set of cells is chosen from the list based on the tolerance ∆o and ∆w on the estimated values
of o and w, which are easily derived from the tolerance of the estimated endpoints oS and oE . More precisely, we
compute the sum in (11) over the cells that intersect the rectangle with sides [o−∆o, o+ ∆o] and [w−∆w,w+ ∆w],
where o and w are estimated as by (2).

3. The integration of p(o, w) within each cell results particularly simple if p(o, w) is assumed to be uniform within the
considered rectangle in the (o, w) space. In this case, the integral is proportional to the area of the polygonal cell, which
can be easily computed and stored offline. In our implementation we made use of this simple, yet effective model.

As will be shown shortly, it is also useful to estimate, for each possible digit value k, the deformation parameters (o, w)
given the intensity profile I(n) within a digit segment. We choose the least squares estimator (ōk, w̄k) of these quantities
(under the density p(o, w)), which is given by the conditional expectation. Using Bayes rule, this is equivalent to

(ōk, w̄k) =
∫ ∫

(o, w)
pk(I|o, w)p(o, w)

pk(I)
do dw (12)

∝ 1
pk(I)

∑
t

e−Dt

∫ ∫
Vt

k

o w p(o, w) do dw.

6

Technical Report UCSC-SOE-09-26.

1 2 43 5 6 7 8 9 101112

Figure 5. The support segments [ōj,k(j), ōj,k(j) + 7w̄j,k(j)], where k(j) are the maximizers of the total likelihood pj,k(j)(I) for each
digit index j, are shown in blue against the support segments corresponding to the sequence of values {k} minimizing the global cost C
in (14), shown in green. Digits 5, 6, and 11 are not correctly decoded and their position is therefore miscalculated (blue). The algorithm
described in Sec. 3.4 successfully enforces global consistency and, thus, correct decoding (green). The red lines represent the original digit
segments, obtained from (2)-(3). In order to provide a visual intuition of the intensity profile of the scanline under consideration, the latter
was repeated vertically to form a graylevel image.

The integrals in the above equation can be precomputed and stored for online use. If the assumption of uniformly distributed
(o, w) is made (as in point 3. above), then the terms in the sum are the centroids of the cells {Vt

k}.

3.4. Imposing spatial coherence

Our model makes the simplifying initial assumption that the digit segments are equally spaced (see (2)-(3)). This also
implies that the base width w is constant across the barcode. In practice, we should expect that the digit segment length may
vary from segment to segment, hopefully within the confidence intervals ∆o and ∆w. Ideally, however, the segment repre-
senting a given digit in the scanline (as computed from the estimates ōk and w̄k) should be adjacent to (but non overlapping
with) the neighboring segments. The choice of an incorrect value of k due to single-digit analysis is likely to result in a
supported segment that does not fit well together with the other segments (see Fig. 5). This observation can be exploited by
imposing a global constraint as follows.

Suppose that the j-th digit takes value k(j). (Note that we need to make the dependency on j explicit in our notation from
now on.) The estimated deformation parameters (ōj,k(j), w̄j,k(j)) define the supported segment [ōj,k(j), ōj,k(j) + 7w̄j,k(j)].
We define the overlap/gap extent between the j-th and (j + 1)-th estimated digit segments as

Oj,k(j),kj+1 = |ōj,k(j) + 7w̄j,k(j) − ōj+1,k(j+1)|. (13)

Now define a global cost function as follows:

C({k}) =
∑

j

αO2
j,k(j),k(j+1) − log pj,k(j), (14)

where α is a balancing parameter, and the sum extends to all digits in the left and right half of the barcode. (α was set to be
equal to 0.1 in our experiments). The cost function in (14) penalizes sequences of digit values that create large overlaps or
gaps between two consecutive digit segments or that produce low values of likelihood. Dynamic programming can be used
to minimize the cost function C over the space of sequences {k} of digit values. Fig. 5 shows the outcome of the application
of this technique.

4. Implementation and tests
We implemented and tested our algorithm in Matlab. The simple localization algorithm described in the Appendix was

used to provide a scanline segment input to our reader. The maximum tolerance ∆o at the endpoints oS and oE was set
to ±2w, where w, the initial estimate of the base width, was defined in (3). In practice, this means that we expect the
localization algorithm to possibly miss one the first bar in the start and end pattern. The minimum scanline width oE − oS

that our algorithm was able to decode was of 100 pixels. Note that this corresponds to a base width of only 1.05 pixels.
The computational speed of the algorithm depends heavily on the scanline width. This is mostly due to the fact that the

number of cells V t
k depends on the tolerances ∆o and ∆w, which are proportional to the scanline width. For example, when

the scanline width is equal to 100 pixels, then 25 cells are generated. However, in the case of a high resolution image of
a barcode at short distance, producing a scanline width of 1128 pixels, 2185 cells are generated. In order to reduce the
number of cells to consider, we implemented a simple variation of the algorithm, by fixing the width of the first and last bars
in the model to the minimum width considered. Remember that these are “overlap” bars with nearby digits, and that they
always have unitary width in the modelMk. With this modification, the number of cells is reduced to 17 in the 100 pixel

7

Technical Report UCSC-SOE-09-26.

Data set “Clean” from [9]
Our algorithm [9] DataSymbol DTK Total

43 42 39 43 44
Data set “Hard” from [9]

Our algorithm [9] DataSymbol DTK Total
19 2 0 1 35

Data set 1
Our algorithm DataSymbol DTK Total

43 26 42 62
Data set 2

Our algorithm DataSymbol DTK Total
10 4 6 10

Data set 3
Our algorithm DataSymbol DTK Total

9 0 0 20
Figure 6. Comparative results showing the number of barcodes correctly detected in the different data sets considered. The last column
reports the total number of images in each data set.

scanline width case, and to 641 in the 1128 pixel case. The computational speed of the overall reader (excluding the original
segmentation) ranges between 0.076 seconds to 0.65 seconds.

In order to assess the performance of the system, we tested it on a variety of images. Unfortunately, we could find
only one barcode image database for comparative assessment1. This database, which was created by Tekin and Coughlan, is
accessible at www.ski.org/Rehab/Coughlan_lab/Barcode. The images are all of high resolution, and each image
was manually cropped around the barcode. The authors divided it into “Hard” and “Clean” subsets, and showed results of
their algorithm on both sets [9].

In order to assess our system in other realistic situations, we gathered a number of images taken from two different
cellphones, and created three new data sets. Data set 1 contains images at high resolution (1024 × 768) from a Nokia N95
cell phone. This device has autofocus capability, although not all images collected were properly in-focus, and some had
some amount of motion blur. Data set 2 contains images taken by the same cell phone, but at 640×480 resolution, and highly
compressed in JPEG (with apparent coding artifact). Data set 3 contains images at 1152× 864 resolution taken with an older
Nokia 7610 phone, with fixed focus. All three data sets have multiple pictures of several barcodes, taken from different
distances and in different conditions.

Our algorithm was tested against the algorithm of [9], for the “Hard” and “Clean” data set, as well as against two barcode
reading softwares that are available online. The first one, from DataSymbol2, was also considerd in [9]. The second one,
from DTK3, was shown to produce impressive results. A third online software, from QualitySoft, was considered in [9], but
we neglected comparison with it since it gives very poor results.

Numerical results from our tests are presented in Fig. 6. It is shown that in all the data sets, our algorithm outperforms the
other techniques. In particular, our algorithm performs comparatively well for the most challenging sets (Data set “Hard” and
Data set 3). A sample of images correctly decoded by our algorithm is shown in Fig. 7, while examples of failures are shown
in Fig. 8. Note that in many cases, failure was due to incorrect initial localization due to poor segmentation. The reader is
invited to zoom-in to notice how poor the image quality is for many of the pictures that our algorithm correctly decodes.

5. Conclusions
We have presented a new algorithm for barcode reading that can deal with images that are blurred, noisy, and with

low resolution. Unlike previous approaches, this algorithm does not binarize the image, thus sidestepping a critical and
often error-prone early-commitment procedure. We use deformable templates for representing each digit of the barcode,
integrating over the set of all expected deformations. A final procedure for global spatial coherence helps reducing the risk of
errors at the individual digit level. The experimental results show improved performance with respect to other state-of-the-art

1The authors of [11] claim to have assembled a barcode image database for public use, but we have not been able to access it.
2http://www.datasymbol.com
3http://www.dtksoft.com

8

Technical Report UCSC-SOE-09-26.

Figure 7. Example of barcodes correctly decoded by our algorithm from our three data sets. Each image shows the segment extracted by
the localization algorithm described in the Appendix. The green stars indicate (oS , oE), the original estimates for the endpoints of the
scanline.

Figure 8. Example of images in which our algorithm fails from Data Set 1 and 3. The green stars indicate (oS , oE), the original estimates
for the endpoints of the scanline.

software and algorithms, especially for the most challenging images. Our Matlab implementation of the overall system runs
reasonably fast; porting of the algorithm to a Symbian cellphone is in progress.

The most obvious improvement to the algorithm would be to consider non-horizontal lines (for rotated barcodes) and
multiple scanline analysis. The spatial coherence constraint could be easily extended to the multiple scanlines case. Another
issue worth further consideration is the model for the greylevel values. Our current model is bimodal—each pixel is assumed
to be black or white. In fact, the model could be improved to account for the point spread function of the optical system,
which smears the edge of a bar across a few pixels. This enhanced model would be particularly useful for low resolution
imagery, where even a small amount of blur may completely wash out the narrower bars.

References
[1] R. Adelmann, M. Langheinrich, and C. Flörkemeier. A Toolkit for Bar-Code Recognition and Resolving on Camera Phones–Jump

Starting the Internet of Things. In Workshop Mobile and Embedded Interactive Systems (MEIS06) at Informatik, 2006.
[2] D. Chai and F. Hock. Locating and decoding EAN-13 barcodes from images captured by digital cameras. pages 1595–9, 2005.
[3] S. Krešić-Jurić, D. Madej, and F. Santosa. Applications of hidden Markov models in bar code decoding. Pattern recognition letters,

27(14):1665–1672, 2006.
[4] R. Muniz, L. Junco, and A. Otero. A robust software barcode reader using the hough transform. Information Intelligence and Systems,

1999. Proceedings. 1999 International Conference on, pages 313–319, 1999.
[5] E. Ohbuchi, H. Hanaizumi, and L. Hock. Barcode readers using the camera device in mobile phones. In Proceedings of the Third

International Conference on Cyberworlds (CW’04), volume 00, pages 260–265, Los Alamitos, CA, USA, 2004. IEEE Computer
Society.

[6] N. Otsu. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1):62–6,
1979.

[7] T. Pavlidis, J. Swartz, and Y. Wang. Fundamentals of bar code information theory. Computer, 23(4):74–86, 1990.
[8] Y. Solihin and C. Leedham. Integral ratio: a new class of global thresholding techniques for handwriting images. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 21(8):761–768, Aug 1999.
[9] E. Tekin and J. Coughlan. A bayesian algorithm for reading 1d barcodes. In To appear in Sixth Canadian Conference on Computer

and Robot Vision, 2009.
[10] A. Tropf and D. Chai. Locating 1-D Bar Codes in DCT-Domain. In 2006 IEEE International Conference on Acoustics, Speech and

Signal Processing, 2006. ICASSP 2006 Proceedings, volume 2, 2006.
[11] S. Wachenfeld, S. Terlunen, and X. Jiang. Robust recognition of 1-d barcodes using camera phones. In International Conference of

Pattern Recognition, pages 1–4, 2008.
[12] K. Wang, Y. Zou, and H. Wang. 1d bar code reading on camera phones. International Journal of Image and Graphics, 7(3):529–550,

July 2007.

9

Technical Report UCSC-SOE-09-26.

−0.5

0

0.5

1

1.5

2

2.5

3
x 104

(a) (b)

(c) (d)
Figure 9. An example of barcode localization with our algorithm. (a): Original image. (b): The smoothed map Is(n). (c): Binarization by
thresholding of Is(n). (d): The resulting rectangular segment, along with the selected scanline and the endpoints oS and oE marked by
stars.

[13] C. Zhang, J. Wang, S. Han, M. Yi, and Z. Zhang. Automatic real-time barcode localization in complex scenes. In International
Conference of Image Processing, pages 497–500, 2006.

Appendix
In this Appendix we briefly describe the algorithm used in our experiments for the localization of barcodes with approxi-

mately vertical bars. This simple technique is meant solely as a tool to enable us to test the barcode reader, which is the main
contribution of this work. Hence, we do not make any claims regarding its performance, except that it served reasonably well
for our purposes.

The idea behind the algorithm is that, in correspondence of a barcode (with approximately vertical bars), one should expect
an extended region characterized by strong horizontal gradients and weak vertical gradients. Accordingly, we first compute
the horizontal and vertical derivatives, Ix(n) and Iy(n), at each pixel. Then we combine them together in a non-linear fashion
as by

Ie(n) = |Ix(n)| − |Iy(n)| (15)

It is reasonable to assume that many points within a barcode should have a large value of Ie(n). We run a block filter of
size 31 × 31 over the field Ie(n), obtaining the smoothed map Is(n). Note that block filtering can be computed with only
few operations per pixel. Finally, we binarize Is(n) with a single threshold, selected using method proposed by Otsu [6].
As a consequence of thresholding, the map Is(n) may contain more than one blob. Rather than computing the connected
components of the thresholded map, we simply select the pixel n0 that maximizes Is(n), under the assumption that the correct
blob (centered at the barcode) contains such pixel. This hypothesis was always verified in our experiments. Then, we expand
a vertical and an horizontal line from n0, and form a rectangle (with sides parallel to the axes) containing the intersections
of these lines with the edge of the blob. The horizontal line through the center of this rectangle is chosen as the scanline for
the analysis. In order to localize the endpoints oS and oE of the barcode, we first determine the intersections of this scanline
with the rectangle computed earlier. Then starting from each end, we proceed inwards until pixel with significant negative
value of the derivative is found, which is taken to represent the left (right) edge of the first (last) bar of the start (end) pattern.

This algorithm was implemented in Matlab. For a 640 × 480 image, the execution time was of approximately 0.065
seconds, while for a 1152× 864 it was of approximately 0.21 seconds.

10

