
Analyzing the Impact of Change in

Multi-threaded Programs?

Krishnendu Chatterjee1, Luca de Alfaro1, Vishwanath Raman1, and
César Sánchez2

1 School of Engineering, University of California, Santa Cruz, USA
2 IMDEA-Software, Madrid, Spain

Technical Report UCSC-SOE-09-25
School of Engineering, University of California, Santa Cruz

August 2009

Abstract. We introduce a technique for debugging multi-threaded C
programs and analyzing the impact of source code changes, and its im-
plementation in the prototype tool Direct. Our approach uses a com-
bination of source code instrumentation and runtime management. The
source code along with a test harness is instrumented to monitor Op-
erating System (OS) and user defined function calls. All concurrency
control primitives are tracked through the OS functions. Optionally, Di-

rect can track some concurrency related data of interest. Direct keeps
track of an abstract global state that combines the abstract states of
every thread, including the sequence of function calls and concurrency
primitives executed. The runtime manager can insert delays, provoking
thread interleavings that may exhibit bugs, and that may be difficult to
reach otherwise. The runtime manager collects an approximation of the
reachable state space and uses this approximation to assess the impact
of change in a new version of the program.

1 Introduction

Multi-threaded, real-time code is notoriously difficult to develop, since the be-
havior of the program depends in subtle and intricate ways on the interleaving
of the threads, and on the precise timing of the events that affect the code. Ver-
ification provides the ultimate guarantee of correctness for real-time concurrent
programs. Verification is however very expensive, and quite often infeasible in
practice for large programs, due to the complexity of modeling and analyzing
precisely and exhaustively all behaviors. Here, we aim for a more modest goal:
we assume that a program works reasonably well under some conditions, and
we provide techniques to analyze how the program behavior is affected by soft-
ware modifications, or by changes in the platform and environment in which
the program executes. Our techniques perform sensitivity analysis of the code
with respect to its environment, and impact analysis for software changes [2]. In
particular, we aim at discovering changes in program behavior due to:

? This work has been partially supported by NSF CCR-0132780, NSF CCR-0234690

2

– Changes in platform, which can affect the execution time of a code block,
according to the instruction set, cache, and CPU speed of the target plat-
form.

– Changes in compiler options and libraries, which can affect execution speed
as well.

– Source code changes, which can affect not only the execution time of the
code blocks, but also the resource interaction and scheduling of the various
threads.

Our analysis assist designers to answer two important questions:

– Is the program robust? Can small changes in the scheduler, in CPU speed,
in platform, or in libraries cause the program to break? How much does the
behavior of the program depend on the particular timing of the platform on
which it is tested?

– Does a program change introduce unexpected behaviors? Every program
change is likely to produce new behaviors, but does a change lead to new
interleavings, and possibly new bugs, in the system? To what extent does a
code change affect the concurrency behavior of a program?

In order to perform this sensitivity and change impact analysis, we propose to
instrument a program P and run it one or multiple times. The instrumenta-
tion tracks the behavior of P in terms of global states that summarize the joint
state of all threads with respect to a set of observable statements. These observ-
able statements include OS primitives such as lock and semaphore management,
scheduling calls, timer calls, and more. The outcome of a first round of runs is a
set E of global states which approximates the reachable state space. Once this
round finishes, we run an instrumented program P ′, obtained from P in one of
two ways: by adding delays that simulate changes in platform, compiler options,
or libraries, or by including in P ′ software changes that have been proposed for
P . Whenever a run of P ′ encounters a global state that has not been seen pre-
viously for P (i.e., not in E), we output the new global state, along with a trace
that leads to it. This output information alerts designers to the possible arousal
of new behaviors in P ′, and offers debugging information that can be used to
decide whether the new behaviors are harmful.

We present the tool Direct, which implements these analyses for real-time
embedded code, including programs that run on embedded platforms with only
limited memory available. Direct can be applied to programs written in C.
The instrumentation stage is implemented relying on the CIL toolset [12]. The
instrumentation code keeps track of the global states encountered during exe-
cution, and can be used to modify the program timing. For sensitivity analysis,
the program is run twice, using the instrumentation to simulate the effects of
platform, libraries, and scheduling changes. For change impact analysis, Direct

first identifies the changes in the two programs, and tracks the common portions
of code across the programs. Direct then instruments both original and modi-
fied programs in a compatible fashion, so the outcomes of the two instrumented
programs can be compared.

3

To make such an analysis feasible, it is essential (a) to represent the set E

of global states encountered in the first set of runs in a space-efficient fashion,
and (b) to efficiently test whether a newly encountered global state belongs
to E or not. The requirement (a) is particularly important in the analysis of
embedded software, where the set E must be kept in what often is a very small
amount of working memory. Direct represents the set E using Bloom filters
[9], a probabilistic data-structure that implements sets efficiently. The fact that
Bloom filter membership has false positives, but no false negatives, implies that
Direct may (rarely) miss new global states, but that every new global state
found by Direct is guaranteed to be new.

We demonstrate the effectiveness of Direct via case studies. We studied
implementations of the dining philosophers problem and a program that imple-
ments an adhoc protocol for Lego robots. We studied capabilities of the Direct

infrastructure to, (a) expose a plausible bug introduced as a consequence of a
likely change in the implementation of the adhoc protocol, (b) study the useful-
ness of the sequence of global states extracted by Direct to debug a deadlock in
a naive implementation of dining philosophers, (c) compare different fork alloca-
tion policies in dining philosophers with respect to resource sharing and equity,
(d) study the usefulness of sensitivity analysis to increase thread interleavings
and hence increase the number of unique global states that can be observed for
a fixed program and test.

Related work. Change impact analysis is well studied in software engineer-
ing [2]. For example, [13–15] consider change impact analysis of object-oriented
programs, specifically Java programs. They use static analysis to determine ad-
ditions, deletions and modifications to classes and methods and their impact
on test suites, with the objective of aiding users understand and debug failing
testcases. Change impact analysis is also related to program slicing [17] and in-
cremental data-flow analysis [8]. While there are a number of works in analyzing
change impact from the perspective of testing, debugging and test case gener-
ation of imperative, object-oriented and aspect-oriented programs, there is not
much literature devoted to change impact analysis in multi-threaded programs.

There are several works devoted to predicting the impact of change based
on revision histories. For example, [6] studies the analysis of change impact us-
ing machine learning techniques, mining source code repositories, to predict the
propensity, of a change in source code, to cause a bug. CHESS [10] explores
the problem of coverage in multi-threaded programs to expose bugs caused by
unexplored thread interleavings. Our work differs from [10] in that we study
the impact of change between two version of a program, whereas CHESS ex-
plores only the state space of a single program. The work in [5] explores testing
multi-threaded Java programs with the objective of finding bugs, by placing
sleep statements conditionally, thus producing different interleavings via con-
text switches. The tool reported in [5] is a Java testing tool, that requires every
test to have a specification of its correct outcome; the tool repeats each test a
number of times modifying the concurrent behavior. Our work differs from [5]
in that we do not require test specifications and we focus on the problem of

4

assessing the impact of change between two versions of a program, while [5] fo-
cusses on a single program and test. Moreover, we target embedded C programs.
The work closest to ours is [3], that uses runtime, static and source code change
information to isolate sections of newly added code that are likely causes of ob-
served bugs. However, [3] does not address concurrent programs, and require
programmer interaction or test specifications to detect “faulty” behavior. In [3]
program changes are tracked, using information from a version control system
to generate the set of changes that affected the faulty behavior. On the other
hand, our work starts by accumulating sets of global states at runtime for a
given set of tests. Then, we explore whether events not seen in earlier executions
are caused by changes in the program, as witnessed by running the same set of
tests. By restricting ourselves to runtime behaviors, we alleviate the need to rely
on sometimes expensive static analysis, and we readily obtain a fully automatic
tool.

2 Definitions

In this section we present a model of multi-threaded C programs. We consider
interleaving semantics of parallel executions, in which the underlying architec-
ture runs a single thread at any given time during the execution of the programs.
This semantics is conventional for most current embedded platforms. The ex-
tension to real concurrency (with multi-cores or multi-processors) is not difficult
but rather technical, and it is out of the scope of this paper. Our goal is to pro-
vide a debugging tool for multi-threaded C programs by using a combination of
source instrumentation and online run-time analysis. We now present the formal
definitions of our model.

Programs and statements. The dynamics of a multi-threaded C program P

consists of the execution of a set T = {Ti | 0 ≤ i ≤ n} of threads; we take
[T] = {1, 2, . . . , n} as the set of indices of the threads in P . Given the program
P , let Stmts be the set of statements of P . We distinguish a set of observable

statements. This set includes all function calls within the user program, as well as
all the operating system (OS) calls and returns, where the OS may put a thread
to sleep, or may delay in a significant way the execution of a thread. In par-
ticular, the observable statements include the invocations to manage locks and
semaphores and change thread interleavings, such as mutex lock , semaphore init

and thread delay . We associate with each statement a unique integer identifier,
and we denote by S ⊂ N the set of identifiers of all observable statements. We
use F to denote the set of all user-defined functions being called in the program
and we define F : S 7→ {⊥} ∪ F to be the map that for every statement s ∈ S

gives the function being invoked in s, if any, or ⊥ if s is not a function call. Fi-
nally, we define the scope of a statement s ∈ S to be the function that contains
s. We represent the scope of s as sc(s).

Runtime model. The program is first instrumented with a test harness, and
then compiled into a self-contained executable that contains the functionality of
the original program together with the testing infrastructure. A run is an execu-
tion of such a self-contained executable. A thread state (s0, s1, . . . , sn) consists

5

Program 1 A simple application with two threads

1 void infa(void)

2 {

3 while (1) {

4 if (exp) {

5 mutex_lock(b);

6 mutex_lock(a);

7 // critical section

8 mutex_unlock(a);

9 mutex_unlock(b);

10 } else {

11 mutex_lock(c);

12 mutex_lock(a);

13 // critical section

14 mutex_unlock(a);

15 mutex_unlock(c);

16 }

17 }

18 }

20 void infb(void)

21 {

22 while (1) {

23 mutex_lock(a);

24 mutex_lock(b);

25 // critical section

26 mutex_unlock(b);

27 mutex_unlock(a);

28 }

29 }

of an observable statement sn, together with all the statements s0, s1, . . . , sn−1

that correspond to the function calls in the call stack (in the order of invocation)
at the time sn is executed. Precisely, a thread state σ = (s0, s1, . . . , sn) ∈ S∗

is such that each s0, . . . , sn−1 is a call statement, sc(s0) = main, and for all
0 < i ≤ m, the scope of si is si−1: sc(si) = F(si−1). A block of code is the
sequence of instructions executed between two consecutive thread states.

A joint state of the program P is a tuple (k, σ0, σ1, . . . , σn), where k ∈ [T] is
the thread index of the current active thread, and for 0 ≤ i ≤ n, the sequence
σi ∈ S∗ is the thread state of the thread Ti. We refer to the joint states of the
program as abstract global states or simply as global states. The set of all global
states is represented by E .

We illustrate these definitions using Program 1. This program consists of
two threads: T0 that executes infa (on the left); and T1 that executes infb

(on the right). Each thread is implemented as an infinite loop in which it ac-
quires two mutexes before entering its critical section. The calls mutex lock and
mutex unlock are the OS primitives that request and release a mutex respec-
tively. For simplicity in the explanation, assume that the identifier of a statement
is its line number. Let s0 be the statement that launched thread T0. The thread
state of T0, corresponding to the statement at line 5 in function infa that calls
mutex lock(b) is (s0, 5). Similarly, the thread state of T1 corresponding to line
23, is (s1, 23), where s1 is the statement that launched thread T1. An example
of a global state is (1, (s0, 5), (s1, 23)), produced when thread T1 transitions to
state (s1, 23) with T0 being at (s0, 5), corresponding to its last visited statement.

3 Sensitivity Analysis and Change Impact Analysis

The software development and maintenance processes of concurrent programs
involve changes that can induce subtle errors by adding undesirable executions

6

or disallowing important behaviors. The goal of our work is to facilitate the
discovery of the changes introduced in the behavior of the system due to changes
in the source code, or changes in the platforms, compiler, and libraries that allow
the construction of a working system from the source code. Thus, our work spans
both sensitivity analysis and change impact analysis. We consider the following
sources of differences:

1. Changes in platform. When a program is run on a different platform, the
execution of each code block may vary, due to changes in the instruction set,
cache, and CPU speed of the target machine.

2. Changes in compiler options and libraries. When the included libraries or
compiler options change, the execution time of each code black may vary,
with some executing faster and others slower.

3. Source code changes. When the source code of a program changes, it can
affect not only the execution time of the code blocks, but may also change
resource interactions and scheduling of the various threads.

The goal of Direct is to enable developers to analyze the effect of the above
changes, in terms of program behavior.

Direct first computes an approximation G of the set of global states that
the program can reach by collecting the states that the program reaches in one or
multiple runs. Then, a new run R of the program is obtained after the program
is affected by some of the above changes. When the run R encounters a global
state e that has never been observed in G, Direct outputs e along with a trace
suffix leading to e. The developers can then examine the trace, and gain insight
into how code or environment changes can lead to behavior changes.

Changes in platform, compiler options, and libraries. To analyze the
effect of changes in platform, compiler options, and libraries, the set G and the
run R used in the comparison are obtained from the same program source. The
run R is generated by running the original program without instrumentation;
the set G is obtained using Direct to modify in an appropriate fashion the
duration of the code blocks. This comparison can be used to perform sensitivity

analysis, aimed at discovering how much the behavior of the original program
can be affected by minor timing changes. Direct can be instructed to modify
the duration of code blocks in three ways:

– Proportional delays. The effect of changes in platform can be approximated
by introducing delays, for each block of code, that are proportional to the
running time of the block itself.

– Random delays. Even on the same execution platform the running time of
a block can vary due to characteristics of the hardware, the handling of
interrupts, included libraries, etc. These effects can be simulated by injecting
random delays in code blocks, within a user specified range of values. This
technique also aids a programmer in studying how robust an implementation
is against changes in block execution times.

– Constant delays. The latency of different instances of OS calls can also vary.
This effect can be simulated by inserting constant time delays in the testing
environment.

7

Program 2 man mutex lock replaces mutex lock in the source code

void man_mutex_lock (int statement_id, resource_t a) {

// Gets the current thread id from the set of registered threads.

int thread_id = self_thread_id();

// Injects pre-call delays for sensitivity analysis.

injectDelay(thread_id, Pre);

// Generates program event before the OS function call.

registerJointState(thread_id, statement_id);

// Calls the actual OS primitive.

mutex_lock(a);

// Injects post-call delays for sensitivity analysis.

injectDelay(thread_id, Post);

// Generates program event after the OS function call.

registerJointState(thread_id, statement_id + 1);

// Stores the start time of the subsequent block of code.

storeBlockStartTime(thread_id);

}

Delay changes can lead to behavior changes in multiple ways. For example, a
block that is delayed may result in a thread to become enabled, so that the
scheduler can choose to switch contexts from the delayed thread to the one that
is enabled; a shorter delay may not present such an option for the scheduler.
For each of the three delay insertion mechanisms given above, Direct can do
selective sensitivity analysis, where a subset of the threads in the program are
subjected to delay insertion.

Changes in source code. To analyze the effects of source code changes, Di-

rect uses sensitivity analysis through the injection of delays to accumulate such
a set of global states for the original program. As we show in subsection 5.3, this
is an effective mechanism to collect a large set of global states for a given pro-
gram and test. We then compare global states seen in a run R of the modified
program against the set G of global states collected for the original program.
The instrumentation introduced by Direct keeps track of the corresponding
statements in the two programs, making a behavioral comparison possible.

Changes in the source code typically involve some change in the logic of the
program, such as insertion of new code, deletion of code or relocation of some
sections of code. In order to analyze the impact of such change between two
versions P and P ′ of a program, it is necessary to relate observable statements
corresponding to sections of the code that did not change from P to P ′.

To motivate the need to track observable statements before and after a change
in code, consider again the example in Program 1. If the expression exp in the if
condition is not always false in Thread 1, there exists a potential for a deadlock. A

8

deadlock can occur if Thread 1 acquires resource a and then Thread 2 acquires
resource b. Thread 2 cannot release resource b until it completes its critical
section, which requires resource a held by Thread 1. At this point, there is a
deadlock. One fix for this problem consists in switching the order in which the
mutexes a and b are acquired by Thread 1. Taking line numbers as the identifiers
of all observable statements, we notice that the calls to acquire resources a and
b are statements 5 and 6 before the change and 6 and 5 after the change. To
analyze the impact of this code change, it is necessary to preserve the integer
identifiers of these statements during program transformation, even though these
statements have moved in the course of the transformation.

4 Implementation

In order to perform sensitivity analysis or change impact analysis for a program
P using Direct, we proceed as follows. First, we use the Direct tool to produce
an instrumented version of the original program. This version is then run one or
multiple times, producing a set E ⊆ E of observed global states.

For sensitivity analysis, we then run P instructing Direct to insert delays
as detailed in Section 3. For change impact analysis, we run a modified (and
instrumented) version P ′ of the program, possibly modifying timing as well. In
either case, the goal is to uncover states visited in these runs that do not belong
to E. When such an state is reached, Direct outputs the sequence of the m

most recent global states leading to the new state; the parameter m is chosen
to balance the need to limit memory consumption, and the intent to provide
insightful debugging information.

4.1 Program Instrumentation

Fig. 1 shows the program instrumentation flow of Direct. Direct relies on the
CIL toolset [12] to parse and analyze the program under consideration; CIL is
also used to insert instrumentation in the code. The instrumented version of the
program is compiled and linked with a runtime manager to produce the final
executable. The application can then be run just like the original user program.
The runtime manager is a custom piece of software that gains control of the user
application before and after each observable global state. In the following sub-
sections, we describe the instrumentation phase, the runtime manager and how
we track change in source code across multiple revisions. The instrumentation
step performs two tasks:
– replace observable statements, such as OS calls, with appropriate calls to

the resource manager, allowing the tracking of visible statements and the
insertion of delays.

– wrap every call to a user defined function with invocations to the run-time
manager to keep track of the call stack of the program being run.

Instrumenting observable statements. Direct reads a configuration file
that specifies the set of functions to track at runtime. This set typically includes
OS primitives such as mutex and semaphore acquisitions/releases, and other

9

_^]\XY Z[Direct

Runtime

Manager

''NNNNNNN

Embedded
Application
(C sources)

//_^]\XY Z[Direct

77ppppppp

''NNNNNN

_^]\XY Z[Compile

Link
//

Embedded
Application
(executable)

Instrumented
Annotated
C sources

77pppppp

Fig. 1: Direct tool flow. From the embedded program sources to the final executable
after instrumentation and linking with the runtime manager.

timing and scheduling-related primitives. Each observable statement s is replaced
by a call to a corresponding function in the runtime manager. The function in
the runtime manager performs the following tasks:

1. First, an optional delay can be introduced. This delay simulates a longer run-
time for the code block immediately preceding the observable statement.

2. The internal representation of the thread state is updated, due to the occur-
rence of the observable statement s.

3. The original observable statement s (such as an OS call) is executed.
4. An optional delay can be introduced. This delay simulates a longer response

time from the OS, or the use of modified I/O or external libraries.
5. Finally, the internal representation of the thread state is again updated,

indicating the completion of the statement s.

Note that we update the thread state twice: once before executing s, another
when s terminates. Distinguishing these two states is important. For example,
when the thread tries to acquire a lock, the call to mutex lock indicates the
completion of the previous code block and the lock request, while the completion
of mutex lock indicates that the thread has acquired the lock. In Program 2, we
illustrate the implementation of the runtime manager function man mutex lock

that replaces the OS primitive mutex lock . The first argument in all calls to
runtime manager functions that replace OS functions is s ∈ S . The subsequent
arguments are the actual arguments passed to the OS primitive in the user
program; these are used to call the actual primitive inside the runtime manager.

Tracking thread states. In order to track thread states, in addition to the
observable statements, Direct also tracks the call stack of the program. This
information is used to perform context-sensitive analysis, distinguishing calls to
the same function that are performed in different stack configurations. To this
end, Direct wraps each function call in a push-pop pair. If i is the integer
identifier of the call statement, the push instrumentation call adds i to the
call stack, and the pop call removes it. This bookkeeping allows the runtime
manager to produce the thread states correctly when observable statements are
encountered.

10

Preserving accurate timing. The instrumentation code, by its very existence,
causes perturbations in the original timing behavior of the program. To elimi-
nate this undesirable effect, we run all applications on the eCos synthetic target
running on Ubuntu 8.04. We modified the Hardware Abstraction Layer (HAL)
by adding infrastructure to freeze the real-time clock, so that all of the runtime
processing overheads do not affect the timing of the application code. In this
manner, the exposed bugs are not caused by artificial interleavings created by
the effect of the runtime manager, and they are more likely to correspond to
real bugs that can be observed in the target environment. Notice that while
the freezing of the real-time clock is a functionality that can be implemented
only when we run the user program on an emulator, such as the eCos HAL, the
observed bugs remain real bugs in the actual environment, modulo accuracy of
emulation.

Tracking corresponding pieces of code. In change impact analysis, Direct

is used to analyze the difference in behavior between a program P , and a pro-
gram P ′ obtained from P by modifying some of its source code. To perform this
analysis, it is important to identify the common, unchanged portions of P and
P ′. In particular, we must preserve the identifiers of statements in P that are
also present in P ′. A transformation from P to P ′ may involve (a) sections of
new code that are inserted, (b) sections of code that are deleted, and (c) sec-
tions of code that have moved either as a consequence of insertions and deletions
or as a consequence of code re-organization. The key problem in tracking code
changes is that of variations in coding style; syntactically identical program frag-
ments may still be very different based on the use of indentation, line breaks,
space characters and delimiters. A mechanism that compares a program P and
its transformed version P ′ needs to compare a representation of P and P ′ that
remove these variations in coding style. A representation that lends itself to such
comparison is the CFG. Hence, in Direct, we first generate a text dump sum-
marizing the CFG of P and P ′. In our CFG summaries we preserve instructions
(assignments and function calls) exactly, but summarize all other statements
(blocks, conditionals, goto statements etc.). This is done for two reasons; firstly,
to remove artifacts such as labels introduced by CIL that may change from P

to P ′, but have no bearing on tracking statements, and secondly, to improve
the accuracy of tracking change. Fig. 2 shows the summary generated for the
program fragment on the left of Program 1. Given the two CFG summaries, Di-

rect identifies sections of code that have been preserved using a text difference
algorithm [16, 11, 4]. The text difference algorithm, given two text documents D

and D′, extracts a list of space, tab and newline delimited words from each doc-
ument. The list of words are compared to produce a set of insertions, deletions
and moves that transform D to D′. We use the set of moves generated by the
algorithm to relate the set of statements in P that are also in P ′.

Tracking additional components of the program joint state. The Direct

infrastructure supports the following extensions to the joint state of a program.

– Resource values. In typical concurrent software, threads share resources and
synchronize using concurrency control primitives that manipulate these re-

11

<Block>

<Loop>

<If>

<Block>

cyg_mutex_lock(& a);

cyg_mutex_lock(& b);

cyg_mutex_unlock(& b);

cyg_mutex_unlock(& a);

<Block>

cyg_mutex_lock(& c);

cyg_mutex_lock(& a);

cyg_mutex_unlock(& a);

cyg_mutex_unlock(& c);

Fig. 2: The summary of the program on the left in Program 1

sources. Since Direct captures the control primitives and exposes them
through states, the precise values of the resources can be accessed by the
runtime manager. Let R be the set of all resources, including mutexes and
semaphores. Every resource has an associated value, that has the range
{0, 1, 2, . . . ,max(r)}, where max(r) = 1 for all mutexes and max(r) > 0
for all counting semaphores. Given a program state, the value of a resource
r is represented by val(r). We extract resource values whenever a state is ob-
served. If the resource data is only manipulated at observable global states,
then changes in the resource are observed with total precision.

– Global variables. Given a set G of global variables, we can include their values
as part of the global state. Note that these values are not tracked whenever
they change, but only when an observable statement is reached.

– Extending observable statements. Users can either expand on the set of OS
primitives or library functions that Direct tracks or they may choose a
program statement of interest, to be part of the set of observable statements.

– Block execution times. We track the average block execution times of each
block in each thread. This is used to perform proportional delay injection.
Whenever a new state is observed, we take the difference between the time
at which the new state is observed and the time at which the previous state
was observed for each thread.

4.2 Detecting New Events Efficiently

The use of Direct can be summarized as follows. First, a program P is run one
or multiple times, generating a set of global states E ⊆ E encountered during
these runs. Then, we exercise a modified version P ′ of P . P ′ is obtained either by
source-code modifications from the user, or by the insertion of delays. Whenever
during a run of P ′ a state e that is not present in E is encountered, Direct

reports this new global state, along with (a suffix of) a sequence of global states
leading to e.

For this technique to be practical, testing membership with respect to E must
be performed efficiently both in terms of time and space. The time efficiency

12

is crucial for scalability to large programs. The space efficiency is especially
important in the study of embedded software. The set E can be very large: for
embedded software, we need an implementation that uses very limited amount
of memory.

To achieve the desired efficiency, our implementation relies on Bloom filters
for the representation of the set E. A Bloom filter is a probabilistically correct
data-type that implements sets of objects, offering two operations: insertion and
membership checking. A Bloom filter guarantees that after inserting an element,
checking membership of that element will return true. However, a membership
query for an element that has not been inserted in the Bloom filter, is only
guaranteed to respond false (the correct answer) with a high probability. That
is, Bloom filters allow some false positive answers for membership queries.

A Bloom filter maintains a table of M bits, initially all set to 0. It uses k

hash functions, each mapping the encoding of an object into a number from 1 to
M . An insertion consists of computing each of k hash functions over the object
and setting to 1 the corresponding entries in the table. Checking membership
consists of testing whether the bits at all position obtained by hashing the object
are 1. If some entry is 0 then the object is reported as not being in the set. If all
entries are 1 the object is declared to be in the set.

The accuracy of a Bloom filter does not depend on the size of the universe of
objects or the encoding of each object. It depends only on the quality of the hash
functions, and the number of different objects inserted. For k perfectly random
hash functions, a table of M bits and n objects inserted, the probability of a
false positive is:

(1 − e
−kn

M)k.

For example, the probability of a false positive in a Bloom filter with a table size
eight times the number of elements inserted and five hash functions is typically
less than 0.02 [9]. For example, a system with 625 global states can be tracked
by a Bloom filter with less than 1 Kb of memory with very little ratio of false
positives. A false positive in checking set membership using Bloom filters oc-
curs because the hash functions may evaluate distinct global states to the same
bucket. This property of Bloom filters implies that Direct may (rarely) miss
new states. On the other hand, since there are no false negatives in checking
set membership using Bloom filters, every new global state found by Direct is
guaranteed to be new, in the sense that the reached state was not seen in the
reference runs.

Each operation in the Bloom filter is also very efficient to perform. In our
implementation, since independent hash functions with random properties are
difficult to design, we use the technique of double-hashing [7] to obtain k (good)
hash functions from 2 (good) hash functions. Therefore, the cost of an operation
is virtually that of the computation of two hash-functions, so all operations run
in almost constant time.

13

?> =<89 :;user

uukkkkkkkkk

useroo

input //?> =<89 :;router

55kkkkkkkkk

//

))SSSSSSSSS
broadcast

))SSSSSSSSS

?> =<89 :;generator

OO

?> =<89 :;sender

55kkkkkkkkk

outputoo ?> =<89 :;delayoo

Fig. 3: Scheme of an ad-hoc network protocol implementation.

5 Case Studies

We tested the aforementioned techniques on two case studies. We compared
solutions to the dining philosophers problem and analyzed an adhoc protocol for
legOS, adapted to run in an eCos [1] environment.

5.1 An Adhoc Protocol

We analyzed a multi-threaded program that implements an ad-hoc network pro-
tocol for Lego robots. As illustrated in Fig. 3, the program is composed of five
threads, represented by ovals in the figure, that manage four message queues,
represented by boxes in the figure.

Threads user and generator add packets to the input queue. The router

thread removes packets from the input queue, and dispatches them to the other
queues. Packets in the user queue are intended for the local hardware device,
so they are consumed by the user thread. Packets in the broadcast queue are
intended for broadcast, and they are moved to the output queue by the delay

thread, after a random delay, intended to avoid packet collisions during broadcast
propagation. Packets in the output queue are in transit to another node, so they
are treated by the sender thread. Notice that if the sender fails to send a packet
on the network, it reinserts the packet back in the broadcast queue (even if it is
not a broadcast packet), so that retransmission will be attempted after a delay.
Each queue is protected by a mutex, and two semaphores that count the number
of empty and free slots, respectively.

The reference implementation has no non-blocking resource requests. Pro-
gram 3 shows a snippet of the router code. It first checks whether the broadcast
queue is free by trying to acquire the semaphore bb free sem at line 1 in Pro-
gram 3. If the semaphore is available, the router acquires a mutex, bb mutex that
controls access to the broadcast queue, before inserting a packet in the queue.
Then, the router posts the semaphore bb els sem indicating that the number of
elements in the queue has increased by one.

Finally, we place a check for the following invariant in the code,

val(., bb free sem) + val(., bb els sem) ∈ {BB NEL,BB NEL − 1}

where BB NEL is the size of the broadcast queue. We modeled a plausible bug
getting introduced when the blocking call to acquire the semaphore bb free sem

14

Program 3 A snippet of code from the packet router thread.

1 semaphore_wait(&bb_free_sem);

2 semaphore_wait(&bb_mutex);

4 // code that forms a new packet and copies it into

5 // the free slot in the broadcast queue

...

40 semaphore_post(&bb_mutex);

...

50 semaphore_post(&bb_els_sem);

52 // add an invariant check here.

53 semaphore_peek(&bb_free_sem, &freev);

54 semaphore_peek(&bb_els_sem, &elsv);

55 assert((freev + elsv) == BB_NEL || (freev + elsv) == (BB_NEL - 1));

...

is replaced by a non-blocking call. The change is itself quite tempting for a
developer as this change improves CPU utilization by allowing the router not
to block on a semaphore, continuing instead to process the input queue while
postponing to broadcast the packet. In Program 4 we show the snippet of code
that incorporates this change. The bug introduced by this change is that the
blocks of code that should execute when the semaphore is successfully acquired,
terminate prematurely. Specifically, the call to post the semaphore bb els sem

at line 51 in Program 4 should only occur when the call at line 1 to acquire
bb free sem succeeds. This bug goes undetected as long as the call to acquire
bb free sem always succeeds. Two other threads, besides the router, access the
semaphore bb free sem: the delay thread and the send thread. Notice that as
long as the send thread succeeds, it does not try to place the packet back on the
broadcast queue and the bug goes undetected. If the send thread fails to send the
packet, acquires bb free sem and causes the broadcast queue to fill up, the router
fails to get bb free sem, exposing the bug, leading to a violation of the invariant.
In one of our tests for this program, we model failure to send a packet using
randomization; each attempt to send a packet has an equal chance at success
and failure. This test exposed the bug. Specifically, the new global state that is
seen corresponds to the call to post bb els sem at line 51 in Program 4. In the
Appendix, we show the last two global states in the suffix of states that lead
to this new state. The global state immediately preceding the new state is one
where the non-blocking semaphore request in the packet router fails. Direct

reports the trace difference in an html file. This file shows the first state in the
test run that is not part of the set of states observed in the reference run. It
also provides users with the ability to walk a suffix of the trace leading to the
new global state. In the Appendix, we provide a more detailed explanation of
the generated html files.

15

Program 4 A snippet of code from the packet router thread after changing a
blocking call to be non-blocking. The bug is a consequence of premature termi-
nation of the trywait block.

1 if (semaphore_trywait(&bb_free_sem)) {

2 semaphore_wait(&bb_mutex);

4 // code that forms a new packet and copies it into

5 // the free slot in the broadcast queue

...

40 semaphore_post(&bb_mutex);

41 }

...

51 semaphore_post(&bb_els_sem);

53 // add an invariant check here.

54 semaphore_peek(&bb_free_sem, &freev);

55 semaphore_peek(&bb_els_sem, &elsv);

56 assert((freev + elsv) == BB_NEL || (freev + elsv) == (BB_NEL - 1));

...

State Thread Philosopher threads Res values Res held (c)alls/
no. index T0 T1 T2 T3 T4 (r)ets

1 3 (0, 2) (0, 2) (0, 2) (0, 1) (0, 0) (0, 0, 0, 1, 1) () c

2 3 (0, 2) (0, 2) (0, 2) (0, 1) (0, 0) (0, 0, 0, 0, 1) (3) r

3 3 (0, 2) (0, 2) (0, 2) (0, 2) (0, 0) (0, 0, 0, 0, 1) (3) c

4 4 (0, 2) (0, 2) (0, 2) (0, 2) (0, 0) (0, 0, 0, 0, 1) () r

5 4 (0, 2) (0, 2) (0, 2) (0, 2) (0, 1) (0, 0, 0, 0, 1) () c

6 4 (0, 2) (0, 2) (0, 2) (0, 2) (0, 1) (0, 0, 0, 0, 0) (4) r

7 4 (0, 2) (0, 2) (0, 2) (0, 2) (0, 2) (0, 0, 0, 0, 0) (4) c

8 0 (0, 2) (0, 2) (0, 2) (0, 2) (0, 2) (0, 0, 0, 0, 0) (0) r

9 0 (0, 3) (0, 2) (0, 2) (0, 2) (0, 2) (0, 0, 0, 0, 0) (0) c

10 1 (0, 3) (0, 2) (0, 2) (0, 2) (0, 2) (0, 0, 0, 0, 0) (1) r

11 1 (0, 3) (0, 3) (0, 2) (0, 2) (0, 2) (0, 0, 0, 0, 0) (1) c

12 2 (0, 3) (0, 3) (0, 2) (0, 2) (0, 2) (0, 0, 0, 0, 0) (2) r

13 2 (0, 3) (0, 3) (0, 3) (0, 2) (0, 2) (0, 0, 0, 0, 0) (2) c

14 3 (0, 3) (0, 3) (0, 3) (0, 2) (0, 2) (0, 0, 0, 0, 0) (3) r

15 3 (0, 3) (0, 3) (0, 3) (0, 3) (0, 2) (0, 0, 0, 0, 0) (3) c

16 4 (0, 3) (0, 3) (0, 3) (0, 3) (0, 2) (0, 0, 0, 0, 0) (4) r

17 4 (0, 3) (0, 3) (0, 3) (0, 3) (0, 3) (0, 0, 0, 0, 0) (4) c

Table 1: A sequence of global states leading to a deadlock in a naive implementation
of dining philosophers. Each state consists of the index of the active thread, all thread
states, resource values, the set of resources held by the active thread and whether the
event is a function call or return.

5.2 Dining Philosophers

We also analyzed a version of the classic dining philosophers problem using the
Direct infrastructure. Program 5 shows the implementation of a philosopher.

16

Program 5 Dining philosopher

void philosopher(int philosopher_id)

{

int first_fork, second_fork;

// fork assignment policy

first_fork = philosopher_id;

second_fork = (philosopher_id + 1) % N_PHILS;

if (first_fork > second_fork) {

first_fork = second_fork;

second_fork = philosopher_id;

}

while (1) {

// thinking phase

0 thread_delay(20);

// eating phase

1 semaphore_wait(&forks[first_fork]); // pick first fork

2 thread_delay(2); // pause

3 semaphore_wait(&forks[second_fork]); // pick second fork

4 thread_delay(20); // eating phase

5 semaphore_post(&forks[second_fork]); // replace second fork

6 thread_delay(2); // pause

7 semaphore_post(&forks[first_fork]); // replace first fork

}

}

The numbers on the left are identifiers of observable statements. A naive imple-
mentation lets each philosopher pick up her left fork first leading to a deadlock;
each philosopher is holding her left fork and none can get an additional fork to
eat. Table 1, shows the tail-end of the sequence of states of a system of 5 dining
philosophers. Each line shows a global state containing the index of the active
thread, the state of each thread, the resource values, the set of resources held by
the active thread and whether the event corresponds to a function call or return.
The second state in the table occurs when the fourth philosopher (thread T3)
has picked up her first fork, which corresponds to the return from the call in
statement 1, after successful acquisition of the first resource. The transition from
state 5 to state 6 is the one where the fifth philosopher (thread T4) acquires her
left fork. As evidenced in state 6 all resources have been allocated with each
philosopher holding one fork. This state inevitably leads to a deadlock, shown
in the final state, where all philosophers are waiting at statement 3, that corre-
sponds to a request for the second fork in Program 5. When we fix the deadlock
using monotone locking and run the program again, we notice that the new state
is one where the fifth philosopher is denied her first fork, avoiding the deadlock.

We found that the sequences of states generated serve another useful pur-
pose, namely analyzing waiting times for philosophers and checking whether the

17

fork allocation policies are philosopher agnostic. We analyzed the sequence of
states generated after fixing the deadlock. We noticed that a simple analysis
on the sequence shows that the observable statement 4 where the philosophers
have acquired both forks, occurs half the number of times for the first and last
philosophers compared to the others. If we change the implementation so that all
the even numbered philosophers pick their left fork first and the odd numbered
philosophers pick their right fork first, they all get to eat virtually the same
number of times. The latter implementation may cause livelocks under certain
schedulers, but is equitable to the philosophers when compared to monotonic
locking. The asymmetry in the implementation for the last philosopher turns
out to be the culprit. Since the last philosopher always wishes to pick up her
right fork first which is also the first fork that the first philosopher needs, they
end up waiting for each other to finish. The last philosopher cannot pick up her
left fork till she gets her right fork and vice versa for the first philosopher. This
asymmetry favors the other philosophers. In fact, philosophers T0 and T4 acquire
their first fork roughly half the number of times that the others do, and have
the largest wait times for their forks when compared to the others.

5.3 Increasing Coverage With Random Delays

 100

 1000

 0 1000 2000 3000 4000 5000 6000

N
um

be
r

of
 e

ve
nt

s

Time in clock ticks

Event growth with random delays

Reference
Random [20:50]
Random [5:20]
Random [1:5]

(a) Dining philosophers

 100

 1000

 0 2000 4000 6000 8000 10000 12000

N
um

be
r

of
 e

ve
nt

s

Time in clock ticks

Event growth with random delays

Reference
Random [20:50]
Random [5:20]
Random [1:5]

(b) Adhoc

Fig. 4: Number of states observed as the running time increases, with and without
injection of random delays, for the two case studies. The graphs show that using random
delay injection the number of unique states seen increases, given the same test and
target platform.

An interesting question in change impact analysis is that of coverage. Given
a program, a test and a platform, how do we generate as many global states
as possible? This question has a direct consequence on analyzing the impact of
change in source code. The larger the number of states that the tool exercises,
the more likely it is that a state observed in a test run, that does not occur in
any reference run, point to a potential bug or otherwise interesting new global

18

state. Towards this end, Direct provides the mechanism of injecting random
delays, in user specified ranges, that increases context switching between threads,
producing new states. We studied the effect of injecting random delays in the
ranges [1..5], [5..20] and [20..50] clock ticks in all threads for the two case studies
presented in this section. We plot the results in Figure 4a and Figure 4b, where
the x-axis represents run durations in clock ticks and the y-axis reports the log of
the number of unique states observed. In this study, we ran each program for a set
of durations. In each run, we first measured the number of unique states without
random delay injection; the Reference line in the graphs. For each duration, we
then ran the same application, injecting random delays and took the union of
the set of states seen in the reference run and the set of states seen with random
delay injection. The size of these sets, for each run duration, are shown by the
points along the lines labeled with random delays in the graphs. For dining
philosophers, we noticed that the number of new states in the reference run is
zero after 200 clock ticks, but using random delays we see an increase in the
number of new states for each run duration as shown in Figure 4a. Since code
blocks take longer to execute with delay injection, the total number of global
states diminishes with longer delays, reducing the number of unique states seen.
This phenomenon is also witnessed by the increase in states seen with smaller
delay ranges. For the adhoc protocol, we noticed that the number of new states
observed in the reference run decreases as the duration of the runs increase, but
the number of new states are consistently higher with random delay injection
just as in the case of dining philosophers. We also observed that in this case,
changing the range of the random delays does not produce any significant change
in the number of new states seen, unlike in the case of dining philosophers. These
results on our case studies give us strong evidence that random delay injection is
a good mechanism to increase the number of observed states for a given program
and test.

6 Conclusions

This paper reports on techniques for the change impact and sensitivity analy-
sis of concurrent embedded software written in the C programming language.
These techniques are prototyped in a tool called Direct. The approach consists
of instrumenting the program with a test harness and then exercising the in-
strumented program. Direct uses a combination of static analysis and runtime
monitoring. The static analysis determines the instrumentation points, gener-
ates the monitoring code, and establishes the difference between two versions of
a given program. The runtime instrumented code is executed before and after
every concurrency primitive and user defined function. The runtime manager
computes at each instrumentation point a global state consisting of the call
stacks of every thread together with concurrency related data, and optionally
some data selected by the user. The runtime manager collects the set of global
states reached during the execution, and keeps a sequence of abstract global
states leading to the current state.

19

For sensitivity analysis, the runtime manager inserts delays to simulate dif-
ferences between platforms, libraries and operating systems. For change im-
pact analysis, the runtime manager collects an over-approximation of the set
of reached states of the original program. The states reached during the exe-
cutions of the new version are then compared against the set of reached states
of the original program. We presented two cases studies: an implementation of
the so-called ad-hoc protocol for Lego robots, and an implementation of dining
philosophers. The prototypes were developed in a modified version of the eCos
environment in which the instrumented code was executed with the real-time
clock stopped, so that the execution of the runtime manager incurred no addi-
tional delay. These case studies illustrate how the techniques described in this
paper can help capture bugs in concurrency programs.

We plan to extend the techniques reported here in two directions. First, we
will use Direct in real embedded systems, where the illusion of instantaneous
execution time of the manager that we obtained via simulation is not accurate.
Second, we will explore the design of schedulers that try to maximize the set
of global states reached. Unlike in CHESS [10] we plan to proceed in several
rounds, where the scheduler of the next round is obtained using static analysis
and the set of global states obtained in the previous runs.

References

1. ecos homepage. http://ecos.sourceware.org/.
2. Robert S. Arnold. Software Change Impact Analysis. IEEE Computer Society

Press, Los Alamitos, CA, USA, 1996.
3. Johannes Bohnet, Stefan Voigt, and Jürgen Döllner. Projecting code changes onto

execution traces to support localization of recently introduced bugs. In SAC ’09:
Proceedings of the 2009 ACM symposium on Applied Computing, pages 438–442,
New York, NY, USA, 2009. ACM.

4. Randal C. Burns and Darrell D.E. Long. A linear time, constant space differencing
algorithm. In Performance, Computing, and Communication Conference (IPCCC),
pages 429–436. IEEE International, 1997.

5. Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarden Nir, Gil Ratsaby, and Shmuel
Ur. Framework for testing multi-threaded java programs. Concurrency and Com-
putation: Practice and Experience, 15(3-5):485–499, 2003.

6. Sunghun Kim, Jr. E. James Whitehead, and Yi Zhang. Classifying software
changes: Clean or buggy? IEEE Transactions on Software Engineering, 34(2):181–
196, 2008.

7. Donald E. Knuth. The Art of Computer Programming, volume 3 (Sorting and
Searching), chapter 6.4. Addison-Wesley, 2nd edition, 1998.

8. Thomas J. Marlowe and Barbara G. Ryder. An efficient hybrid algorithm for incre-
mental data flow analysis. In POPL ’90: Proceedings of the 17th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 184–196, New
York, NY, USA, 1990. ACM.

9. Michael Mitzenmacher and Eli Upfal. Probability and Computing. Cambridge
University Press, 2005.

10. Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Pira-
manayagam Arumuga Nainar, and Iulian Neamtiu. Finding and reproducing
heisenbugs in concurrent programs. In OSDI, pages 267–280, 2008.

20

11. Eugene W. Myers. An O(ND) difference algorithm and its variations. Algorithmica,
1(2):251–266, 1986.

12. George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. CIL:
Infrastructure for C program analysis and transformation. In Proceedings of the
11th International Conference on Compiler Construction, volume 2304 of Lect.
Notes in Comp. Sci., pages 213–228, 2002.

13. Xiaoxia Ren, Ophelia C. Chesley, and Barbara G. Ryder. Identifying failure causes
in java programs: An application of change impact analysis. IEEE Trans. Softw.
Eng., 32(9):718–732, 2006.

14. Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia Chesley.
Chianti: a tool for change impact analysis of java programs. SIGPLAN Not.,
39(10):432–448, 2004.

15. Barbara G. Ryder and Frank Tip. Change impact analysis for object-oriented
programs. In PASTE ’01: Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering, pages 46–53,
New York, NY, USA, 2001. ACM.

16. Walter F. Tichy. The string-to-string correction problem with block move. ACM
Trans. on Computer Systems, 2(4), 1984.

17. Frank Tip. A survey of program slicing techniques. J. Prog. Lang., 3(3), 1995.

21

A Appendix

We now include screen-shots of the html that is generated by Direct, when a
new event is reached in a run due to source code change. These figures show
the new event when we replace blocking semaphore requests with non-blocking
requests in the code implementing the adhoc protocol. The new event is exactly
the point at which the newly introduced code causes a bug. We used Direct to
run a single test on the program before and after the change, storing the sequence
of events observed in each run explicitly. We then used a compare feature of
Direct that compares two sequences of events to extract the matching prefix
of events into data files that can be navigated using an html driver. The html
driver has buttons to navigate the sequence of events in the second run (after
code change) that lead to the new event: an event not present in the sequence of
events observed in the first run (before code change). Figs. 5 and 6 show the last
two steps in this sequence. On the right hand side in both figures is the set of
thread states in the first run, at the point at which Direct found a new event
in the second run. The lines marked with a lighter background point to the last
thread state for each thread. In the execution model of interleaving semantics
that we consider, it is clear that each new event has exactly one thread that
witnesses a new thread state. The thread state corresponding to this thread is
marked with a darker background.

22

Fig. 5: Figure that shows the penultimate event in the sequence leading up to a new
event after code change. The last thread state for each thread is shown with a lighter
background. The state of the active thread is shown with a darker background.

23

Fig. 6: The new program event after the code change.

