
THE GARCH STRUCTURAL CREDIT RISK MODEL: SIMULATION ANALYSIS
AND APPLICATION TO THE BANK CDS MARKET DURING THE 2007-2008 CRISIS

ABSTRACT. We develop a structural credit risk model in which the asset volatility of the firm fol-

lows a GARCH process, as in Heston and Nandi (2000). We benchmark the out-of-sample model

prediction accuracy against the calibrated Merton (1974) model and the Duan (1994) ML estimation

of the Merton model, both using simulated data and in an empirical application to the bank CDS

market in the US during the crisis period 2007-2008. The GARCH model outperforms the competi-

tors in out-of-sample spread prediction in both cases. We document a high incidence of empirical

bank CDS spread term structure inversion, and analyze its relationship with model performance.
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Structural bond pricing models are now used by institutions around the world to value the risky

debt of banks and firms, as well as for applications such as the determination of capital adequacy

ratios. It was Merton (1974) who first adapted the Black and Scholes (1973) and Merton (1973)

option pricing framework to the valuation of corporate securities. In the “Merton model”, as it is

commonly known, the value of the risky debt plus the equity of a firm at any time must equal the

value of the firm’s assets. The risky debt can be valued as a risk-free bond minus the value of an

implicit put option, whose strike price is equal to the present value of promised debt repayments

discounted at the risk-free rate. The equity of the firm is valued as a European call option, with

the same strike price. This strike price of the implicit options in the Merton model is commonly

referred to as the “default barrier”. In practice, the time series of asset values of the firm, and the

volatility of asset returns, cannot be observed directly, and must be inferred from the time series of

observed equity values.

There are two primary approaches to solving the problem of inferring the value and volatility of

firm assets from information on firm equity. Merton (1974) solves this problem using a calibra-

tion technique. The two unknowns in the problem are the current asset value and the asset return

volatility. The first of the two equations needed to solve for these unknowns is provided by the

pricing equation for the implicit call option of equity. The second equation is given by the relation-

ship between the volatility of equity returns and the volatility of asset returns, which is found by an

application of Itô’s lemma to the diffusion followed by the call option. Having solved for the two

unknowns, one can calculate the implied value of the risky debt, as well as other risk measures,

such as the spread over the risk-free rate associated with the debt of the firm, and the probability

of default, over a given time horizon.

A second approach to inferring the current asset value and volatility in the Merton (1974) model

is provided by Duan (1994) and Duan et al. (2004). The Duan (1994) maximum likelihood method

views the observed equity time series as a transformed data set with the equity pricing formula
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defining the transformation. The best-known commercial implementation of the Merton (1974)

structural credit risk model, which has been applied to tens of thousands of firms and banks around

the world, is due to Moody’s-KMV. Duan et al. (2004) show that their maximum likelihood method

for estimating the parameters of structural credit risk models produces the same point estimates for

the unobserved parameters as the Moody’s-KMV method, in the special case of the Merton (1974)

model, but that the methods will in general produce different point estimates for more general

structural credit risk models. It has been shown by Ericsson and Reneby (2005), in a simulation

study, that the maximum likelihood approach of Duan (1994) to estimating structural bond pricing

models is superior to the calibration approach of estimating the Merton (1974) model, in the sense

that it provides a less biased and more efficient estimator of asset values, asset volatilities, and

spreads. In other work, Eom et al. (2004) perform an empirical analysis of the relative perfor-

mance of five different structural credit risk models using actual bond data, but do not estimate any

of those models using the maximum likelihood approach suggested by Duan (1994) and imple-

mented for the Merton model by Duan et al. (2004). Eom et al. (2004), rather, use the calibration

approach for estimating the asset volatility originally proposed by Merton (1974), which remains

the most common approach in the academic literature and in practice, in part due to its ease of

implementation.

In practice, the asset return volatility found using Merton’s (1974) calibration method can exhibit

significant variation over time for many firms and banks. This is also true of the asset return

volatilities calculated using the maximum likelihood method of Duan (1994) and the asset return

volatilities reported by the commercial software of Moody’s-KMV. Significant shifts in estimated

asset return volatility can induce significant shifts in risk indicators, such as spreads. There is

strong reason, therefore, to believe that the volatility of firms asset returns is stochastic, rather than

constant. Firms and industries alike go through periods of high levels of uncertainty regarding their

future rates of asset growth, as well as periods of relative tranquility. Moreover, it has been shown
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that, in equity and other markets, innovations in volatility are significantly negatively correlated

with spot returns: the so-called “volatility leverage effect” documented by Christie (1982) and

others. It is reasonable to suspect that there might be a similar relationship between firms asset

returns and asset return volatility. This has implications for bond pricing, because a fall in returns

coupled with a rise in volatility can have a doubly negative impact on the valuation of firm debt.

In light of these issues, we propose a structural credit risk model that allows for the stochastic

volatility of asset returns. The tools for the construction of such a model, in fact, exist in the

option pricing literature. In the work following the seminal paper of Black and Scholes (1973)

and Merton (1973), it was recognized that the assumption of constant asset return volatility in

option pricing is too restrictive. For this reason, the academic literature set itself to the task of

pricing options on an underlying whose volatility can be time-varying (Engle, 1982; Bollerslev,

1986; Jacquier et al., 1994; Nicolato and Venardos, 2003; Heston and Nandi, 2000; Duan, 1995).

However, in the majority of time-varying volatility models, there exists no closed-form solution for

the option price. As a result, one has to use Monte Carlo methods instead to calculate option prices

(Christoffersen and Jacobs, 1995). In order to circumvent that problem, Heston and Nandi (2000)

proposed a closed-form option pricing model in which asset returns follow a GARCH process. The

resulting option pricing formula closely resembles the one derived in Black and Scholes (1973).

Due to the analytical convenience of the Heston and Nandi (2000) model, which we henceforth

refer to as HN, it is that model we shall adapt for the construction of our structural credit risk

model of the firm. We refer to our model as the “GARCH structural credit risk model”, in light of

the fact that firm asset return volatility (in fact, volatility squared) is assumed to follow a GARCH

process, as in HN. The main analytical challenge of implementing our model, as usual, is the need

to estimate the current value of assets and the parameters of the asset return and return volatility

processes using only the observed values of firm equity. To that end, we derive an Expectations
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Maximization (EM) algorithm to compute the maximum likelihood estimates for the model param-

eters, in a manner equivalent to that used by Duan (1994) and Duan et al. (2004) in the case of the

Merton model with constant volatility. We choose this approach due to the demonstrable superior-

ity of maximum likelihood methods for estimation, as documented by Ericsson and Reneby (2005)

in the case of several previous structural credit risk models, including that of Merton (1974).

The rest of the paper proceeds as follows. In Section 2, we briefly review the HN model for

pricing options on assets whose return volatility follows a GARCH process. Section 3 lays out the

GARCH structural credit risk model and describes our EM algorithm for estimating the model.

Section 4 benchmarks our model against the Merton model estimated using Merton’s (1974) cali-

bration technique, and against the Merton model estimated using Duan’s (1994) maximum likeli-

hood technique using simulated data. We consider both the case where the data generating process

exhibits stochastic volatility, and the case where volatility is constant. Section 5 presents a practi-

cal application of our method to the estimation of fair spreads on the debt of selected investment

banks during the 2007-2008 credit crunch in the United States. Section 6 concludes.

I. THE HESTON AND NANDI (2000) MODEL FOR OPTION PRICING

We now recall briefly the main assumptions and results of the HN option pricing model. If St

is the price of the underlying at time t, define the log return at time t as rt ≡ log
(

St

St−∆

)
, where

returns are calculated over a time interval of length ∆. The joint dynamics of the log returns and

the return volatility are given as follows (Heston and Nandi, 2000; Rouah and Vainberg, 2007):

rt = r + λσ2
t + σtzt(1)

σ2
t = ω +

p∑
i=1

βiσ
2
t−i∆ +

q∑
i=1

αi(zt−i∆ − γiσt−i∆)2(2)
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Here r is the risk-free interest rate, σ2
t is the conditional variance at time t, zt is a standard normal

disturbance, and ω, βi, αi, γi, and λ are the HN model parameters. Note that the conditional vari-

ance h(t) appears in the mean as a return premium, with coefficient λ, which allows the average

spot return to depend on the level of risk. Henceforth, we will focus on the first order case of the

above model, with p = q = 1, and drop the i subscripts on the α, β and γ parameters, as there is

only a one-period lag.

Heston and Nandi (2000) note the following facts about the first order version of the model.

First, the process is stationary with finite mean and variance when β + αγ2 < 1. Second, the one

period ahead variance of the process, σ2
t+∆, can be directly computed at time t as a function of the

current period log return rt, as follows:

σ2
t+∆ = ω + βσ2

t + α
(rt − r − (λ + γ)σ2

t )
2

σ2
t

(3)

Third, the parameter α determines the kurtosis of the distribution and α = 0 implies a deterministic

time varying variance. Fourth, the γ parameter allows shocks to the return process to have an

asymmetric influence on the variance process, in the sense that a large negative shock zt raises

the variance more than a large positive zt. That is, the parameter γ controls the skewness of the

distribution of log returns, and the distribution of log returns is symmetric when γ and λ are both

equal to zero. Finally, the correlation between volatility and realized log returns is given by

Covt−∆[σ2
t+∆, rt] = −2αγσ2

t(4)

Positive values for α and γ imply a negative correlation between volatility and spot returns, which

is consistent with the leverage effect documented by e.g. Christie (1982).

We now turn to the issue of pricing contingent claims on the underlying St. In order to value

such claims, we need to derive the risk-neutral distribution of the spot price. As HN show, this is

accomplished by transforming model equations (1) and (2) so that the log return corresponding to
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the expected spot price is the risk-free rate, and invoking the assumption that the value of a call

option one period to expiration is given by the Black-Scholes-Rubenstein formula. This second

assumption ensures that the distribution of the transformed shocks, z?
t , is a standard normal under

the risk-neutral probabilities. The risk-neutral version of the model is given by

rt = r + λ?σ2
t + σtz

?
t(5)

σ2
t = ω + βσ2

t−∆ + α(z?
t−∆ − γ?σt−∆)2(6)

where the transformed parameters are

λ? = −1

2

γ? = γ + λ +
1

2

z?
t = zt +

(
λ +

1

2

)
σt

Heston and Nandi (2000) show that the price of an European call option, with maturity T and

strike price K, can be computed as the discounted expected value of the call option payoff function

max[ST −K, 0] under the risk neutral measure, which is computed using the formula they derive

for the characteristic function of the log spot price under the risk neutral measure. The formula for

the HN call option price is given by:

Ct = StP1 −Ke−r(T−t)P2(7)

where

P1 =
1

2
+

e−r(T−t)

πSt

∫ ∞

0

R
[
K−iφf ?(iφ + 1)

iφ

]
dφ
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and

P2 =
1

2
+

1

π

∫ ∞

0

R
[
K−iφf ?(iφ)

iφ

]
dφ

are the delta of the call value, and the risk neutral probability of the asset price ST being greater

than the strike price K at maturity, respectively. Here R(.) denotes the real part of the complex

number that is its argument. The generating function of the return process in the model defined by

(1) and (2) is given by

f(φ) = Sφ
t exp

(
At + Btσ

2
t+∆

)
,(8)

with coefficient functions defined by

At = At+∆ + φr + Bt+∆ω − 1

2
ln (1− 2αBt+∆)(9)

Bt = φ(λ + γ)− 1

2
γ2 + βBt+∆ +

0.5(φ− γ)2

1− 2αBt+∆

(10)

The generating function under the risk neutral measure, f ?(φ), is obtained by substituting λ? and

γ? for λ and γ in the function f(φ) above. Finally, the coefficient functions At and Bt are solved

recursively, given the terminal conditions AT = 0 and BT = 0. The function f ?(iφ) is the charac-

teristic function of the logarithm of the stock price under the risk neutral measure, and is calculated

by replacing φ with iφ everywhere in the generating function f ?(φ). Feller (1971) shows how to

calculate probabilities and risk-neutral probabilities by inverting the characteristic function. In

practice, once we estimate the parameters of the GARCH model given by equations (1) and (2)

given data on the underlying asset returns, we simply have to compute the values of λ? and γ? in

order to calculate option prices under the risk-neutral measure. For more details on the HN model

with p > 1 and q > 1, see Heston and Nandi (2000) and Rouah and Vainberg (2007).
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Using the HN model described above, one can price a series of European call options {Ct}n
t=1,

given the time series for the underlying asset {St}n
t=1, as well as the time series of strike prices

{Kt}n
t=1 and the time series of risk-free rates {rf

t }n
t=1 over the sample. The relevant procedure for

doing this is, first, to use the time series of asset prices to estimate the parameters of the valuation

formula using the Maximum Likelihood Estimation (MLE) procedure employed by Bollerslev

(1986), Heston and Nandi (2000), and others, and second, to apply the pricing formulas just stated,

inserting the values for the estimated parameters and the relevant values for the strike prices and

risk free rates at each point in time.

We will now describe the GARCH structural credit risk model and develop an estimation proce-

dure that allows us to retrieve the time series of the asset levels and return volatility, given that we

are only able to observe the time series for the equity of the firm. From now on, unless otherwise

stated, we will assume that the frequency of the data, ∆ = 1, corresponds to one week of data.

II. THE GARCH STRUCTURAL CREDIT RISK MODEL AND ITS ESTIMATION

Consider the following re-interpretation of the HN model, in the spirit of Merton (1974). In the

new setup, suppose that the underlying asset, relabeled Vt, represents the asset value of a firm at

time t, which cannot be observed directly. The firm has traded debt, with market value Dt, and

traded equity, with market value equal to Et. The value of both debt and equity is observable in

the market, and at all times we must have that Vt = Dt + Et. The present value of the promised

payments on the debt of the firm is equal to e−r(T−t)K, where K is the dollar amount due at time

T , when the model is presumed to end. When we reach the terminal date T , the firm will find itself

in one of two situations. If the value of its assets VT > K, it will pay off the promised value of its

debt to debtholders and will pay the residual, VT −K, to equityholders. Conversely, if VT < K,

the firm will default, leaving equityholders with nothing, and will turn over its terminal asset value

VT to debtholders, who will experience a partial default on what they are owed.



10 ANONYMOUS FOR REVIEWING

Merton (1974) showed that in this setup, the value of equity, Et, is priced as a European call

option with strike price K on the assets of the firm. The risky debt, Dt, is priced as the sum

of a risk-free bond, worth the present value of promised debt payments K, minus the value of a

European put option with strike price K, which represents the present value of the expected loss

on the debt. The only substantial difference between the GARCH structural credit risk model and

Merton’s (1974) structural credit risk model, is that in our model, the unobserved asset returns of

the firm exhibit stochastic volatility, and their dynamics is described by the HN model equations

(1) and (2), with St replaced by Vt.

The problem that concerns us is that of using the time series of equity market values, {Et}n
t=1, to

infer values for the parameters of the underlying HN model for the firm value Vt, as well as for the

levels of the firm value at each point in time. Once we have estimated the aforementioned values

and parameters, we may then price the risky debt Dt, using the formula

Dt = e−r(T−t)K − PHN
t(11)

where PHN
t (Vt, K, r, T, θ) = e−r(T−t)E?

t max[K − VT , 0] is the price of a European put option,

computed under the HN model, given the parameter set θ ≡ {α, β, γ, λ, ω}. In particular, we will

be concerned with computing the credit risk premiums, or spreads, on the risky debt of the firm at

each point in time, using our estimates for the asset value and the HN model parameters derived

using the time series of equity. The credit spread for a given terminal date T is defined by the

relationship st = yt − r, where yt is the yield derived from the equation e−yt(T−t)K = Dt. This

yields the formula

st = − 1

T − t
ln

(
1− PHN

t

Ke−r(T−t)

)
(12)

Since the ability to compute fair values for spreads is so important in practice, our benchmarking

of our model in the next section will include an analysis of its relative performance in the task
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of matching the true spreads computed under the data generating process against the methods of

Merton (1974) and Duan et al. (2004). In our application section, we will compare the spreads

computed using our GARCH structural credit risk model against the spreads from the Merton

(1974) and Duan et al. (2004) methods on actual CDS spreads for investment banks during the

2007-2008 credit crunch.

Having framed the problem at hand, we now present a method for the estimating the firm asset

levels and HN parameters from observed equity data. The estimation approach is based on an

Expectation Maximization (EM) algorithm. The algorithm cycles through various steps, which are

presented below; we relegate the proof of convergence to the Appendix.

EM Algorithm for the Estimation of the GARCH Structural Credit Risk Model:

(1) Set the elements of the HN parameter vector θ0 equal to 0.001, where θ0 ≡ {α0, β0, γ0, λ0, ω0}.

Initialize the elements of the vector for the times series of asset values {V 0
t }n

t=1 to any value

k.

(2) Given the parameter vector θi computed in iteration i, compute the vector of asset values

{V i+1
t }n

t=1 for the iteration i + 1 by inverting the call option equation (7), given the time

series of equity values {Et}n
t=1.

(3) Compute the series of log returns using the formula r
(i+1)
t = log

(
V

(i+1)
t /V

(i+1)
t−1

)
from

the extracted series of asset values {V (i+1)
t }n

t=1. Using this log return series, express the

conditional variances {σ2,(i+1)
t+j }n−1

j=1 using equation (3), as a function of the model param-

eters, and apply the MLE method of Bollerslev (1986) to estimate the parameter vector

θ(i+1) ≡ {α(i+1), β(i+1), γ(i+1), λ(i+1), ω(i+1)} of the HN model.

(4) Repeat the last two steps until a tolerance level for the convergence criterion is reached.

The convergence of the above algorithm is guaranteed, but as usual in nonlinear problems with

potentially multi-modal likelihood functions, convergence can be slow, and multiple solutions are
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possible. Thus, it is useful to experiment with multiple initial seeds of the algorithm in order to

verify that the estimates of the parameters are robust to choice of initial values. We made an effort

to do this in the current study, in particular in our empirical application to the banks that follows

our simulation study below.

III. BENCHMARKING THE MODEL USING SIMULATED DATA

We now benchmark the GARCH structural credit risk model against the calibrated Merton

(1974) model, and the Duan et al. (2004) maximum likelihood estimation of the Merton model,

using simulated data. Our experimental design is as follows. We consider four scenarios, each of

which represents a different, 2X2 combination of asset volatility (business risk) and leverage ratio

(financial risk) for the firm. The two values considered for the annualized asset volatility are 20%

and 40%, and the initial ratios of the default barrier to assets (K/V ) considered are 0.5 and 1.0.

These ratios are generated by setting the initial asset value equal to 100 and setting the value of K

equal to 50 or 100, respectively. Our decision to consider a scenario in which the leverage ratio is

equal to 1.0, which is quite high, is motivated by our desire to generate scenarios that might give

some insight into the empirical application in the following section to banks and financial compa-

nies in the US during the 2007-2008 period. In fact, the empirical evidence indicates that such a

leverage ratio may even be an underestimate of the leverage ratios of some major investment banks

during that period.

Second, within the aforementioned setup, we evaluate the models’ performances under two dif-

ferent data generated processes (DGPs) for the underlying asset returns and return volatility. The

first DGP is the discrete time version of the Black and Scholes (1973) model, with constant volatil-

ity, found by setting α = β = 0 in the HN model with one lag. This case is of interest because it

allows us to measure the performance of the GARCH structural credit risk model estimation algo-

rithm against the Merton and Duan et al. methods when the true model is actually that assumed by
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the latter models. The second DGP is the HN model with α > 0 and β > 0. This second DGP is

of interest because it allows us to measure the difference in performance between the Merton and

Duan et al. methods and our method in a setting of stochastic volatility.

The consideration of two DGPs, together with the four combinations of business risk and finan-

cial risk mentioned above, generates eight distinct simulation experiments. In each experiment,

we proceed as follows. The time horizon is assumed to be one year throughout, and the risk-free

rate is constant and set equal to 5%. In the case that the DGP of the firm’s assets is a geometric

Brownian motion, we set the asset value, the default barrier, and the asset volatility according to

the desired combination of business and financial risk, simulate 52 weeks of asset values, and then

simulate 52 weeks of equity values by pricing equity as a call option on the firm’s assets using

the Black-Scholes formula. We then take that 52 week time series of equity values as an input to

our three models under consideration, the calibrated Merton model, the Merton model estimated

using the maximum likelihood method of Duan et al., and the GARCH structural credit risk model

proposed in the current paper. We produce estimates of the asset value, the asset volatility, and the

fair spread on the firm’s debt, priced according to each of our three models, for the last week in

the 52 week sample. These estimates can be compared directly against the true asset value, asset

volatility, and spread calculated under the Merton model for the last day in the sample, and such

comparisons serve as a measure of the out-of-sample accuracy of each model under study.

In the case where the DGP of the asset time series is a GARCH process, the above procedure

is repeated, except that it is necessary to parameterize the GARCH process to produce the asset

volatility required by the experiment. There are multiple parameter combinations that accomplish

this, and we report the combinations used in our experiments as a footnote to the results. For

each unique experiment, we ran 100 simulations of the 52 week period necessary to log one out-

of-sample vector of assets, asset volatility, and spreads per model. Using the histogram of these

100 out-of-sample vectors of results, along with the true asset values, volatilities, and spreads, we



14 ANONYMOUS FOR REVIEWING

calculate the sample mean and standard deviation of the difference between the predicted and true

asset value, asset volatility, and spread for each model, in each of the eight scenarios described

above. These results are summarized in Table III.

[INSERT TABLE III HERE]

Our simulation study reveals several noteworthy results regarding the relative performance of the

three models. Let us focus first on the case where the DGP for the firm asset is geometric Brownian

motion. The first noticeable trend is that increasing business risk and increasing financial risk are

associated with larger average out-of-sample estimation errors for the asset, the volatility, and the

spread for each of the three models, as well as larger error standard deviations. Second, the Duan

and GARCH models outperform the calibrated Merton model in all cases, in terms of achieving

a lower average error in estimation of assets, asset volatility, and the spread, except for the low

business risk, low financial risk case, in which the performance of the three models is similar

in their estimation of the asset level and volatility. This result is in general consistent with the

comparison of the Merton and Duan methods in Ericsson and Reneby (2005). The GARCH and

Duan models still outperform the calibrated Merton model in their estimation of spreads in that

case, however. Third, the Duan model has a lower average prediction error for spreads than the

GARCH model in three of the four scenarios, although in all cases, and for all three of the variables

studied, the difference in the average prediction error between the Duan and the GARCH model

is small. Overall, we surmise that the slight under-performance of the GARCH model versus the

Duan model in the case where the asset follows a geometric Brownian motion is that the extra

complexity of the GARCH model produces a slight cost in terms of estimation precision when

asset volatility is constant.
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Now let us turn to the case where the true DGP for the asset is a GARCH process with stochastic

volatility. The first noteworthy generalization is that, in all of the four cases studied, the GARCH

model outperforms both the Duan and the calibrated Merton model in the out-of-sample estimation

of asset values, asset volatility, and spreads, in terms of having lower average sample errors for all

three variables of interest. Second, in all except the low business risk, high financial risk case,

the calibrated Merton model actually achieves a lower average spread estimation error than the

Duan model. However, the preceding observation must be qualified by noting that the spread error

standard deviations are very high compared to the absolute value of the errors in all cases, and that

the average spread estimation errors for the Merton and Duan models are generally closer to each

other than they are to the average estimation error for the GARCH model. Finally, the standard

deviation of the estimation error for each variable of interest, in the case of the GARCH model

increases with higher business risk, and with higher financial risk, with one exception, which is

a slight drop in the estimation error of the asset value in the GARCH model between the high

financial risk, low business risk case and the high financial risk, high business risk case. The

sample standard deviations of the estimation errors for all three variables are lower in the high

financial risk, high business risk case for the Merton and Duan models than for the low business

risk, high financial risk case, but otherwise are increasing in business and financial risk.

We now turn to an empirical application of the GARCH model to US banks and financial compa-

nies during the 2007-2008 credit crunch. Several of the results derived from our simulation study

will be useful in understanding the output of the three models on the bank data. In particular, our

simulations show that when the true asset process exhibits constant volatility, and that volatility

and/or financial leverage is high, the results of the GARCH and Duan models will be similar on

average, and both will tend to outperform the Merton model. This generalization seems to fit rather

well the pattern we see in our on spread estimates from the three models for banks and financial

companies with moderate or high observed CDS spread levels. Also, the variation in the model
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estimated spreads tends to be much higher, especially for Duan and GARCH, for the banks and

financial companies with high CDS spreads, which are more likely to have high financial and/or

business risk.

IV. EMPIRICAL APPLICATION: THE CDS MARKET FOR US BANKS AND FINANCIAL

COMPANIES DURING THE 2007-08 CREDIT CRISIS

In this section, we turn our attention to the application of our GARCH structural credit risk

model to the out-of-sample prediction of CDS spreads for US banks and financial companies dur-

ing the 2007-2008 period. In particular, we will compare the success of the calibrated Merton

model, the Duan model, and the GARCH model in terms of their average prediction errors of CDS

spreads at the 1 year, 3 year, and 5 year time horizons for the US banks and financial companies

for which suitable balance sheet and spread data is available. Our data provider, unless otherwise

stated, is Bloomberg. Consistent with our simulation study, we will focus on out-of-sample pre-

diction of the models, using a 52 week window of data for the estimation, for the cross section

of banks on two dates of particular interest: December 14th, 2007, and August 29th, 2008. The

former date, which occurred approximately five months after the revelation of some of the first

widely recognized signs of the crisis in July of 2007, corresponds roughly to the high point of the

US equity markets before their sustained drift downward that has continued up until the time of

writing. The latter date corresponds to two weeks before the investment bank Lehman Brothers

declared bankruptcy, after it became clear that a rescue package by the US government was not

forthcoming.

The CDS spreads we use in our analysis are those linked to the senior debt of the banks and

financial companies in question, as we only assume a two-layered liability structure in applying

our models, as is conventional in the literature. To build our sample of firms, we identified all

banks and financial companies domiciled in the United States at the time of writing. We then
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selected those firms with senior CDS spreads available in at least one of the 1 year, 3 year, and 5

year categories. Of these firms, we kept those with at least one year (52 weeks) of uninterrupted

balance sheet data (short and long term debt, and market equity) necessary for running the three

models at the two dates of interest. Due to the fact that not all firms had even coverage in the

three different CDS maturities chosen, we obtain different final numbers of firms available for

running the models for each maturity on our two dates of interest. Additionally, post-estimation,

we made a distinction between firms for which the largest of the three estimated model spreads

was greater than 0.1 basis points, and those for which this was not the case. The total sample size

pre-estimation, and the sample size of each of the aforementioned groups post-estimation, is listed

in Table II for the six cases corresponding to the two dates and three CDS maturities we consider.

[INSERT TABLE II HERE]

As is apparent, there are more firms with available CDS data for all three maturities in August of

2008 than in December of 2007, although not all firms have spread data for all three maturities on

either date. It appears that the market began offering CDS quotes for shorter maturities for several

banks and financial companies by late 2008 due to the increases in the likelihood of default for

several institutions previously considered to be remote default risks. The average CDS spread in

our sample, before the exclusion of banks with near-zero model spreads, on December 14, 2007

was 166.5 basis points for the 1 year CDS market, with a sample standard deviation of 184.3 basis

points. The average CDS spread in the sample before exclusion of banks with near-zero model

spreads on August 29, 2008 was 297.3 basis points, with a sample standard deviation of 423.8 basis

points. On December 14, 2007, the 1 year CDS spreads in our sample ranged from a low of 16.079

basis points, for Bank of America, to a high of 665.872 basis points, for MBIA Inc.. On August

29, 2008, the 1 year CDS spreads in the sample ranged from a low of 5.69 basis points for LOEWS
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Corporation, to a high of 2335.905 basis points for Washington Mutual. The pattern of average

spreads and sample standard deviations for the 3 year and 5 year CDS maturities between these

two dates is similar to the pattern for the one year maturities: both average spreads and the sample

standard deviation of spreads, as well as the range of spread value, increases from December 2007

to August 2008. The full summary statistics, besides those reported in this paper, are available

upon request. One other empirical feature of the CDS market that stands out, and is in contrast to

the pattern of the market in the five years leading up to 2007 and 2008, is that the term structure of

average spreads is U-shaped in December of 2007, and fully inverted in August of 2008. This is the

result of the fact that the individual spread term structures for many banks are humped (U-shaped

upward or downward) or fully inverted on the two dates we study. Besides the fact that inversion of

the term structure of spreads appears to be a leading indicator of the deterioration of credit quality

of banks, as evidenced by an increase in spreads across all maturities, this issue also has important

implications for the structural credit risk models we test in this paper. This issue deserves special

attention, and we will treat it in detail in subsection A that follows.

The results of running the three models on December 14, 2007 and August 29, 2008 using the

relevant 52 week data windows in each case are shown in Tables III and IV, respectively. Each table

reports the root mean squared error (RMSE), the mean absolute deviation (MAD), and the constant

(α) and coefficient (β) terms of a standard OLS regression of actual CDS spreads on model spreads,

along with the R2 of the regression, with the standard errors displayed in parenthesis below the

point estimates of α and β. Statistical significance of a coefficient in one of the linear regressions

is denoted using three stars for significance at the 1% level, two stars for significance at the 5%

level, and one star for significance at the 10% level, with the stars placed alongside the standard

error of the relevant coefficient. In the upper panel of each table, we present the statistics obtained

using the sample of banks whose largest post-estimation model spread was greater than 0.1 basis

points. The rationale for this post-estimation selection is that it is valid to exclude banks whose
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model results uniformly indicate some sort of serious model mis-specification, and the inability of

any of our three models to generate (effectively) nonzero spreads provides a good reason to exclude

these banks from the sample. To check that the inability of the models we tested to generate non-

zero spreads was indeed due to differences in the characteristics of the equity time series for the

group of excluded banks vs. the group of banks included in the summary statistics of Tables III

and IV, we computed the annualized equity volatility for the banks included in the August 29,

2008 sample and the banks with available data on that date that were excluded from our summary

statistics due to the imposition of the 0.1 minimum spread criterion. The included banks had an

average annualized equity volatility of 45.3%, versus an average annual equity volatility of only

6.5% for the excluded banks, and a t-test of difference in means rejects the null hypothesis of

equality of equity volatility between the two groups at the 1% level. Thus, it is safe to conclude

that the equity time series of the banks excluded from our summary statistics simply did not display

enough volatility to generate nonzero spreads in our models, and tax considerations or other sorts

of effects, such as jump-risk in the asset value, which are outside of our models sustain the positive

and generally low spreads we observe for those banks in the CDS market.

In the sample of banks that we display summary statistics for, there remains a legitimate concern

of model misspecification in the case of the Federal National Mortgage Association, commonly

known as Fannie Mae, and the Federal Home Loan Mortgage Association, commonly known as

Freddie Mac, because both organizations have an implicit and very public guarantee from the

government to cover a large portion of their expected losses in situations that would ordinarily

provoke default in a private corporation. For this reason, Tables III and IV display summary

statistics for the sample discussed above, first including, and then excluding, Fannie Mae and

Freddie Mac from the sample.

[INSERT TABLE III HERE]
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[INSERT TABLE IV HERE]

Several patterns emerge from the results. First, the lowest out-of-sample RMSE for the models

on December 14, 2007 is achieved by the GARCH model for the 5 year CDS maturity, when Fannie

Mae and Freddie Mac are included in the sample. There is no data recorded for Fannie and Freddie

at the 1 year and 3 year maturities in December 2007, so there are no statistics to report for those

cases. When Fannie Mae and Freddie Mac are excluded from the sample on December 14, 2007,

the lowest RMSE is achieved by the Merton model for the 1 year CDS market, and the GARCH

model for the 3 year and 5 year CDS markets. Turning to the second date of interest, on August

29, 2008 the lowest RMSE is obtained by the Merton model for the 1 year and 3 year maturities,

and by the Duan model for the 5 year maturity, when Fannie Mae and Freddie Mac are included

in the sample. After excluding Fannie and Freddie, however, the lowest RMSE is achieved by the

GARCH model for all three maturities in August of 2008. The ranking of the models according to

the lowest MAD is the same at that obtained using RMSE in all cases.

To summarize, the GARCH model achieves the lowest out-of-sample RMSE and MAD of the

three models considered in six out of the ten cases considered, and achieves the lowest RMSE and

MAD in five out of the six cases in which Fannie Mae and Freddie Mac were excluded from the

sample. The high success rate of the GARCH model in the sample excluding Fannie Mae and

Freddie Mac is probably the more relevant yardstick of success in absolute prediction, given that

the market spreads of Fannie Mae and Freddie Mac, which are in the range of 30-38 basis points

over the different CDS maturities, are far below the estimated model spreads, which are over 3000

basis points for the Duan and Merton models at the 1 year maturity in August of 2008, and reflect

the high value of the government guarantee to these two entities.

Moving on to the OLS regression results, we find that the beta coefficient of actual on model

spreads is significant at the 1% level for the Merton model in December of 2007, and insignificant



THE GARCH STRUCTURAL CREDIT RISK MODEL: ESTIMATION, BENCHMARKING, AND APPLICATION 21

for the Duan and GARCH models, over all five cases considered on that date. The regression of

actual on predicted spreads for the Merton model also display significantly higher R2 values than

for the Duan and GARCH models in December of 2007. In August of 2008, however, the beta

coefficients for the Duan and GARCH models are also significant at the 1% level at the 1 year

maturity in the sample that includes Fannie Mae and Freddie Mac, and significant at either the 1%

or the 5% level for all three maturities in the sample with Fannie Mae and Freddie Mac excluded.

In addition, the R2 values are higher for the Duan and GARCH models than the Merton model

for the regressions at the 1 year maturity in August of 2008, and although they are lower at the

3 year and 5 year maturities, they are both near 26% and 22% at those maturities, respectively,

compared to R2 values for the Merton model of 42% and 45% at the 3 year and 5 year maturities,

respectively.

The overall conclusions from our analysis of the model performance statistics can be summed

up as follows. The GARCH model proposed in this paper appears to be the clear winner, compared

to the Merton and Duan models, in terms of success measured by lowest absolute prediction er-

rors, with either the RMSE or MAD criteria, and this is especially true in the samples that exclude

Fannie Mae and Freddie Mac, for which model misspecification due to the existence of a gov-

ernment guarantee is obviously a serious issue. The calibrated Merton model, however, displays

a surprising success at explaining the variation of CDS spreads in the cross section of banks at

different maturities in the CDS market, although this success is more apparent in the comparison

of the models in December of 2007 than in the more turbulent period of August 2008, in which the

average levels and variation of CDS spreads was higher. The latter finding is consistent with the

general conception among practitioners that the calibrated Merton model, while known to produce

very low spreads, has the ability do adapt to diverse forms of model misspecification in practice.

Finally, the relatively similar performance of the Duan and GARCH models along all indicators

and on both dates of our sample, which appear to follow a different pattern than is the case with the
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Merton model, should be compared to the results of our simulation study in the previous section.

Those results indicated that the Duan and GARCH models tend to follow the pattern indicated here

in scenarios of high business and financial risk, but constant volatility. The Merton model performs

better on real data than in our simulation study in such conditions, and we mark that result up to the

reason just stated, that the Merton model tends to adapt well to some types of unobserved model

misspecification. In the samples excluding Fannie Mae, and Freddie Mac, however, the results

seem to suggest a common scenario among many banks of high business and financial risk, but

relatively stable (if not constant) volatility.

Although the analysis of prediction errors within maturity categories is important, also revealing

is an examination of the information contained in the term structure of spreads, or the pattern of

spreads across maturities. We now turn to an analysis of the spread term structure in the CDS data

and our models during the 2007-2008 crisis period.

A. The CDS and Model Spread Term Structures in 2007 and 2008. In order to better under-

stand the patterns displayed in the shape of bank CDS term structures, we classified the shape of

the term structure for each bank and financial company in our sample in December of 2007 and

August of 2008. These statistics are reported in Tables V and VI, respectively. Divisions of the

bank spread term structures are made into four groups: those that are upward sloping (U), in which

the 5 year spread is greater than the 3 year spread, and the 3 year spread is greater than the 1 year

spread; those that are humped (H), in which the three year spread is below both the 1 year and 5

year spreads, or above both the 1 year and 5 year spreads; those that are downward sloping (D), in

which the spread decreases as a function of the maturity; and those that are flat (F), in which all

spreads are equal. In practice, the classification of spread curves into the “F” category only applies

to the model spread curves in cases where all three model spreads were equal to zero. There are

no flat spread curves in the CDS market on either date.
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In each table, we divide the group of banks within each category (market spreads and model

spreads for the three models) into two groups, corresponding to the nonzero model spread subset

and the zero model spread subset, as identified on the basis of whether the largest model spread at

the 5 year maturity was greater than or less than 0.1 basis points on the relevant date. We report

statistics for the full sample, before excluding banks based on zero model spreads, and for each

of these two subgroups. In addition, although not reported in the text, we identified the banks

that were present in both the December 14, 2007 sample and the August 29, 2008 sample, and

summarized the categorization exercise among this subset of banks.

[INSERT TABLE V HERE]

[INSERT TABLE VI HERE]

Several important patterns emerge from the data and the model results. Perhaps the most striking

fact we observe is that all three models, for both dates studied, produce downward sloping spread

curves for every bank in the sample. This is quite remarkable, as it is known (see e.g. Rouah

and Vainberg, 2007) that the only way for the Merton and Duan models in particular to generate

downward sloping spread term structures is in the presence of leverage ratios K/V > 1. This

suggests, at the least, high degrees of leverage among many banks in the sample. Two clarifications

of this finding warrant mention. In the first place, the downward sloping spread term structure in

the subsample of excluded banks is not of primary interest, since these spread curves are nearly

flat in any case and very close to zero when they are not equal to zero. In the second place, for the

sample of non-excluded banks, the inversion of the nontrivial spread term structures derived in this
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case for the models is actually quite consistent with the actual CDS market data, to which we will

now turn.

In the CDS market data, we find that 83% of the banks in the non-excluded subsample have

humped or downward sloping term structures in December of 2007, and this remains true for 57%

of banks in the non-excluded subsample in August of 2008. The apparent drop in the degree of non-

upward sloping term structures from 2007 to 2008, however, is masked by the fact that there were

a significant number of new entrants into the CDS market for banks between the two dates, and

these new entrants were much more likely to have standard, upward sloping spread curves than the

banks that are common to both samples 1. We infer that this is due to the fact that the market began

demanding CDS contracts for several banks that, even in late 2007, were considered too remote

as candidates for a default to merit a liquid market in CDS contracts. The higher credit quality of

the new entrants is consistent with the upward sloping tendency of their spread term structures. In

the full sample of CDS market spreads that includes both subgroups, we find that 61% of banks in

December of 2007, and 33% of banks in August of 2008, had humped or downward sloping spread

term structures. These figures are less than for the group of banks with nontrivial model spreads

post-estimation, and are consistent with the fact that, besides having lower equity volatility and

lower average spreads, the banks that were excluded according to our post estimation criterion of

near-zero spreads were also less like to have inverted term structures.

[INSERT TABLE VII HERE]

To formally test the above observations, we performed a t-test of difference in proportions (and

means where appropriate) of upward sloping spread term structures in the data across the categories

of interest. These tests and the null hypotheses on which they are based are summarized in Table

1Only one bank, MBIA, was in the December 2007 sample but not in the August 2008 sample.
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VII. The null hypothesis of equality in the proportion of banks with upward sloping term structures

in the full sample in 2007 versus in 2008 was rejected at the 5% level, although we could not

reject equality of this proportion in either subsample, possibly due to modest sample sizes. We

reject equality of the proportion of banks with upward sloping spread term structures between the

included and excluded groups (nonzero vs. zero spreads) at the 1% level during 2007, and again

at the 1% level during 2008, with the excluded groups having significantly more upward sloping

spread term structures. In order to verify that the increase in the proportion of banks with upward

sloping term structures in the full sample was indeed due to the entry of several, low spread banks

with upward sloping term structures, we performed a paired test of difference in means of the

indicator variable equal to 1 if the term structure is upward sloping, and zero otherwise, among

the group of banks common to both the December 2007 sample and the August 2008 sample. We

cannot reject the null hypothesis of no difference in means, so we can make the natural conclusion

that the difference arises from the additional banks that entered the CDS market in 2008. While

the incidence spread term structure inversion among the incumbent banks in the CDS market was

nearly constant between December 2007 and August 2008, the level and dispersion of spread levels

at all three maturities increased noticeably for these banks between the two dates studied.

Overall, the empirical evidence from the CDS market of a significant incidence of spread term

structure inversion, combined with our model results of spread term structure inversion for all

banks in the sample, point strongly toward high degrees of leverage and asset volatility for the

banks and financial companies active in the CDS market, and this is true in particular for the

incumbent banks common to the 2007 and 2008 samples. The latter list of banks includes Amer-

ican Express, American International Group, Bank of America, Capital One, Citigroup, Goldman

Sachs, JP Morgan Chase, Lehman Brothers, Merrill Lynch, Morgan Stanley, and Washington Mu-

tual, among names that have appeared frequently in the news during the 2007-2009 period. The

models tested are able to capture, for the most part, the shape of the spread term structure for these
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banks, and in most cases, especially in August of 2008, our GARCH model is able to capture the

levels of the spreads across the maturity structure better than the Merton or Duan models tested.

V. CONCLUSION

In this paper, we develop a structural credit risk model in which the underlying asset follows

a GARCH process, as in Heston and Nandi (2000). We show how to estimate the parameters of

the model using observed equity time series data for the firm, using an Expectation Maximization

algorithm, as in the work of Duan (1994). We perform a simulation study to benchmark the relative

performance of the calibrated Merton model, the Duan model, and our GARCH model under

different scenarios for leverage and asset volatility, both in a setting with and a setting without

stochastic volatility in the data generating process. We find that the GARCH model significantly

outperforms the Duan and Merton models in a setting with stochastic asset volatility of the GARCH

variety, and that in a setting with constant asset volatility, the out-of-sample performance of Duan

and GARCH are similar, with Duan slightly outperforming GARCH in out-of-sample prediction

of the true asset level, asset volatility, and the spread, and both significantly outperforming Merton.

We then conduct an empirical application of our model in the context of the CDS market for

banks and financial companies in the US on two dates, December 14, 2007, and August 29, 2008.

The former date corresponds roughly to the high point of the US equity markets before they began

a period of sustained negative returns, and the latter date corresponds to two weeks before the

collapse of the investment bank Lehman Brothers, when it formally declared bankruptcy. We find

evidence of a significant government guarantee to the national mortgage agencies Freddie Mac

and Fannie Mae, in the form of a government promise to cover a large portion of the expected loss

of those institutions, along the lines described in Gray and Malone (2008), as GARCH and Duan

model spreads are much greater than the CDS market spreads for these institutions. Moreover, we

find that the GARCH model achieves the lowest out-of-sample prediction errors of the three models
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in the various samples considered, and that this is overwhelmingly true in the cases where we

exclude Fannie Mae and Freddie Mac from the sample, both for December 2007 and August 2008.

There is moderate evidence of stochastic volatility, but not strong evidence, as the performance of

the Duan model in the latter cases does not lag significantly behind the performance of the GARCH

model in terms of absolute prediction errors.

We find that all three of our models predict downward sloping spread term structures for all

banks in our sample on both dates. We examine the empirical evidence from the CDS market

on spread term structures across the banks, and find that a high proportion of banks and financial

companies display downward sloping spread term structures in both December of 2007 and August

of 2008. This is especially true of the incumbent banks that are present in both samples. The

latter list includes the American International Group, Lehman Brothers, Morgan Stanley, Goldman

Sachs, and a range of other banks that have featured prominently in the financial press during

the financial crisis that began in 2007. The group of banks for which the structural credit risk

models tested are able to generate nontrivial spread values across the maturity spectrum display a

significantly higher average annualized equity volatility, higher average spreads for all maturities,

and a higher incidence of spread term structure inversion than the banks for which the models

are unable to generate nontrivial (different from zero) spreads. Duan, Gauthier, and Simonato

(2004) have shown that the method used by Moody’s-KMV to estimate their structural credit risk

model is equivalent to the maximum likelihood method that we use in this paper under the “Duan”

model specification. If those results are true, then our results of estimating the Duan model on

December 14, 2007 indicate that the credit risk models used by Moody’s KMV should, by all

indications, have given overwhelming evidence of significant weakness in the credit quality of

most major investment banks already at that time. This calls into question the decision of the

rating agencies to delay the downgrading of many investment banks during the period studied. Our

results for the Merton and GARCH models tell a similar story. The models are also generally able
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to match the rise in spreads from 2007 to 2008, as the credit crisis worsened, and the Duan and

GARCH model spreads for Lehman Brothers two weeks before its collapse are noticeably above

CDS market spreads, as consistent with the expectation by the market of a government bailout that

never materialized.

VI. APPENDIX: PROOF OF CONVERGENCE OF EM ALGORITHM

Given initial values for S(0), η(0) and η∗(0), the following two-step iterative algorithm converges

to the maximum likelihood estimator of η and S.

(1) Update the values of the underlying asset S from the observed prices of the equity as

S(n+1) = g−1(C|η∗(n)).

(2) Update the values of the model parameters by setting η(n+1) = η̂(S(n+1)) and construct the

new set of risk-neutralized parameters η∗(n+1) from them.

Proof. First we note that, since g is invertible and the value of assets is obtained deterministically

from the value of the equity, therefore,

p(S,C|η) = p(S|η)δg(S|η∗)(C)

p(S|C, η) = δg−1(C|η∗)(S)

where δθ(·) denotes the degenerate measure putting all mass on θ. These functions satisfy the

requirements in ?. Therefore the E step of the EM algorithm reduces to

ES|C,η(n)(log[p(S,C|η)]) = log(p(g−1(C|η∗(n))|η))
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while the maximization step solves,

η(n+1) = arg max
η

log(p(g−1(C|η∗(n))|η))

Denoting g−1(C|η∗(n)) = S(n+1), we see that the expectation step correspond to step 1 above,

while the maximization step corresponds to step 2. ¤
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TABLE II. Sample Sizes by Date, CDS Maturity, and Minimum Model Spread Criterion

Date CDS Maturity Total Firms Firms with
Largest Model
Spread > 0.1bps

Remaining Firms

December 14, 2007 1 YR 18 13 5

3 YR 20 12 8

5 YR 38 18 20

August 29, 2008 1 YR 44 25 19

3 YR 43 22 21

5 YR 43 21 22
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TABLE VII. Classical Hypothesis Tests of Differences in Shapes of Spread Term
Structures Among Dates and Subsamples

Null Hypothesis Test Statistic Test Statistic Value p-value

H0: θfull
U2007 = θfull

U2008 z -2.03 0.0428 **

H0: θnonzero
U2007 = θnonzero

U2008 z -1.52 0.1281

H0: θzero
U2007 = θzero

U2008 z -0.56 0.5744

H0: θnonzero
U2007 = θzero

U2007 z -2.71 0.0068 ***

H0: θnonzero
U2008 = θzero

U2008 z -3.36 0.001 ***

H0: IU2008 = IU2007 t -0.5657 0.5795

Key: θSAMPLE
UY EAR = The proportion of upward sloping spread term

structures in subsample SAMPLE in year YEAR.

The “nonzero” and “zero” subsamples are as defined in the text, according
to the postestimation criterion.

IUY EAR = An indicator variable equal to 1 if the term structure is upward
sloping, zero otherwise. These indicator variables were used in the
t-test of a difference in means in a paired sample in the banks common
to both years.


