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Abstract: The stock and recruitment relationship is fundamental to the management

of fishery natural resources. However, inferring stock-recruitment relationships is a

challenging problem because of the limited available data, the collection of plausible

models, and the biological characteristics that should be reflected in the model. Moti-

vated by limitations of traditional parametric stock-recruitment models, we propose a

Bayesian nonparametric approach based on a mixture model for the joint distribution of

log-reproductive success and stock biomass. Flexible mixture modeling for this bivari-

ate distribution yields rich inference for the stock-recruitment relationship through the

implied conditional distribution of log-reproductive success given stock biomass. The

method is illustrated with cod data from six regions of the North Atlantic, including

comparison with simpler Bayesian parametric and semiparametric models.

Keywords: Dirichlet process; Log-reproductive success; Markov chain Monte Carlo;

Multivariate normal mixtures; North Atlantic cod; Stock biomass.

1 Introduction

The stock-recruitment (S-R) relationship, i.e., the relationship between the stock size

and the level of recruitment to that stock is a key aspect of fishery research with

direct implications to the management of natural resources. With recent technological

advances and geographical expansion, many fishery resources have been driven to low

∗Corresponding author. Tel.: 831-459-5536 ; fax: 831-459-4829; E-mail: thanos@ams.ucsc.edu

1



and unproductive levels. In fact, in recent years the number of overexploited stocks

has dramatically increased in most regions of the world (Garcia and de Leiva Moreno

2003). Consequently, there has been a substantial rise in concern about the basic

biological sustainability of fishing. The S-R relationship is used to make decisions on

the limits of sustainable fishing and is therefore fundamental to the management of

fishery resources.

However, modeling and inferring S-R relationships is a challenging problem. Data

are limited and measured with noise in both stock biomass and estimated recruitment;

the S-R relationship is likely to be nonlinear over some ranges of stock sizes; and

there are various plausible biological mechanisms that are consistent with very different

functional relationships between stock and recruitment. In particular, although many

parametric S-R models can be biologically derived, the relationship is usually disguised

by environmental variability and difficult to determine with accuracy.

The Bayesian paradigm offers a natural modeling framework for S-R relationships.

In general, Bayesian approaches enable incorporation of prior knowledge, have the

capacity to model different sources of data uncertainty, and build inference from prob-

abilistic modeling, which thus yields appropriate uncertainty quantification of point es-

timates that does not rely on asymptotic considerations. Indeed, parametric Bayesian

techniques are increasingly utilized in fisheries and, more generally, in ecology; see,

e.g., Punt and Hilborn (1997), McAllister and Kirkwood (1998), Clark (2005; 2007).

However, parametric approaches to S-R modeling, Bayesian and classical alike, may

be too restrictive, since they rely on specific parametric forms for the S-R function. De-

pending on their assumptions, parametric models can produce very different inference

and can be highly influenced by extreme observations.

Semiparametric and nonparametric estimation methods for S-R relationships avoid

strong assumptions implied by parametric approaches, and are thus becoming increas-

ingly popular. Classical nonparametric methods include: construction of the distri-

bution of recruitment given stock biomass through nonparametric density estimators

(Evans and Rice 1988); using generalized additive models to estimate the relationship

of recruitment with spawning biomass and an environmental variable, such as sea sur-

face temperature (Jacobson and MacCall 1995); fitting a locally weighted smoothing

function with nonparametric regression and spline methods (Cook 1998); and using

neural networks to estimate the S-R function (Chen and Ware 1999). A practical

drawback of these methods involves uncertainty quantification for the estimates of the

S-R function and of management reference points resulting from the estimated S-R

relationship. This is a direct consequence of the fact that classical nonparametric

estimation techniques do not involve probabilistic modeling of the underlying (condi-
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tional) distribution of recruitment given stock biomass or of the corresponding joint

distribution. Hence, by avoiding potentially suspect parametric distributional forms,

i.e., by avoiding likelihood specification, they are inevitably limited to point estima-

tion. When developed, error bounds depend heavily on asymptotic results, which are

unreliable because of the small sample sizes typically available for S-R inference.

The impetus for a Bayesian nonparametric approach is the same with classical non-

parametric methods, that is, to provide inference for the S-R relationship that avoids

restrictive parametric assumptions. However, Bayesian nonparametric methodology

utilizes a drastically different approach to inference. Instead of avoiding modeling the

stochastic mechanism that generates the data, it treats the corresponding distribution

as the unknown (infinite-dimensional) parameter, which is assigned a nonparametric

prior that can support the space of all plausible distributions. Hence, Bayesian non-

parametric methods combine the advantages of Bayesian modeling with the appeal of

nonparametric inference. In particular, they provide data-driven, albeit model-based,

inference, and, importantly, more reliable predictions than parametric models.

To our knowledge, the only application of Bayesian nonparametrics to modeling S-

R relationships appears in Munch, Kottas, and Mangel (2005) and Patil (2007). This

work is based on semiparametric modeling, using the standard regression setting with

a normal distribution for recruitment on the log scale, and with a Gaussian process

(GP) prior for the S-R function. Although, as shown in Munch et al. (2005), the

GP semiparametric model outperforms traditional parametric models, it still includes

potentially restrictive modeling aspects as it builds inference from a parametric re-

cruitment distribution, a stationary prior model for the S-R function, and an implicit

assumption that stock biomass is observed with negligible measurement errors.

Here, we propose a more general fully nonparametric Bayesian modeling approach

for S-R relationships, which, while retaining a computationally tractable framework

for inference, it obviates the need for the above assumptions. The approach is built

from a mixture model for the joint distribution of log-reproductive success, log(R/S),

and stock biomass, where R and S denote recruitment and stock size, respectively.

(Note that regression approaches to modeling the S-R function typically use log(R/S)

and S as the response and covariate, respectively.) Flexible mixture modeling for this

bivariate distribution yields rich inference for the S-R relationship through the implied

conditional distribution of log(R/S) given S. Key features of the model include its

capacity to uncover both non-linear S-R relationships as well as non-standard shapes

for the conditional density of log-reproductive success. We illustrate the utility of the

proposed nonparametric model by applying it to cod data from six regions of the North

Atlantic, and comparing inference results with the semiparametric GP model discussed
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above, and the Ricker model, a commonly utilized parametric model.

The outline of the paper is as follows. Section 2 provides background on the North

Atlantic cod data. Section 3 introduces the Bayesian nonparametric mixture model.

In Section 4 we present the results from the North Atlantic cod data, including the

model comparison study, and Section 5 concludes with a discussion. The appendices

include technical details on implementation of the models.

2 Data Description

Cod are demersal marine fish that, historically, matured around 7 years and live for

several decades (see, e.g., Barot et al 2004). Large females produce millions of eggs

and the total number of eggs produced is roughly indexed by the total biomass of

spawning individuals. Recruitment refers to the number of individuals that result

from the spawning biomass in a given year. Survival from the egg stage to the age

at recruitment is density dependent leading to a non-linear relationship between stock

biomass and recruitment. We consider data on recruitment and stock biomass for cod

from six North Atlantic regions: NE Arctic, Icelandic, Irish Sea, Faroe, Skagerrak, and

West of Scotland. Each region has data dating from as far back as 1946 through 2004.

Recruitment and biomass estimates were determined by virtual population analysis

(Hilborn and Walters 1992) of commercial landings data and fishery independent re-

search surveys (ICES 2005). Virtual population analysis is essentially an accounting

procedure used to determine the number of fish that must have been in the population

given the numbers that have been removed over time and an independent estimate of

natural mortality. These data have been analyzed previously by many authors (see,

e.g., Brander and Mohn 2004; Stige et al 2006; and further references therein).

As discussed in the Introduction, in the S-R regression setting, the response of

interest is typically log-reproductive success, y = log(R/S), and the covariate x = S.

Hence, the data comprises {(yi, xi) : i = 1, . . . , n}, where yi denotes the subsequent

log-reproductive success from the spawning biomass xi in year i. The data from the

six regions (plotted in Figure 1) range in length from 27 to 59 years.

3 Bayesian Nonparametric Modeling for Stock-Recruitment Relationships

Section 3.1 presents the nonparametric mixture modeling approach for the S-R rela-

tionship. The methods for posterior inference are discussed in Section 3.2.

4



3.1 The mixture modeling approach

To develop a flexible inferential framework for S-R relationships, we propose a non-

parametric mixture model for the joint density, f(y, x), of log-reproductive success,

y = log(R/S), and stock biomass, x = S. A flexible model for f(y, x), which can,

for instance, accommodate skewness, excess variability, and possible multimodalities,

is key to our inferential objectives, since estimation and uncertainty quantification

for the S-R relationship is based on the conditional density f(y | x) corresponding

to f(y, x). In seeking flexible modeling and inference for densities, one is naturally

led to mixture distributions. In our context, mixtures of (bivariate) normal densities

provide a natural choice for modeling f(y, x). General mixtures of normal densities

can approximate any continuous density (e.g., Lo 1984), while at the same time, the

structure of the normal distribution enables ready interpretation for key functionals of

the mixture model (such as the conditional expectation E(y | x)) as well as relatively

easy implementation of inference techniques for the mixture model.

To motivate the proposed Bayesian nonparametric mixture model for f(y, x), con-

sider a parametric Bayesian model formulation for a finite mixture ofM normal densi-

ties
∑M

j=1 πjN2(y, x;µj,Σj), where N2(µ,Σ) will denote the bivariate normal density or

distribution (depending on the context) with mean vector µ and covariance matrix Σ.

Hence, each data point (yi, xi) arises from one of theM mixture components, which has

a distinct mean vector and covariance matrix, that is, we consider the general version

of location-scale normal mixtures. The component specific mixing parameters (µj,Σj)

arise from a prior distribution, say, G0(µ,Σ), possibly conditionally on hyperparam-

eters; moreover, the mixture weights πj are typically assigned a conjugate Dirichlet

prior distribution. Note that the finite mixture model can be equivalently written as
∑M

j=1 πjN2(y, x;µj,Σj) ≡
∫

N2(y, x;µ,Σ)dG(µ,Σ), where G is a discrete distribution

with possible values (µj,Σj) and corresponding probabilities πj, for j = 1, ...,M . Dis-

creteness of the mixing distribution G is key as it enables clustering of the mixing

parameters (µj,Σj) into a number of unique components (< M) associated with a

corresponding grouping of the data observations. However, choosing the number of

mixture components M is difficult, and inference methods for mixtures with random

number of components are rather complex.

Bayesian nonparametric mixture modeling offers a powerful alternative where the

parametric discrete distribution for G is replaced with a nonparametric prior that

supports all mixing distributions. In this context, the Dirichlet process (DP) (Ferguson

1973) is the most commonly used nonparametric prior model for the random mixing
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distribution G. We will write DP(α,G0) to denote the DP prior for G defined in

terms of two parameters: a parametric centering (base) distribution G0 (formally, the

prior expectation of the DP, E(G) = G0), and a positive scalar parameter α, which

controls the variability of G about G0 with larger values of α resulting in realizations G

that are closer to G0. Arguably, the most useful definition of the DP is its constructive

definition (Sethuraman 1994), according to which a random distribution G drawn from

a DP(α,G0) prior has an almost sure representation as

G(·) =
∞
∑

l=1

ωlδθl
(·), (1)

where δa denotes a point mass at a, the θl = (µl,Σl) are i.i.d. from G0, and ω1 = ζ1,

ωl = ζl
∏l−1

m=1(1− ζm) for l ≥ 2, with ζl i.i.d. from Beta(1,α) (independently of the θl).

Therefore, the DP generates (almost surely) discrete distributions with a countable

number of possible values drawn from the base distribution G0, and corresponding

weights defined through latent Beta(1,α) variables based on the mechanism described

above, which is referred to as stick-breaking. The stick-breaking process builds the

weights by iteratively breaking off a portion of a stick of unit length. The first Beta

draw ζ1 defines the first weight, the second weight is defined by breaking a portion

ζ2(1 − ζ1) from the remaining part of the stick, 1 − ζ1, and the process continues ad

infinitum (note that
∑∞

l=1 ωl = 1, almost surely). In practice, the number of effective

weights is controlled by the value of α (or the hyperprior placed on α), in particular,

small α values favor DP prior realizations for G that are effectively supported by a

small number of point masses.

Hence, our proposed model for the joint density, f(y, x), of log-reproductive success

and stock biomass is given by a DP mixture of bivariate normals,

f(y, x;G) =

∫

N2(y, x;µ,Σ)dG(µ,Σ), G ∼ DP(α,G0). (2)

We take G0(µ,Σ;m, V,Q) = N2(µ;m, V )IW(Σ; v,Q). Here, IW(v,Q) denotes the in-

verse Wishart distribution for the 2 × 2 (positive definite) matrix Σ with density

proportional to |Σ|−(v+3)/2 exp{−0.5tr(QΣ−1)}. This choice for G0 is convenient for

implementation of posterior inference as it corresponds to the standard conditionally

conjugate specification for the normal kernel mean and covariance parameters. As de-

tailed in Section 3.2 and Appendix A, the model is completed with priors for α and

for the hyperparameters (m, V,Q) of G0.

We next discuss a truncated version of the DP mixture model which facilitates

Markov chain Monte Carlo (MCMC) posterior simulation (e.g., Ishwaran and James
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2001), as well as interpretation of (and inference for) the mean regression function

arising from the DP mixture, a key functional with respect to inference for the S-R

relationship. Specifically, using the DP stick-breaking definition in (1), we approximate

the countable discrete mixing distribution G in (2) with a finite dimensional version

defined as GN(·) =
∑N

l=1 plδθl
(·). As before, the θl = (µl,Σl), l = 1, ..., N , are i.i.d.

from G0. Here, the random weights, p = (p1, ..., pN), arise from a truncation of the

stick-breaking process: with V1, . . . , VN−1 i.i.d. from Beta(1, α), we define p1 = V1;

pl = Vl
∏l−1

m=1(1−Vm), for l = 2, ..., N − 1; and set pN = 1−
∑N−1

l=1 pl =
∏N−1

m=1(1−Vm).

The induced joint density, f(p;α), for the random weights corresponds to a generalized

Dirichlet distribution given in Appendix A. Regarding the choice of N , an appropriate

truncation value can be found by considering the behavior of the higher order weights

ωl in (1). For instance, E(
∑∞

l=N ωl | α) = {α/(α + 1)}N−1. Given a suitable tolerance

level and a prior estimate for α, this expression provides the corresponding truncation

value N . For the analysis of the North Atlantic cod data in Section 4, we used N = 25

(larger values of N did not change posterior inference results).

Using the truncated version GN of G, the normal mixture model for the bivariate

density of log-reproductive success and stock biomass can be expressed as f(y, x;GN) =
∑N

l=1 plN2(y, x;µl,Σl). Moreover, f(x;GN) =
∑N

l=1 plN(x;µ
x
l ,Σ

xx
l ) provides the marginal

stock biomass density. Here, µx
l and Σxx

l are the mean and variance of the marginal

normal distribution for x induced by the joint N2(y, x;µl,Σl) distribution. Hence, in-

ference for the conditional density of log-reproductive success at any fixed value, x0, of

stock biomass is available through f(y | x0;GN) = f(y, x0;GN)/f(x0;GN). Whereas

traditional S-R models only allow for unimodal log-reproductive success densities, the

proposed DP mixture model can capture general unimodal and multimodal shapes.

As illustrated with the North Atlantic cod data in Section 4, the model yields full

inference for conditional response densities with shapes that can change with different

stock biomass values.

Inference for the S-R relationship can be obtained through any central feature of the

conditional log-reproductive success distribution. We work with the mean regression

function, E(y | x;GN) = {f(x;GN)}
−1

∫

yf(y, x;GN)dy, which can be expressed as

E(y | x;GN) =
1

f(x;GN)

N
∑

l=1

plN(x;µ
x
l ,Σ

xx
l ){µy

l + Σyx
l Σxx−1

l (x− µx
l )}, (3)

where µy
l is the marginal mean for y, and Σyx

l is the covariance between y and x arising

from the joint N2(y, x;µl,Σl) distribution. The conditional mean log-reproductive suc-

cess can also be written as E(y | x;GN ) =
∑N

l=1 ql(x){µ
y
l + Σyx

l Σxx−1
l (x − µx

l )}, where

ql(x) = plN(x;µ
x
l ,Σ

xx
l )/f(x;GN), for l = 1, ..., N , that is, a locally weighted mixture
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of linear regressions. Because the weights ql(x) depend on stock biomass values, they

provide local structure to E(y | x;GN ), and thus, when suggested by the data, yield

a non-linear shape for the conditional mean log-reproductive success. The coefficients

of the component specific linear regressions are given by the parameters of the corre-

sponding N2(µl,Σl) distribution, in particular, the sign of the slope, Σyx
l /Σ

xx
l , depends

on the correlation of the l-th normal mixture component.

For the illustration with the North Atlantic cod data (Section 4.1), we used a fairly

noninformative prior specification resulting in roughly constant (in x) prior means for

E(y | x;GN ) with wide prior uncertainty bands. Our motivation was to allow the

data to drive the shape of the estimated S-R relationship, and also to demonstrate

that there is significant prior to posterior learning under the proposed nonparametric

mixture model even with the small to moderate available sample sizes for the cod data.

However, if one wishes to favor in the prior specific shapes for the conditional mean log-

reproductive success, this is possible given the structure of E(y | x;GN). For instance,

the Ricker model (Ricker 1954) is one of the most commonly used among the several

biologically derived parametric S-R models. The basic Ricker model is built from the

assumption that early life mortality is a linearly decreasing function of spawners (e.g.,

Quinn and Deriso 1999). Under the (x = S, y = log(R/S)) scale, the Ricker model

postulates a decreasing linear S-R relationship, E(y | x) = β0 − β1x with β1 > 0 (more

details are given in Section 4.2 where the DP mixture model is shown to outperform

the Ricker model for the cod data). Hence, if for a particular application, it is of in-

terest to incorporate to the DP mixture model prior beliefs about Ricker-type density

dependence, this can be accomplished by, for instance, favoring small α values in the

prior along with negative correlations for the Σl matrices. Note that the implications

of any particular prior choice can be readily studied by computing prior realizations

for the conditional mean log-reproductive success using (3). The key feature of the

nonparametric mixture model is that the S-R function is not strictly restricted to the

linear shape (even when such a shape is favored in the prior), and thus non-standard

S-R relationships can be uncovered in the posterior inference results when supported

by the data.

3.2 Posterior inference

The standard hierarchical model formulation for the data = {(yi, xi) : i = 1, . . . , n}

involves mixing parameters (µ̃i, Σ̃i), i = 1, ..., n, such that the (yi, xi), given (µ̃i, Σ̃i),

are independent N2(yi, xi; µ̃i, Σ̃i), with the (µ̃i, Σ̃i), given G, arising i.i.d. from G.

Under the truncation approximation, GN , to G, latent configuration variables L =
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(L1, . . . , Ln) are introduced to break the finite mixture approximation to the countable

DP mixture model. In particular, each Li takes a value in {1, . . . , N} with Li = l

signifying that (µ̃i, Σ̃i) = (µl,Σl), for i = 1, . . . , n and l = 1, . . . , N . Hence, including

the configuration variables and replacing G with GN ≡ (p, θ), where θ = (θ1, ..., θN),

the model becomes

(yi, xi) | θ, Li
ind
∼ N2(yi, xi;µLi

,ΣLi
), i = 1, . . . , n

Li | p
i.i.d.
∼

N
∑

l=1

plδl(·), i = 1, . . . , n

p | α ∼ f(p;α)

θl | m, V,Q
i.i.d.
∼ G0(θl;m, V,Q), l = 1, . . . , N. (4)

Regarding the model hyperparameters, we place a gamma(aα, bα) prior on α, and take

N2(am, Bm), IW(aV , BV ), and W(aQ, BQ) priors for m, V , and Q, respectively, where

W(aQ, BQ) is a Wishart distribution for the 2 × 2 (positive definite) matrix Q with

density proportional to |Q|(aQ−3)/2 exp{−0.5tr(QB−1
Q )} (with aQ ≥ 2). Specification of

the hyperprior parameters is discussed in Appendix A.

We use blocked Gibbs sampling (e.g., Ishwaran and James 2001) to obtain the

posterior distribution p(p, θ,L, α,m, V,Q | data) corresponding to model (4). The

blocked Gibbs sampler updates parameters using draws from standard distributions,

the details of which are given also in Appendix A.

Each posterior sample for (p, θ) provides a posterior realization for GN directly

through its definition,
∑N

l=1 plδ(µl ,Σl). Then, for any specified point (y0, x0) in the (log-

reproductive success, stock biomass) space, we can obtain posterior realizations of the

joint mixture density for log-reproductive success and stock biomass, f(x0, y0;GN),

the marginal stock biomass density, f(x0;GN), and the conditional log-reproductive

success density f(y0 | x0;GN), using again the definition of these densities as discussed

in Section 3.1. Moreover, by evaluating expression (3), we obtain posterior samples

for the conditional mean log-reproductive success at any desired set of stock biomass

values, from which point and interval estimates for the S-R function can be produced.

Finally, a key inferential objective when modeling S-R relationships is estimation

of reference points that are used in fisheries management decisions. To illustrate such

inference under the DP mixture modeling approach, we consider an important reference

point, the unfished biomass, B0, as can be derived under a simple model for the stock

dynamics. In particular, following the approach in Munch et al. (2005), we assume that

stock biomass on an annual time step arises through St+1 = St − (ν + ψ)St + R(St),

where ν and ψ are the annual fractions of the population removed by natural and
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fishing mortality, respectively, and R(St) denotes recruitment as a function of biomass

at year t. Therefore, at equilibrium and in the absence of fishing, B0 is the solution to

R(S) = νS. Hence, B0 corresponds to the stock biomass value that satisfies restriction

log(R(S)/S) = log(ν), and thus under the joint DP mixture model for (log(R/S), S),

the density for B0 is given by f(x | y = log(ν);GN). The posterior distribution

for this conditional density can be obtained as above, working in this case with the

joint mixture density and the marginal log-reproductive success density. As with the

conditional log-reproductive success density, if the situation warrants, the model can

uncover non-standard shapes in the B0 density.

4 Data Illustrations

Section 4.1 presents results from the analysis of the North Atlantic cod data under the

DP mixture modeling approach of Section 3. In Section 4.2, we consider comparison

with simpler parametric and semiparametric S-R models.

4.1 Results for the North Atlantic cod data

For each of the North Atlantic regions, we fit the DP mixture model in (4) to the

corresponding cod data. Figure 1 plots point estimates (posterior means) and 95%

interval estimates for the mean S-R regression function in (3). The model uncovers

the diverse conditional mean log-reproductive success relationships for each of the six

regions. The NE Arctic, Icelandic, and Faroe regions have roughly negative linear

relationships. Each of them shows evidence of a slight curvilinear curve within a

small portion of the range of stock biomass values, in particular, for smaller biomass

values for the NE Arctic and Icelandic regions and for higher values of the Faroe

region. The posterior uncertainty bands for the NE Arctic and Icelandic regions are

tighter than those of the Faroe region. The Irish Sea region has an unusual non-linear

relationship with interval estimates that widen near the extremes of the data, while

the Skagerrak region has an approximately quadratic shape, with the exception of the

curve near the maximum stock biomass level, and uncertainty bands that are evenly

spread throughout the stock biomass range. The last region, West of Scotland, has a

relatively weak signal; in fact, it corresponds to the smallest sample size with only 27

data points.

To illustrate inference for the conditional density of log-reproductive success, we

consider the NE Arctic and West of Scotland regions, and in Figure 2, show posterior
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Figure 1: For each of the North Atlantic regions, posterior mean (solid lines) and

95% interval estimates (dashed lines) for the conditional mean log-reproductive suc-

cess, overlaid on plot of the data for stock biomass (S) and log-reproductive success

(log(R/S)). The label in each panel indicates for each region the time interval in years

with available data.

point and 95% interval estimates for the conditional response density at four fixed

stock biomass values. At lower biomass levels, the log-reproductive success densities

for the NE Arctic region depict obvious departures from normality; at S = 200, 000, the

density is bimodal, whereas at S = 350, 000, it has a heavy left tail. Inspection of the

data from this region suggests that this is a plausible feature for the log-reproductive

success distribution rather than an artifact of the flexible prior model. The higher

values of stock biomass result in more standard unimodal response densities. The log-

reproductive success densities from the West of Scotland region are unimodal across the

range of stock biomass values, with roughly the same amount of dispersion. Evidently,

such density shapes would be successfully uncovered by traditional parametric models.

Hence, a key feature of the nonparametric DP mixture model is that it has the capacity

to capture both non-standard log-reproductive success density shapes as well as non-

linear S-R relationships. And, as importantly, when the data do not support such
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Figure 2: For the NE Arctic region (top row) and the West of Scotland region (bottom

row), posterior mean (solid lines) and 95% interval estimates (dashed lines) of the con-

ditional density of log-reproductive success (log(R/S)) given four fixed stock biomass

values (indicated in the label of each panel).

non-standard features, it yields inferences that are comparable with the ones that

would result from commonly utilized parametric S-R models.

For each of the six regions, Figure 3 provides posterior point and 95% interval esti-

mates of the density for unfished biomass, B0, obtained as discussed in Section 3.2. In

keeping with prior research on cod (e.g., Eero et al. 2007), we set the natural mortality

rate ν = 0.2. All the results are consistent with the data as becomes clear by comparing

Figures 3 and 1 (noting where value log(0.2) lies in the panels of the latter figure). The

DP mixture model yields multimodal B0 posterior density estimates for the NE Arctic,

Icelandic, and Irish Sea regions. On the other hand, it results in more conventional

estimates in the Faroe region. For both the Skagerrak region and the West of Scotland

region, log(0.2) is outside the range of observed log-reproductive success values. This

is reflected in the point estimates for the B0 density, which are very dispersed with

wide associated uncertainty bands.
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Figure 3: For each of the North Atlantic regions, posterior mean (solid lines) and 95%

interval estimates (dashed lines) for the density of unfished biomass (B0) corresponding

to natural mortality rate ν = 0.2.

4.2 Comparison study

Here, we consider model comparison working with the standard parametric Ricker

model (discussed in Section 3.1), and with a semiparametric model, which is simpler

than the fully nonparametric DP mixture model. We report results based on the data

from the NE Arctic and Irish Sea regions.

We perform a Bayesian analysis of the Ricker model, Ri = aSi exp(−bSi)vi, where

a > 0 and b > 0, and the vi are independent multiplicative errors, typically, assumed

to arise from a lognormal distribution. Hence, the Ricker model can be transformed

to a linear regression model of log(R/S) on S, i.e.,

yi = β0 − β1Si + εi, εi | σ
2 i.i.d.

∼ N(0, σ2), i = 1, ..., n

where yi = log(Ri/Si), β0 = log(a), and β1 = b > 0. We assign a normal prior to β0, a

gamma prior to β1, and an inverse gamma prior to σ2. MCMC sampling for (β0, β1, σ
2)

is straightforward as discussed in Appendix B. Inference for the S-R relationship follows
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directly from the posterior draws for parameters β0 and β1.

We also fit a Bayesian semiparametric model using a Gaussian process (GP) prior

for the S-R function. Specifically,

yi = h(Si) + εi, εi | σ
2 i.i.d.

∼ N(0, σ2), i = 1, ..., n

where the S-R function, h(·), is assigned a GP(µ(S), C(S, S ′)) prior (see, e.g., Neal

1998, on Bayesian GP regression). We take a constant mean function, µ(S) = µ, and

an isotropic exponential covariance function given by C(S, S ′) = τ 2 exp{−φ|S − S ′|},

where τ 2 is the GP variance, and φ > 0 controls how rapidly the correlation decreases

with distance between biomass values. We place a normal prior on µ, inverse gamma

priors on σ2 and τ 2, and a uniform prior on φ.

The GP regression model adds flexibility relative to traditional S-R models by

placing a nonparametric prior on the S-R function rather than assuming a specific

parametric form. It was studied by Munch et al (2005) in the context of modeling S-R

relationships, though the scale used there involved y = logR and x = logS. Appendix

B provides details on prior specification and MCMC posterior simulation for the GP

model parameters as well as on posterior predictive inference for function h(·).

Figure 4 shows posterior mean and 95% interval estimates for the S-R function: β0−

β1S under the parametric Ricker model (left column); h(S) under the semiparametric

GP model (middle column); and E(log(R/S) | S;GN) under the nonparametric DP

mixture model (right column). To ensure a fair comparison, the priors were chosen such

that a priori the conditional densities of log-reproductive success given stock biomass

are comparable across the three models, and, in fact, corresponding to a fairly non-

informative prior specification. For instance, for all three models and both regions, the

prior estimate (prior mean) for conditional mean log-reproductive success was roughly

constant (in S) around 0, and the associated prior interval estimates were including

values for log(R/S) in the range from −4 to 4.

In the NE Arctic region, the Ricker model is roughly equivalent to both the GP and

the DP mixture model. The GP regression curve generates slightly more variability

than the DP model, but both include a small cubic trend at the smaller stock biomass

values. However, the Irish Sea region gives noticeably different regression curves using

the Ricker model and either of the GP or the DP mixture model. The Ricker model

is unable to depart from linearity and is sensitive to the outlying observations. The

GP model produces a more accurate regression curve than the Ricker model, with

an approximately negative slope and modest curvature. The associated uncertainty

bands have roughly the same width across the range of biomass values, regardless of

the amount of data in the surrounding area. This is partly due to the fact that the
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Figure 4: For the NE Arctic region (top row) and the Irish Sea region (bottom row),

posterior mean (solid lines) and 95% interval estimates (dashed lines) for the S-R re-

gression curve based on the parametric Ricker model (left column), the semiparametric

Gaussian process model (middle column), and the DP mixture model (right column).

Each panel includes a plot of the corresponding data for stock biomass (S) and log-

reproductive success (log(R/S)).

Irish Sea region data are spread relatively evenly through the range of stock sizes,

but it can also be attributed to the GP prior stationary covariance function. The DP

mixture model does not rely on stationarity assumptions and therefore uncertainty

bands become wide or narrow based on how much data information is available about

the particular biomass area.

Regarding inference for the log-reproductive success response distribution, the non-

parametric model clearly outperforms the other two models. Both of the parametric

and semiparametric models are built from the standard additive regression setting

treating the stock biomass covariate as fixed, and assuming a normal response density

with constant variance. Even if the error distribution is replaced with more flexible

parametric families, neither of the two models would be able to recover the density

shapes for the NE Arctic region (Figure 2) revealed by the DP mixture model.
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A further key advantage of the DP mixture model is with regard to inference for the

unfished biomass management reference point. Although the Ricker and GP models

produce, in principle, a posterior distribution for B0, the resulting inference is not as

flexible as under the DP mixture model and, in fact, may not be attainable in practice.

The Ricker model can be solved analytically forB0, in particular, B0 = (β0−log(ν))/β1.

However, this expression is not guaranteed to be positive, may result in values that

are far outside the range of the data, and yields typically a unimodal distribution. For

the GP model, B0 corresponds to the value of stock biomass at which h(S) = log(ν).

Therefore, for each posterior realization of the h(S) curve, B0 can be obtained by

finding values S0 and S1 such that h(S0) < log(ν) < h(S1) and interpolating between

these grid points. The GP model is unable to provide results when the curve does not

attain the value of log(ν), as in the case of the Skagerrak and West of Scotland regions.

To formally compare the three models, we use a version of the minimum posterior

predictive loss criterion from Gelfand and Ghosh (1998). The criterion favors the

model, m, that minimizes the predictive loss measure,

D(m) = P (m) +G(m) =

n
∑

i=1

Var(m)(ynew,i | data) +

n
∑

i=1

{yi − E(m)(ynew,i | data)}
2.

Here, E(m)(ynew,i | data) and Var(m)(ynew,i | data) are the mean and variance, respec-

tively, under model m, of the posterior predictive distribution for replicated response

ynew,i with associated stock biomass xi. Hence, G(m) is a goodness-of-fit term, whereas

P (m) acts as a penalty term for model complexity measured through posterior predic-

tive variability; note that models that are either too complex or too simple will yield

relatively large posterior predictive variances. Therefore, D(m) achieves a balance be-

tween predictive uncertainty (term P (m)) and fidelity to observations (term G(m)),

without the need to explicitly specify the number of model parameters, which is not

clear-cut for Bayesian semiparametric or nonparametric models. Computing D(m)

for the Ricker and GP models is straightforward as discussed in Appendix B. Under

the DP mixture model, estimation of D(m) is based on expectations with respect to

the conditional posterior predictive distribution of log-reproductive success given stock

biomass; details are given in Appendix A.

Table 1 reports results for D(m) under the three models. The goodness-of-fit term

G(m) is comparable across the three models for the NE Arctic region data, but the

penalty terms in the Ricker and GP models are drastically larger than the DP mixture

model. For the Irish Sea region data, the Ricker model performs poorly in both the

goodness-of-fit and the penalty term. The GP model produces a smaller goodness-of-

fit term, but a substantially larger penalty term than the DP mixture model. Under
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Table 1: For the NE Arctic and Irish Sea regions, estimates of the goodness-of-fit

term, G(m), penalty term, P (m), and the posterior predictive loss measure, D(m),

under the parametric model (“Ricker”), the semiparametric model (“GP”), and the

nonparametric mixture model (“DP”).

NE Arctic Irish Sea

Ricker GP DP Ricker GP DP

G(m) 25.174 20.366 23.031 21.951 6.529 11.673

P (m) 43.551 54.979 26.159 34.259 28.833 12.571

D(m) 68.725 75.345 49.190 56.210 35.362 24.244

the minimum posterior predictive loss criterion, the Ricker model is slightly favored

over the GP model for the NE Arctic region data, whereas the GP model fares better

than the Ricker model with the more complicated data in the Irish Sea region. For

both regions, the DP mixture model outperforms both the parametric Ricker and

semiparametric GP models.

5 Discussion

We have presented a Bayesian nonparametric method to flexibly model the stock-

recruitment (S-R) relationship, which is a key aspect of fishery research. A distin-

guishing feature of the modeling approach is that it incorporates uncertainty in both

the log-reproductive success and the stock biomass values. The corresponding joint

distribution was modeled with a nonparametric Dirichlet process (DP) mixture. The

implied conditional distribution of log-reproductive success given stock biomass values

can be used for a wide range of practically important inferences. In particular, working

with cod data from six regions of the North Atlantic, we illustrated the capacity of

the model to uncover non-linear S-R relationships in the presence of small to mod-

erate sample sizes. The DP mixture model also yields full inference for conditional

log-reproductive success densities with shapes that can change with different values in

the biomass space. Moreover, by reversing the order of conditioning, i.e., working with

the conditional distribution of stock biomass given values of log-reproductive success

specified through natural mortality rates, we obtained inference for unfished biomass,

an important management reference point. Again, the DP mixture model resulted in

flexible estimation for unfished biomass with appropriate quantification of the associ-
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ated posterior uncertainty. Particular emphasis was placed on comparison of inference

results with simpler parametric and semiparametric models from the fisheries litera-

ture. The DP mixture model outperformed those models for the North Atlantic cod

data, based on both empirical (graphical) comparison and more formal comparison,

using a minimum posterior predictive loss criterion.

We note that multivariate normal DP mixture priors, of the form in (2), have been

applied in various settings following the work of Müller, Erkanli, and West (1996)

on multivariate density estimation and curve fitting. However, the scope of inference

has been typically limited to posterior point estimates, obtained through posterior

predictive densities, E(f(y, x;G) | data). This is especially restrictive for regression

applications where posterior predictive densities can only provide approximations to,

say, E{f(y | x;G) | data} and E{E(y | x;G) | data}, which are the natural point esti-

mates for the conditional response density and the regression function, respectively. As

demonstrated in this paper, proper point estimates, and more importantly, associated

uncertainty quantification require the posterior of the random mixing distribution G (or

its truncation approximation GN). Earlier applications of this curve fitting approach

to regression settings are reported in Taddy and Kottas (2009; 2010).

We also note certain potential limitations of the proposed mixture modeling ap-

proach with regard to its application to inference for S-R relationships. First, the

approach is built from a mixture model for the joint distribution of log-reproductive

success, log(R/S), and stock biomass, S, and thus, from a regression perspective, this

is a setting where the definition of the response variable includes the covariate. The

spurious correlations that may arise as a result of this scale for the S-R data are chal-

lenging to address under standard parametric modeling with, say, a normal response

distribution for log(R/S). This problem is alleviated under the proposed approach due

to the flexibility of the DP mixture model which allows inferences to adapt to the dis-

tributional shape and correlation structure that may be induced by the (log(R/S), S)

scale. Moreover, because the DP mixture model is developed for the joint distribution

for (log(R/S), S), the resulting inferences for the S-R relationship incorporate both

measurement error uncertainty (due to the estimation error in the reported values for

R and S) and process error uncertainty (due to the stochastic nature of the relation-

ship between R and S). However, the two sources of uncertainty can not be formally

distinguished, since the model does not involve any structural assumptions about mea-

surement error in R and S. Following the work of Ludwig and Walters (1981), the

literature includes approaches for S-R estimation incorporating error in measurement;

however, this work is based on parametric assumptions for the S-R function and re-

lated distributions. Finally, although the need to model S-R relationships with time
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series methods has long been recognized (Walters 1985) and related aproaches have

been proposed (e.g., Millar and Meyer 2000), others have noted that time series bias is

small for productive stocks (Myers and Barrowman 1995). Indeed, the majority of the

fisheries literature continues to employ standard regression techniques. Our objective

in this paper is to compare with this literature and to offer a more general modeling

strategy.

An extension of both methodological and practical interest involves building a non-

parametric hierarchical model for the largely varying S-R relationships for cod over the

North Atlantic regions. The hierarchical model must be sufficiently flexible to capture

the diverse S-R relationships across the different regions, while incorporating available

spatial information about neighboring regions. In this regard, an important covariate

is sea surface temperature, which is measured at a grid within each region. Therefore,

it can be incorporated in the model formulation by averaging over the whole region, or

more generally, by integrating an underlying spatial model over the grid of each region.

Results from this research will be reported in a future article.
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Appendix A: Prior specification and posterior simulation for the Dirichlet

process mixture model

Here, we present the details of the MCMC posterior simulation algorithm for the DP

mixture model presented in Section 3. An approach to prior specification for the model

hyperparameters is also discussed.

Prior specification: The approach taken to specifying the priors for the DP hy-

perparameters is to select hyperprior parameter values such that the resulting mixture

covers the support of the underlying distribution.

In particular, the approach is based on a small amount of prior information, using
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rough prior guesses at the center, say, cx and cy, and range, say, rx and ry, of stock

biomass and log-reproductive success values, respectively. Let R be the 2× 2 diagonal

matrix with diagonal elements (ry/4)
2 and (rx/4)

2, which are rough prior estimates

for the variability in log-reproductive success and biomass values. For a default prior

specification method, we consider a single component of the mixture model, N2(·;µ,Σ),

which is the limiting case of the DP mixture for α → 0+. Under this version of the

model, the marginal prior mean and covariance matrix for the data are given by am
and (v− 3)−1aQBQ + (aV − 3)−1BV + Bm, respectively. Hence, we set am = (cy, cx)

T ,

and use matrix R to specify each of the components in the prior covariance above. To

this end, the degrees of freedom, v, of the inverse Wishart distribution of Σ in G0, and

the corresponding parameters aV and aQ in the priors of V and Q are set at twice the

dimension of the data vector, i.e., at 4. Note that 4 is the integer value of aV that

yields finite expectation, and at the same time, the largest possible dispersion in the

prior for V . Moreover, smaller values of (v− 3)−1aQ result in more dispersed priors for

Q. Finally, R is split evenly between the three marginal prior covariance components

to determine the diagonal matrices BQ, BV , and Bm.

The DP prior precision parameter, α, controls the number, n∗, of distinct mix-

ture components (e.g., Escobar and West 1995). In particular, for moderate to large

sample sizes, a useful approximation to the prior expectation E(n∗ | α) is given by

α log{(α+ n)/α}. This expression can be averaged over the gamma(aα, bα) prior for α

to obtain E(n∗), thus selecting aα and bα to agree with a prior guess at the expected

number of distinct mixture components.

MCMC posterior inference: To sample from the posterior, p(p, θ,L, α,m, V,Q |

data), of the DP mixture model in (4), we use a version of the blocked Gibbs sampler

(Ishwaran and Zarepour 2000; Ishwaran and James 2001).

Let zi = (yi, xi), i = 1, . . . , n, and denote the n∗ distinct values in the vector

of configuration variables, L = (L1, . . . , Ln), by L∗
1, . . . , L

∗
n∗. Moreover, let M ∗

j =

|{i : Li = L∗
j}|, j = 1, . . . , n∗, and Ml = |{Li : Li = l}|, l = 1, . . . , N .

The updates of the θl = (µl,Σl), l = 1, ..., N , depend of the value of l. Specifically,

for any l /∈ {L∗
j : j = 1, . . . , n∗}, we have p(θl | L, m, V,Q, data) = g0(θl;m, V,Q),

where g0 is the density of the DP prior base distribution G0. Thus, in this case, we

draw µl | m, V ∼ N2(m, V ) and Σl | Q ∼ IW(v,Q). For l = L∗
j , j = 1, . . . , n∗,

p(θL∗

j
| L, m, V,Q, data) = g0(θL∗

j
;m, V,Q)

∏

{i:Li=L∗

j }

N2(zi; θL∗

j
).

Therefore, for any j = 1, ..., n∗, we extend the Gibbs sampler to draw from the posterior
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full conditionals for µL∗

j
and ΣL∗

j
. The former is bivariate normal with mean vector

(V −1+M∗
j Σ

−1
L∗

j
)−1(V −1m+Σ−1

L∗

j

∑

{i:Li=L∗

j }
zi) and covariance matrix (V −1+M∗

j Σ
−1
L∗

j
)−1.

The latter is given by an IW(v+M ∗
j , Q+

∑

{i:Li=L∗

j}
(zi−µL∗

j
)(zi−µL∗

j
)T ) distribution.

The posterior full conditional for each Li is a discrete distribution,
∑N

l=1 p̃liδl(·),

with updated weights p̃li ∝ plN2(zi; θl), l = 1, ..., N .

The posterior full conditional for p is proportional to f(p;α)
∏N

l=1 p
Ml

l . Here,

f(p;α) is the joint prior for p, conditionally on α, induced by the truncated stick-

breaking construction given in Section 3.1. Specifically, f(p;α) corresponds to a special

case of the generalized Dirichlet distribution,

f(p;α) = αN−1pα−1
N (1− p1)

−1(1− (p1 + p2))
−1 × · · · × (1−

N−2
∑

l=1

pl)
−1.

Hence, up to its normalizing constant, the full conditional for p can be written as

p
(M1+1)−1
1 × · · · × p

(MN−1+1)−1
N−1 p

(α+MN )−1
N (1− p1)

(α+
∑N

l=2
Ml)−[(M2+1)+(α+

∑N
l=3

Ml)] ×

· · · × (1−
∑N−2

l=1
pl)

(α+MN−1+MN )−[(MN−1+1)+(α+MN )]

and thus, can be recognized as a generalized Dirichlet distribution with parameters

(M1 +1,M2 +1, . . . ,MN−1 +1) and (α+
∑N

k=2Mk, α+
∑N

k=3Mk, . . . , α+MN ). Using

the constructive definition of the generalized Dirichlet distribution, the vector p can

be generated by drawing latent V ∗
1 , . . . , V

∗
N−1, where the V ∗

l , l = 1, ..., N − 1, are

independent Beta(Ml+1, α+
∑N

k=l+1Mk), and setting p1 = V ∗
1 ; pl = V ∗

l

∏l−1
m=1(1−V

∗
m),

l = 2, . . . , N − 1; and pN = 1−
∑N−1

l=1 pl.

Finally, standard updates can be used for the DP hyperparameters (m, V,Q) and α.

Denote their corresponding priors (discussed in Section 3.1) by π(m), π(V ), π(Q) and

π(α). Then, the joint full conditional for the DP base distribution hyperparameters,

p(m, V,Q | θ,L, data) ∝ π(m)π(V )π(Q)
n∗

∏

j=1

g0(θL∗

j
;m, V,Q).

Thus, m has a bivariate normal posterior full conditional with mean vector

(n∗V −1 + B−1
m )−1(V −1

∑n∗

j=1 µL∗

j
+ B−1

m am) and covariance matrix (n∗V −1 + B−1
m )−1.

Also, the full conditional for V is an inverse Wishart with aV + n∗ degrees of freedom

and scale matrix BV +
∑n∗

j=1(µL∗

j
−m)(µL∗

j
−m)T . And Q has a Wishart posterior full

conditional with degrees of freedom aQ + n∗v and scale matrix (B−1
Q +

∑n∗

j=1 Σ
−1
L∗

j
)−1.

Moreover, p(α | p) ∝ π(α)f(p;α) ∝ α(N+aα−1)−1e−α(bα−log(pN )), i.e., the posterior

full conditional for α is given by a gamma distribution with shape parameter aα+N−1
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and rate parameter bα − log(pN) = bα −
∑N−1

m=1 log(1− V ∗
m).

Estimation of the model comparison criterion: To compute the predictive loss

measure, D(m), used in Section 4.2 for formal model comparison, we need to estimate

E(m)(ynew,i | data) and Var(m)(ynew,i | data). This requires expectations with respect to

the posterior predictive distribution, under model m, for replicated response ynew,i with

associated stock biomass value xi. Recall from Section 3.1 the notation for partitioning

the mean vector and covariance matrix of the N2(y, x;µl,Σl) distribution. Then, under

the DP mixture model, the expressions for the first and second posterior predictive

moments given each stock biomass value, xi, i = 1, . . . , n, are as follows:

E(y | xi, data) = {p(xi | data)}
−1

∫

yp(y, xi | data)dy

= {p(xi | data)}
−1

∫ N
∑

l=1

plN(xi;µ
x
l ,Σ

xx
l ){µy

l + Σyx
l Σxx−1

l (xi − µx
l )} ×

p(θ,p | data)dθdp

E(y2 | xi, data) = {p(xi | data)}
−1

∫

y2p(y, xi | data)dy

= {p(xi | data)}
−1

∫ N
∑

l=1

plN(xi;µ
x
l ,Σ

xx
l )[{µy

l + Σyx
l Σxx−1

l (xi − µx
l )}

2 +

Σyy
l − Σyx

l Σxx−1
l Σxy

l ]p(θ,p | data)dθdp

where p(xi | data) =
∫
∑N

l=1 plN(xi;µ
x
l ,Σ

xx
l )p(θ,p | data)dθdp. The E(m)(ynew,i | data)

are obtained from Monte Carlo integration of E(y | xi, data) and the Var(m)(ynew,i |

data) are calculated with Monte Carlo integration of E(y2 | xi, data)−{E(y | xi, data)}
2.

Appendix B: Posterior simulation for the parametric and semiparametric

models of the comparison study

Here, we describe MCMC fitting for the parametric Ricker model and the semipara-

metric GP model used in the comparison study presented in Section 4.2.

Parametric model: For the Ricker model, denote by a0 and b0 the mean and variance

of the normal prior for β0, and by aσ and bσ the shape and rate parameters of the in-

verse gamma prior for σ2. The model can be fitted with an MCMC algorithm based on

a normal full conditional for β0 with mean (b0
∑n

i=1 yi+b0β1
∑n

i=1 Si+a0σ
2)/(nb0+σ

2)

and variance (b0σ
2)/(nb0 + σ2), and an inverse gamma full conditional for σ2 with
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shape parameter aσ +0.5n and rate parameter given by bσ +0.5
∑n

i=1(yi−β0 +β1Si)
2.

Moreover, we update β1 with a random walk Metropolis-Hastings step, using a normal

proposal distribution on the logarithmic scale.

The elements of the predictive loss criterion, E(m)(ynew,i | data) and Var(m)(ynew,i |

data), i = 1, . . . , n (see Section 4.2 and Appendix A), are estimated using draws

from the posterior predictive distribution at each Si, i = 1, . . . , n, which is given by

p(ynew,i | data) =
∫

N(ynew,i; β0 − β1Si, σ
2)p(β0, β1, σ

2 | data) dβ0dβ1dσ
2. Each of these

predictive distributions is readily sampled using the posterior draws for (β0, β1, σ
2).

Semiparametric model: Turning to the GP regression model, let N(m, s2) be the

prior for µ, denote by inverse-gamma(aτ , bτ ) and inverse-gamma(aσ , bσ) the priors for τ
2

and σ2, respectively, and let (0,bφ) be the support of the uniform prior for φ. The mean

of the normal prior for µ is set at a prior guess on the center of the log-reproductive

success values, and the variance is set equal to 10(ry/4)
2, where ry is a prior guess at

the range of the log-reproductive success values. We also set aτ = aσ = 2 resulting in

inverse gamma priors for τ 2 and σ2 with infinite prior variances. The rate parameters

of both priors are also specified through 10(ry/4)
2. Under the exponential correlation

function for the GP prior, 3/φ is the range of dependence, that is, the distance between

stock biomass values, d = |S − S ′|, such that the correlation between h(S) and h(S ′)

is approximately 0.05. The prior for φ is based on the maximum difference between

stock biomass values, dmax = max |S − S ′|, choosing bφ such that 0.01dmax = 3/bφ.

Regarding posterior simulation, the model can be fitted with a Gibbs sampler based

on standard updates for all parameters except φ. Let y = (y1, ..., yn), η be the n-

dimensional vector with ηi = h(Si), i = 1, . . . , n, In the identity matrix of dimension

n, and 1n the vector of dimension n with each of its element equal to 1. Then, the

posterior full conditionals are given by:

η | µ, σ2, τ 2, φ, data ∼ Nn

(

(σ−2In + C−1)−1(σ−2y + µC−11n), (σ
−2In + C−1)−1

)

µ | η, τ 2, φ ∼ N

(

1T
nC

−1η +ms−2

1T
nC

−11n + s−2
,

1

1T
nC

−11n + s−2

)

σ2 | η, data ∼ inverse-gamma
(

aσ + 0.5n, bσ + 0.5
∑n

i=1
(yi − ηi)

2
)

τ 2 | η, µ, φ ∼ inverse-gamma
(

aτ + 0.5n, bτ + 0.5(η − µ1n)
TH−1(η − µ1n)

)

φ | η, µ, τ 2 ∝ |C|−1/2 exp{−0.5(η − µ1n)
TC−1(η − µ1n)}1(0 < φ < bφ)

where H is the observed correlation matrix with elements Hij = exp{−φ|Si − Sj|},

and C = τ 2H is the observed covariance matrix. The parameter φ is updated with a

Metropolis-Hastings step using a normal proposal distribution on the logarithmic scale.

23



Posterior predictive inference for the S-R relationship, h(S), is obtained through

the n values in vector η augmented with a set of M new stock biomass values, S̃ =

(S̃1, . . . , S̃M). Let η̃ = (η̃1, ..., η̃M), where η̃j = h(S̃j), j = 1, ...,M . The vector η̃,

conditionally on η and the GP hyperparameters, follows an M -variate normal distri-

bution with mean vector (µ1M + CMnC−1(η − µ1n)) and covariance matrix CMM −

CMnC−1(CMn)T , where CMn
ij = τ 2 exp{−φ|S̃i−Sj|}, and C

MM
ij = τ 2 exp{−φ|S̃i− S̃j|}.

Therefore, a posterior realization for h(S) is obtained through {η, η̃} at each iteration

of the MCMC using the currently imputed parameter values.

The E(m)(ynew,i | data) and Var(m)(ynew,i | data), i = 1, . . . , n, needed to calculate

the posterior predictive loss criterion, can be computed through the mean and vari-

ance, respectively, of replicated log-reproductive success values corresponding to each

observed stock biomass level. For each observed stock biomass value Si, i = 1, ..., n, the

replicated responses are sampled from the associated posterior predictive distribution

given by p(ynew,i | data) =
∫

N(ynew,i; ηi, σ
2)p(ηi, σ

2 | data) dηidσ
2.
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Eero M, Köster FW, Plikshs M, Thurow F (2007) Eastern Baltic cod (Gadus morhua

callarias) stock dynamics: extending the analytical assessment back to the mid-1940s.

ICES Journal of Marine Science 64:1257-1271

Escobar M and West M (1995) Bayesian density estimation and inference using mix-

24



tures. Journal of the American Statistical Association 90:577-588

Evans GT, Rice JC (1988) Predicting recruitment from stock size without the me-

diation of a functional relation. Journal du Conseil - Conseil International pour

l’Exploration de la Mer 44:111-122

Ferguson TS (1973) A Bayesian analysis of some nonparametric problems. Annals of

Statistics 1:209-230

Garcia SM, de Leiva Moreno JI (2003) Global Overview of Marine Fisheries. In Re-

sponsible Fisheries in the Marine Ecosystem. Sinclair M, Valdimarsson, G (eds) FAO

and CABI Publishing. pp 1-24

Gelfand A, Ghosh S (1998) Model choice: A minimum posterior predictive loss ap-

proach. Biometrika 85:1-11

Hilborn R, Walters CJ (1992) Quantitative Fisheries Stock Assessment: Choice, Dy-

namics, and Uncertainty. Chapman and Hall, New York

ICES (2005) Report of the ICES Advisory Committee on Fishery Management, Advi-

sory Committee on the Marine Environment and Advisory Committee on Ecosystems,

2005. ICES Advice. Vol. 1 No. 11

Ishwaran H, James LF (2001) Gibbs Sampling for Stick-Breaking Priors, Journal of

the American Statistical Association 96:161-73

Ishwaran H, Zarepour M (2000) Markov Chain Monte Carlo in Approximate Dirichlet

and Beta Two-Parameter Process Hierarchical Models. Biometrika 87:371-390

Jacobson LD, MacCall AD (1995) Stock-recruitment models for Pacific sardine (Sardinops

sagax). Canadian Journal of Fisheries and Aquatic Sciences 52:566-577

Lo AY (1984) On a Class of Bayesian Nonparametric Estimates: I. Density Estimates.

The Annals of Statistics 12: 351-357

Ludwig D, Walters CJ (1981) Measurement errors and uncertainty in parameter esti-

mates for stock and recruitment. Canadian Journal of Fisheries and Aquatic Sciences

38: 711-720

McAllister MK, Kirkwood GP (1998) Bayesian stock assessment: a review and example

application using the logistic model. ICES Journal of Marine Science 55:1031-1060

Millar RB, Meyer R (2000) Non-linear state space modelling of fisheries biomass dy-

namics by using Metropolis-Hastings within-Gibbs sampling. Applied Statistics 49:327-

342

25



Müller P, Erkanli A, West M (1996) Bayesian curve fitting using multivariate normal

mixtures. Biometrika 83:67-79

Munch SB, Kottas A, Mangel M (2005) Bayesian nonparametric analysis of stock-

recruitment relationships. Canadian Journal of Fisheries and Aquatic Sciences 62:1808-

1821

Myers RAM, Barrowman NJ (1995) Time series bias in the estimation of density de-

pendent mortality in stock-recruitment models. Canadian Journal of Fisheries and

Aquatic Sciences 52:223-232

Neal RM (1998) Regression and classification using Gaussian process priors. In Bayesian

statistics 6: Proceedings of the sixth Valencia international meeting. J M Bernardo, J

O Berger, A P Dawid, A F M Smith (eds) Oxford University Press. pp 475-501

Patil A (2007) Bayesian Nonparametrics for Inferences of Ecological Dynamics. Ph.D.

Dissertation, University of California, Santa Cruz

Punt A, Hilborn R (1997) Fisheries stock assessment and decision analysis: The

Bayesian approach. Reviews in Fish Biology and Fisheries 7:35-65

Quinn TJI, Deriso RB (1999) Quantitative Fish Dynamics. Oxford University Press,

New York

Ricker WE (1954) Stock and recruitment. Journal of the Fisheries Research Board

11:559-623

Sethuraman J (1994) A constructive definition of Dirichlet priors. Statistica Sinica

4:639-650

Stige LC, Ottersen G, Brander K, Chan KS, Stenseth NC (2006) Cod and climate:

effect of the North Atlantic Oscillation on recruitment in the North Atlantic. Marine

Ecology Progress Series 325:227-241

Taddy M, Kottas A (2009) Markov Switching Dirichlet Process Mixture Regression.

Bayesian Analysis 4:793-816

Taddy M, Kottas A (2010) A Bayesian nonparametric approach to inference for quantile

regression. Journal of Business and Economic Statistics 28: 357-369

Walters CJ (1985) Bias in the estimation of functional relationships from time series

data. Canadian Journal of Fisheries and Aquatic Sciences 42:147-149

26


