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Abstract11

The relationship between the biomass of reproductively mature individuals (spawing stock) and12

the resulting offspring added to the population (recruitment), the stock recruitment relationship,13

is a fundamental and challenging problem in all of population biology. The steepness of this14

relationship is the fraction of unfished recruitment obtained when the spawning stock biomass15

is 20% of its unfished level. Since its introduction about 20 years ago, steepness has become16

widely used in fishery management, where it is usually treated as a statistical quantity. Here,17

we investigate the reproductive biology of steepness, using both unstructured (biomass) and18

age-structured models. We show that if one has sufficient information to construct a density19

independent population model (maximum per capita productivity and natural mortality for20
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the unstructured case or maximum per capita productivity, natural mortality and schedules of21

size and maturity at age for the structured model) then one can construct a point estimate for22

steepness. Thus, minimal information about the demography of a cohort leads to inferences23

about steepness, which cannot be chosen arbitrarily. If one assumes that individual survival24

fluctuates within populations, then it is possible to construct a prior distribution for steepness25

from this same minimal demographic information. We develop the ideas for both compensatory26

(Beverton-Holt) and over-compensatory (Ricker) stock-recruitment relationships. We illustrate27

our ideas with an example concerning bluefin tuna.28
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Introduction29

Understanding the relationship between the biomass of reproductively mature individuals (spaw-30

ing stock) and the resulting offspring added to the population (recruitment), the stock recruit-31

ment relationship, is a fundamental and challenging problem in all of population biology. For32

example, strategic fisheries management requires estimates of biological reference points that33

often critically depend upon the nature of the stock-recruitment relationship (Brodziak 2002).34

The Beverton-Holt stock recruitment relationship (Beverton and Holt 1957/1993) is widely used35

in stock assessments of marine fishery resources and is an important feature of several modeling36

packages that are used for stock assessments. The recovery of threatened or endangered pop-37

ulations is in large part determined by the resilience of reproduction. In some assessments of38

Pacific tuna and billfish stocks, the available data are insufficient to directly estimate spawner39

recruitment relationship. In such cases (and others, e.g. Pacific rockfish Sebastes spp) it has40

become common practice to use the steepness of the stock recruitment relationship in lieu of the41

entire relationship.42

Steepness was introduced by Mace and Doonan (1988), who defined it as the fraction of43

unfished recruitment (R0) when the spawning stock biomass is 20% of its unfished level (B0).44

They assumed that production follows a Beverton-Holt stock recruitment relationship so that45

when spawning biomass is B the resulting recruitment R(B) is46

R(B) =
B

α+ βB
(1)

where α and β are parameters. In the form of Eqn 1 these parameters have clear, if somewhat47

unnatural interpretations. That is 1
α is the maximum per capita production of recruits (i.e., the48

limit of R(B)B for small B) and R(B) approaches 1
β as B increases.49

If B0 and R0 denote the unfished spawning biomass and recruitment at that spawning50

biomass and h denotes steepness (Mace and Doonan (1988) use ∆) then51

R0 =
B0

α+ βB0
(2)
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hR0 =
0.2B0

α+ 0.2βB0
(3)

which can be used to relate α and β to steepness52

α =
B0

R0

1− h
4h

(4)

β =
5h− 1
4hR0

(5)

In the intervening years, a tradition has developed in which one estimates the parameters of53

the unfished stock (B0 and R0) and specifies the steepness, after which the parameters in Eqn54

1 can be determined from Eqns 4 and 5. In many cases, particularly data poor situations, it is55

common to use plausible values of steepness in the absence of alternative information. This is56

an implicit Bayesian approach, even if it is not acknowledged as such.57

In other cases, when one assumes that recruitment is mainly determined by the environment,58

h is often set equal to 1. For example, Aires-da-Silva and Maunder (2007), who use a Berverton-59

Holt stock recruitment relationship in the stock assessment of bigeye tuna, write “In practice,60

it is often difficult to estimate steepness because of a lack of contrast in spawning biomass and61

because there are other factors (e.g. environmental influences) that can cause recruitment to62

be extremely variable. For the current assessment, recruitment is assumed to be independent63

of stock size (steepness = 1). There is no evidence that recruitment is related to spawning64

stock size for bigeye in the EPO [Eastern Pacific Ocean] and, if steepness is estimated as a free65

parameter, it is estimated to be close to 1. We also present a sensitivity analysis with steepness=66

0.5” (pg 111). Maunder (2007) makes the same assumption in the stock assessment for yellowfin67

tuna (pg 9), conducts a sensitvity analysis when h = 0.75, and reports that best estimate when68

treating steepness as a free parameter is h = 0.54. Clearly, there is a need to understand the69

biology of steepness.70

Determining the probable value of steepness for marine species is a very important research71

topic. Stock-recruitment steepness is intrinsically related to the resilience of a species to harvest-72

ing and effectively determines the average productivity of fishery resources within a stationary73
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environmental regime. The topic of estimating steepness has been addressed through meta-74

analyses of stockrecruitment data for several species and taxa (Myers et al. 1999). For example,75

Meyers et al (1999) estimated a family level median steepness for the scombrids (using data76

on Atlantic bluefin tuna, bigeye tuna, chub mackerel, Atlantic mackerel, southern bluefin tuna,77

and yellowfin tuna) at 0.52 with 20 and 80 percentiles 0.30 and 0.72 respectively; their median78

estimate for swordfish Xiphias gladius was 0.88.Although the Myers et al. paper was considered79

by many to be a breakthrough, the statistical approach was limited to commercially-exploited80

species for which there were sufficient data to conduct an assessment. Such species represent a81

modest fraction of the potential fishery resources worldwide. Thus, while Myers et al. (1999)82

provided a useful empirical basis for developing an informative prior belief about the steepness83

of some species for analyzing population dynamics, many other species were not considered and84

indeed could not be considered if the analyses were repeated today. Dorn (2002) developed a85

hierarchical Bayesian method for advice on harvest rates for west coast rockfish for which he86

constructed a prior for steepness and Munch et al (2005) show how to find a posterior distri-87

bution for steepness using Bayesian nonparametric methods. He et al (2006) use a stochastic88

simulation to construction a prior for steepness based on long-term persistence of the stock.89

At the end of the day, however, steepness itself must be firmly rooted in the evolutionary90

ecology of the species and reproductive biology of a stock must surely be important for its91

management (Morgan 2008). More problematic, however, was the lack of an explanatory theory92

to predict steepness based on the evolutionary ecology and associated life history parameters93

of a species, information which is more readily available and less expensive to generate than94

assessment data (there are other concerns with the meta-analyses, lack of representativeness of95

the selected stocks, bias towards temperate fishes, lack of independence of stock response to96

the impact of environmental variation on recruitment). This paper provides a new look at the97

evolutionary ecology of steepness and its theoretical basis. A practical framework for estimating98

the probable value of steepness is developed based on life history parameters.99
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We use scombrids to illustrate the framework for estimating the probable value of steepness100

because they are commercially-valuable, highly productive, and intensively-exploited fishery101

resources for which steepness is often assumed to be unity in stock assessments. This assumption102

implies an ecologically optimistic compensatory response in the stock-recruitment dynamics at103

low fish stock sizes and can lead to unrealistic expectations about stock resilience at high harvest104

rates.105

In the next section, we begin with the production model, for which one is required to know106

maximum per capita productivity and natural mortality to be able to construct steepness. We107

then consider the age-structured model, for which one additionally needs to know the schedule of108

size and maturity as a function of age. We show the conditions under which the age-structured109

result collapses to the production model. We then discuss sources of stochasticity and uncer-110

tainty, focussing on variation in mortality rates. We use a Monte Carlo simulation to estimate111

maximum productivity from early life history (egg to recruited) stages. We illustrate our analy-112

sis using data on bluefin tuna and, in the On-Line Appendix provide data on a variety of other113

scombrids. We construct priors for steepness based on reproductive biology and then fit these114

to transformed beta-densities. Finally, we discuss extensions of the method.115

Methods116

Although biomass production models are currently out of favor among many fisheries scientists,117

we begin with such a model and then introduce the more commonly used age structured model118

and show how steepness in the two models is related.119

The Production Model120

We work with a biomass production model, very much in the spirit of MacCall (2002). We let121

B(t) denote the total biomass at time t and assume that the fraction of males at birth is r,122

so that spawning (i.e. female) biomass at any time is (1 − r)B(t). If M is the rate of natural123

6



mortality and F is the rate of fishing mortality then the dynamics of biomass are124

dB

dt
=

αp(1− r)B
1 + β(1− r)B

− (M + F )B (6)

where αp is subscripted to note production and has units of new biomass per existing spawning125

biomass per time, so that it is a rate, comparale to the rate of natural mortality M or of fishing126

mortality F . Clearly, if we were just interested statistical estimation of parameters, rather than127

a more complete biological interpretation, 1− r could be folded αp and β. However, by keeping128

1 − r out of the parameters, we are explicitly able to connect total biomass with spawning129

(female) biomass.130

The steady state biomass at fishing mortality rate F is131

B(F ) =
1

β(1− r)

(
αp(1− r)
M + F

− 1
)

(7)

so that132

B0 =
1

β(1− r)

(
αp(1− r)

M
− 1

)
(8)

We thus see that existence of a steady state requires that the dimensionless variable αp(1−r)
M > 1133

and that density dependence scales the overall size of the steady state. Thus, this parametriza-134

tion in some sense separates the roles of α and β in determining B0. The separation becomes135

even clearer when we consider steepness.136

According to its definition, steepness is137

h =
0.2αp(1−r)B0

1+0.2β(1−r)B0

αp(1−r)B0

1+β(1−r)B0

(9)

from which we obtain138

h = 0.2 · 1 + β(1− r)B0

1 + 0.2β(1− r)B0
(10)

However, in light of Eqn 8139

β(1− r)B0 =
[
αp(1− r)

M
− 1

]
(11)
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so that we find140

h =
αp(1− r)

4M + αp(1− r)
(12)

which can also be rewritten as141

h =
αp(1−r)

M

4 + αp(1−r)
M

(13)

Note that as αp → ∞, h ↑ 1 and as αp(1 − r) ↓ M , h ↓ 0.2, as they must. This equation was142

derived by Myers et al (1999) using a discrete-time Ricker model and without considering sex143

ratio. As will be seen, the continuous time production and discrete time age structured models144

are deeply interconnected.145

The Age Structured Model146

In a standard age-structured model with Beverton-Holt recruitment, N(a, t) denotes the number147

of individuals of age a alive at time t. For the recruited class148

N(0, t) =
αsBs(t)

1 + βBs(t)
(14)

where Bs(t) is the spawning biomass at time t and αs has units of new individuals/spawning149

biomass and is subscripted with s to denote that this is a structured model. The spawning150

biomass is151

Bs(t) = (1− r)
amax∑
a=1

N(a, t)Wf (a)pf,m(a) (15)

where Wf (a) is the mass of a female at age a and pf,m is the probability that a female of age a is152

mature and amax is the maximum age that an individual can attain (with suitable modification153

of the dynamics of the last age class, we can incorporate a ‘plus’ group into this formulation).154

For ages a > 0 we have155

N(a, t) = N(a− 1, t− 1)e−Z(a−1) (16)

where Z(a−1) is the total mortality at age a−1, given by the sum of natural mortality M(a−1)156

and fishing mortality F (a − 1) at age. Since neither of the mortality rates depend upon time157

the population will reach a steady state and a stable age distribution.158
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We let B0 and R0 the values of spawning biomass and associated recruitment in this steady159

state and in the absence of fishing and N(a) the number of individuals of age a in this steady160

state so that161

N(a) = S(a) ·R0 (17)

where S(a) is survival from age 0 to age a, i.e. S(a) =
∏a−1
i=0 e

−M(i). In the steady state, Eqn162

14 becomes163

R0 =
αsB0

1 + βB0
(18)

and where164

B0 = (1− r)
amax∑
a=1

N(a)Wf (a)pf,m(a) (19)

We now define165

W f =
amax∑
a=1

S(a)Wf (a)pf,m(a) (20)

which has the interpretation of the expected surviving mature biomass per recruit. Since N(a) =166

S(a)R0 and B0 = (1− r)R0W f we have167

R0 =
αs · (1− r)R0W f

1 + β ·R0W f
(21)

which can be seen as an equation for R0. In particular, we have168

β(1− r)R0W f = αs(1− r)W f − 1. (22)

When spawning stock biomass is 20% of B0 the recruitment is169

R =
αs(1− r) · 0.2R0W f

1 + β(1− r) · 0.2R0W f
(23)

and in analogy to Eqns 12, 13 steepness is170

h =

αs·0.2(1−r)R0W f

1+β·0.2(1−r)R0W f

R0
(24)

so that171

h =
0.2αs(1− r)W f

1 + 0.2β(1− r)R0Wf
(25)

9



and in light of Eqn 22172

h =
0.2αs(1− r)W f

1 + 0.2[αs(1− r)W f − 1]
=

αs(1− r)W f

4 + αs(1− r)W f
(26)

This equation generalizes Eqn 5 and following of Myers et al (1999).173

To connect Eqns 13 and 26 note that the production model requires that M(a) is a constant174

(M). Then175

S(a) = e−Ma (27)

In addition, the production model cannot have age structure, let us assume that we can176

replace Wf (a)pf,m(a) in Eqn 20 by a constant, say W f,m, interpreted as the average biomass of177

a spawning female. With this assumption we can rewrite Eqn 20 as178

W f =
amax∑
a=1

e−MaW f,m = W f,m
1− e−Mamax

1− e−M
(28)

If amax is sufficiently large then the numerator in the last expression in Eqn 28 is approximately179

1. If M is not too large, then we can Taylor expand the denominator as 1 − e−M ≈ M . Thus180

W f ≈
W f,m

M and Eqn 26 becomes181

h =
αs(1− r)

W f,m

M

4 + αs(1− r)
W f,m

M

(29)

By defining αp = αsW f,m Eqns 13 and 29 are the same.182

For completeness, in the Appendix we derive the analogue of Eqn 26 for the case of an183

over-compensatory recruitment function.184

Accounting for Uncertainty and Stochasticity185

Eqns 13 and 26 involve the quantities αp,M, r, αs and W f . We assume that W (a) is the result186

of a model based on von Bertalanffy growth in length so that W (a) = c1 · L(a)c2 where c1 and187

c2 are constants and where188

L(a) = L∞(1− e−k(a−a0)) (30)
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where L∞ is asymptotic size, k is the growth rate, and a0 is the (theoretical) age at which size is189

0 or is a parameter that allows us to account for the initial condition L(0) = l0. It is possible to190

associate probability distributions with both asymptotic size and growth rate (e.g. Siegfried and191

Sanso 2006) from single set of data or to conduct a meta-analysis on published growth curves192

(see the On-line Appendix for examples of those).193

Uncertainty in M for the production model or M(a) for the age structured model will lead194

to stochasticity in survival trajectories and we focus on such uncertainty here, postponing for195

the future including distributions on life history parameters.196

First consider the production model. If M were known with certainty then survival to age a197

is given by Eqn 27. To characterize variation in the rate of natural mortality, we use the gamma198

density (Mangel 2006) so that199

Pr[m ≤M ≤ m+ dm] = f(m)dm+ o(dm) =
λν

Γ(ν)
e−λmmν−1dm+ o(dm) (31)

where o(dm) denotes terms that are higher order powers of dm (ie dm2 etc). In this formulation200

the expected value of M is E(M) = M = ν
λ and the coefficient of variation is CV (M) = 1√

ν
.201

Given thatM has a probability distribution, imagine drawing a sequencem0,m1, ,m2,m3, ...,ma−1202

from the gamma density given by Eqn 31. From those, we can construct a random variable S̃(a)203

for survival to age a according to204

S̃(a) =
a−1∏
i=0

e−mi (32)

In this way we can generate a family of survival trajectories that account for the uncertainty in205

natural mortality, and also allow for individuals experiencing differences in natural mortality at206

age.207

Although the assumption of a constant rate of natural mortality is commonly used in stock208

assessments, it cannot apply across the range of a fish’s life – where individuals may be prey209

when young and predators when older. When such data are available, they should be used. For210

example, for yellowfin and bigeye tuna Hampton (2000) shows classical trajectories of mortality211

as a function of age: a rapid decline from the youngest age class a leveling out of mortality and212
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then an increase of mortality with increasing age (also see Chen and Watanabe 1989). This213

suggests that we replace constant natural mortality by a function of size and age, as in214

M(l, a) = m0 +
m1

l
+m2 · a (33)

where L(a) = l is length at age a and the parameters m0, m1 and m2 are to be determined. Such215

data, in which age and length are treated separately, do not exist to our knowledge. However,216

if length is a known function of age, then M(l, a) = M(l(a), a) = M(a) only. We take these as217

the means for the probability density Eqn 31 and assume that the same value of ν applies to218

the case of constant mortality or age dependent mortality.219

Given the distribution of age-dependent mortality, we follow a prescription similar to the220

one leading to Eqn 32 to develop survival to age functions that take size dependent natural221

mortality into account and these can be used in the age structured model.222

The Early Life History223

In almost all fishery population dynamics models, the early life history of the fish is treated224

separately from the later ages (the notion being that the von Bertalanffy parameter a0 captures225

the early life history). However, a biological interpretation of steepness requires that we consider226

the early life history in more detail. Suppose that a fish is recruited to the population dynamics227

model at mass W (0) after a juvenile period of dl days. We let wl(d) denote the wet mass of the228

larvae on day d.229

Assuming exponential growth during this phase (Kaji et al 1996, Shoji et al 2005) we have230

wl(d) = wl(0) · exp(kl · d) (34)

where kl is determined so that the individual grows from wl(0) to W (0) in dl days.231

To compute the expected mass that an egg contributes to future biomass, we need to find232

the survival during the period before being recruited to the population dynamics model. We233

use McGurk (1986) to characterize mortality. In particular, we let Ml(wd) denote the daily234
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mortality rate of an individual of dry mass wd. McGurk (1986, Eqn 7) reports that if If wd is235

less than wc = 0.00504 g then236

Ml(wd) = 2.2 · 10−4 · w−.85
d (35)

and otherwise (McGurk 1986, Eqn 2)237

Ml(wd) = 5.26 · 10−3 · w−.25
d (36)

Eqn 35 applies to fish eggs and larvae and Eqn 36 to juvenile fish (McGurk 1986, Figure 1). Fish238

eggs and larvae typically have a different hydration factor than juveniles. We use the general239

values reported by Kamler (1992) of a 65% hydration factor for eggs and larvae and 85% for240

juveniles and convert the crossing value of dry weight, wc to a wet weight value by assuming the241

weight wet crossing is 4.76 · wc (obtained by averaging the wet weights based on 65% or 85%242

hydration).243

Larval survival to day d, Sl(d)) (with Sl(0) = 1) is244

Sl(d) = Sl(d− 1) · exp(−Ml(wd)) (37)

Because survival may be a very small number, it is also useful to consider the accumulated245

mortality Ma(d) to day d. We have Ma(0) = 0 and246

Ma(d) = Ma(d− 1) +Ml(wd) (38)

Thus, we compute dry weight from wl(d− 1) and then use Eqn 35 or 36 as appropriate.247

Interpreting αp and αs248

We are now provide an interpretation of αp and αs. First consider αp. Note that249

αp(1− r)B
1 + β(1− r)B

= αp(1− r)B ·
1

1 + β(1− r)B
(39)

Thus αpB is the maximum rate at which biomass is added before density dependence acts and250

1
1+β(1−r)B is the fraction of that biomass which survives to increase the population.251
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To find αp, consider a female fish of age a, with mass W (a), length L(a), and probability of252

being mature pf,m(a). Suppose that E(W (a)) is the batch fecundity of this individual and sf is253

the spawning frequency. Each egg contributes W (0) · Sl(dl) to new biomass so that254

αp =
E(W (a)) ·W (0) · Sl(dl) · sf

W (a)
(40)

(In practice, since E(w) will be a typically large number and Sl(dl) a small number, it is wiser255

to compute their product as E(w) · Sl(dl) = exp(log(E(w)−Ma(dl))).256

In order to implement Eqn 40, we employ a simulation algorithm. Imagine K populations of257

simulated fish, with N female fish in each population. We denote the age of the nth fish in the258

kth population by an,k. It is found by choosing a uniformly distributed random variable Ũnk and259

then setting S̃(an,k) = Ũnk. For the case of constant mortality M , this equation is easily solved260

and we find an,k = − 1
M log(Ũnk). For the case of age-dependent natural mortality we first find261

the age j that makes
∑j
a=0M(a) < log(Ũnk) <

∑j+1
a=0M(a); an,k is then this age plus a linearly262

interpolated increment between the two years. When employing these algorithms, for the case of263

constant natural mortality, each population k experienced a different value of m, drawn from the264

gamma density in Eqn 31; for the case of age dependent mortality, each population expereinced265

a series of values of m0,m1, ...ma−1, drawn from age-specific gamma densities.266

Once we know the age of the fish, we know its length, weight, and probability of being267

mature. It is then possible to compute αp(n, k) from Eqn 40. The total biomass in population268

k is
∑N
n=1W (an,k) and the total reproduction is W (0) · Sl(dl) · sf

∑N
n=1 E(W (an,k)). Thus the269

estimate for αp in this population is270

α̃p(k) = W (0) · Sl(dl) · sf
∑N
n=1 E(W (an,k))∑N
n=1W (an,k)

(41)

which is a random variable because an,k is a random variable. Note that the units of αp are new271

biomass per spawning biomass while those of αs are new individuals per spawning biomass. Thus272

with W (0) removed, Eqn 40 gives us an estimate αs and with W (0) removed, Eqn 41 provides273

an estimate of α̃s(k). Note that the sex ratio would appear in both numerator and denominator274

of Eqn 41, thus cancelling, so that we can think of the simulation as drawing only female fish.275
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Eqns 13 and 43 (or Eqn 26 and the modification of Eqn 43 for the age structured model)276

allow us to generate a frequency distribution for steepness based on the K populations (we use277

K = 200 for computation) of N fish (we also use N = 200 for computations). To create the278

frequency distribution, we discretize values of steepness between 0.2 and 1.0 in increments of279

0.013. Repeating the process summarized in Eqns 13 or 26, and 41 multiple times allows us280

to obtain multiple versions of the frequency distribution for steepness. Since steepness ranges281

between 0.2 and 1, it is natural to fit the frequency distribution of steepness to a transformed282

beta density (Mangel 2006). To do this, we introduce the variable y = 1.25 · h − 0.25 which283

ranges from 0 to 1 as steepness ranges from 0.2 to 1.0. Thinking of steepness now as a random284

variable, h̃, the transformed variable also becomes one ỹ and285

E[ỹ] = 1.25 · E[h̃]− 0.25 (42)

V ar[ỹ] = 1.5625 · V ar[h̃] (43)

If ỹ follows a beta density with parameters aβ, bβ, so that its probability density is286

fβ(y) = Γ(aβ+bβ)
Γ(aβ)Γ(bβ)y

aβ−1(1−y)bβ−1, and if we introduce the parametriizations (Dorazio and Royle287

2003) µβ = aβ
aβ+bβ

and τβ = aβ + bβ then288

E[ỹ] = µβ (44)

V ar[ỹ] =
µβ · (1− µβ)

τβ + 1
(45)

We thus obtain numerical values for µβ and τβ from Eqns 42-45 and then determine the values289

of the beta density from aβ = τβ · µβ and bβ = τβ · (1− µβ).290

An Example With Bluefin Tuna291

To illustrate our ideas, we use the parameters reported in Bayliff (1994) for northern bluefin292

tuna. Bayliff (1994) estimates natural mortality to have mean value M = 0.276 and that the 90%293

confidence interval for mortality is [0.16,0.471]. Anonymous (2008) give age dependent mortality294
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M(a) for bluefin tuna: M(0) = 1.6,M(1) = 0.46,M(2) = 0.27,M(3) = 0.2 and M(a) = 0.12 for295

a ≥ 4.296

We use von Bertanalffy growth (Eqn 30) with the paramaters that Bayliff (1994) cites from297

Yukinawa and Yabuta (1967): L∞ = 320.5 cm, k = .1035 yr−1, and a0 = -0.7034 yr. We assume298

the length weight allometry W (a) =.001 L(a)2.4. These values produce a fish that is about 215299

cm and 400 kg at age 10 (see results for more details). We assume that the probability that a300

fish is mature at age a is301

pm(a) =
e
a−a50
σm

1 + e
a−a50
σm

(46)

where a50 is the age at which 50 percent of a cohort is mature. We choose a50=5.302

For the early life history, we use an initial egg wet mass of 0.00035 g, which corresponds to303

an egg radius of about 0.5 mm and assumes neutral buoyancy at 25o C and assume 256 days304

[corresponding to the value of a0] to W (0)=1.76 kg. For spawning information, we use Chen et305

al (2006). Batch fecundity at length L is306

E(L(a)) = 3.24 · 105 · L− 5.21 · 107 (47)

Spawning frequency is every 3.3 days during the spawning season, which is 6 weeks from late307

April to mid-June.308

Results309

Using Bayliff’s (1994) data, we find that ν = 9.7 for the probability density in Eqn 31. The310

resulting probability density (Figure 1a) is peaked close to the mean and relatively symmetric,311

although there is a somewhat wider right hand tail. There is noticeable variation in survival312

determined by Eqn 32 (Figure 1b) and especially at the oldest ages where we expect fish to be313

the biggest and most productive (Figure 1c). When we do the same assuming age dependent314

mortality, we generate a series of probability densities for mortality rate (Figure 1d) which then315
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show more variation in survival (Figures 1e,f). For the von Bertlanffy growth parameters given316

above, length at age is nearly a linear function as Bayliff (1994) noted, and the inflection point317

in mass at age occurs very early in the life of a tuna. The probability that an individual is318

mature ranges from about 20% at age 4 to nearly 100% at age 8.319

In Figure 2, we show the probability distributions obtained for 2oo replicate runs of our320

method using the production model (panel a) or the age structured model (panel b). The321

production model shows a relatively tight distribution and an excellent fitted beta density, with322

a peak around h = 0.85 and all of the probability in about 0.8 ≤ h ≤ 0.92. The situation changes323

noticeably when he age-structured model is used. Now, nearly the entire range of steepness is324

possible and the fitted beta density, while generally doing well, misses the peak.325

Discussion326

In this paper, we have shown how to formulate steepness for a production model (Eqn 13) such327

as might be used in the management of data-poor fisheries and for an age-structured model328

(Eqn 26) for a fishery that is richer in data. We have also shown (Eqns 27-29) how the two329

formulations are connected by making simplifying assumptions about the age structure. For data330

poor fisheries, in the absence of an empirical estimate of the natural mortality rate, the value331

for the mean of natural mortality rate for could be obtained estimated from basic life history332

information like the age of maturity (am) and the growth coefficient (k) assuming Beverton-Holt333

life history invariants (Jensen 1996, Mangel 2006, Mangel et al 2007).334

By assuming that annual mortality is a random variable with a gamma density, we have335

been able to derive our main result – a prior for steepness that can be fit with a transformed336

beta density (Figure 2). Clearly fluctuations in annual mortality is only one source of variation.337

Our results are conditioned, on asymptotic size L∞, growth rate k , and the mortality rate in338

the early life history. A fuller analysis would construct prior distributions on each of these,339

using the kind of data described in the On-Line Appendix, to thus construct an even fuller340
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probability distribution for steepness. He et al (2006) used an evolutionary persistence principle341

for a production model as a means of constructing a prior for steepness and showed that low342

values of steepness are unlikely because of the low probability that a population with such low343

values can persistence in the face of recruitment fluctuations. Our result for the production344

model could be combined with that of He et al (2006), which requires an assumption about the345

rate of natural mortality, but only in a qualitative way since He et al (2006) did not assume346

fluctuations in the rate of natural mortality.347

Perhaps most importantly, Eqns 20 and 26 (and 53) show that as soon as we are able to348

develop a demographic model for the survival and reproduction of a cohort (Eqn 20) we are349

able to obtain a point estimate for steepness (Eqn 26 or 53). That is, an important message350

is that steepness is endogenous to the demography of the stock; it cannot be chosen arbitrarily351

This point is buried in other work on steepness, but needs to be made explicit: demographic352

information about the fate of a cohort also tells us about the reproductive resilience of the353

population.354

This is of more than academic or theoretical interest. Many fish stocks are managed on the355

basis of reduction in Spawning Per Recruit (SPR). That is, if we define Lifetime Egg Production356

when fishing mortality is F as LPR(F ) then357

SPR(F ) =
LEP (F )
LEP (0)

=
∑amax
a=0 e−

∑a−1

a‘=0
(M(a)+F (a))Wf (a)pf,m(a)∑amax

a=0 e−
∑a−1

a‘=0
M(a)Wf (a)pf,m(a)

(48)

where F (a) is the product of F and a measure of selectivity of the fishery for individuals of age358

a. The typical management strategy is to choose Fx% so that SPR(Fx%) = x/100 but such359

management has often had to be readjusted to be more conservative (ie to increase x because360

of declines of stocks). Note that Eqn 48 includes all of the information needed to obtain a point361

estimate for steepness, so we are thus able to ask if the SPR chosen for management is consistent362

with the reproductive resilience implied by the steepness. Most importantly, assuming steepness363

h = 1 to assess intensively exploited resources is not a good idea and cannot be consistent364

with the demographic information. Using yield-based biological reference points that implicitly365
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assume a steepness of h = 1, e.g., FMAX or F0.1 is also a bad idea.366

The structured model can clearly be extended to species that change sex, e.g., protogynous367

hermaphrodites such as the Hawaiian grouper Hapuùpuù (Epinephelus quernus), California368

sheephead (Semicossyphus pulcher (Ayres, 1854)), black sea bass (Centropristis striata (Lin-369

naeus, 1758)), gag grouper (Mycteroperca microlepis (Goode and Bean, 1879)), or red grouper370

(Epinephelus morio (Valenciennes, 1828)) by adjustment of the population dynamics and ma-371

turity schedule (Alonzo and Mangel 2004, 2005; Alonzo et al 2008). Both the production and372

structured model can be extended to account for changes in steepness due to fluctuating environ-373

mental regimes, such as the California Current System – and Eqns 13 and 26 provide direction374

on what variables should be measured. As described in the Appendix, our approach immedi-375

ately extends to species that may exhibit overcompensatory stock-recruitment dynamics, such376

as Dungeness crab (Cancer magister).377

For the example of bluefin tuna that we considered, the results are consistent with the378

expectation that steepness is relatively high for this stock and that environmental forcing is379

an important determinant of recruitment strength. Such environmental forcing can be built380

into the early life history through fluctuations in mortality rate and into productivity through381

fluctuations in egg production. There is much more to be done by taking a biological rather382

than statistical view of steepness.383
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Appendix: The Over-compensatory Recruitment Function390

In this Appendix, we derive the analogue of Eqn 26 for the case of an over-compensatory391

recruitment function. That is, we replace Eqn 14 by392

N(0, t) = αsBs(t)e−βBs(t) (49)

where Bs(t) is still given by Eqn 15 and the age dependent dynamics in Eqn 16 apply. Note393

that we could generalize even further (but will not do so) by writing394

N(0, t) = αsBs(t)fd(Bs(t), β) (50)

where fd(z, β) characterizes the nature of the density dependence and is a decreasing function395

of z and β.396

In the steady state, we have397

R0 = αsB0e
−βB0 (51)

and where B0 is still given by Eqn 19. We solve Eqn 51 for βB0; noting that B0 = (1− r)R0W f398

allows us to cancel R0 from both sides and obtain399

βB0 = log(αs(1− r)W f ) (52)

Steepness is now400

h =
αs(1− r)0.2B−0.2βB0

0

αs(1− r)B0e−βB0
= 0.2e0.8βB0 (53)

Substituting Eqn 52 into the final term on the right hand side of Eqn 53 we obtain401

h = 0.2(αs(1− r)W f )0.8 (54)

Note that now steepness no longer ranges from 0.2 to 1, but rather from 0.2 to ∞; which was402

noted by Steve Munch in conversation with one of us (MM) many years ago. This can be403

understood as follows. The function be−βb is maximized at b∗ = 1
β , so that for values of B0 > b∗,404

R0 declines. A large value of B0 may thus imply a small value of recruitment, and reducing the405
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stock to 20% of that value may increase recruitment by many multiples of the value at B0. This406

is a small, but perhaps under-appreciated point.407

For the more theoretically inclined reader, we note that if we use Eqn 50, then steepness is408

h = 0.2αs(1− r)W ff
(
0.2f−1(

1
αs(1− r)W f

)
)

(55)

where f−1 is the inverse function of the density dependent term on the right hand side of Eqn409

50, ie f(f−1(x)) = f−1(f(x)) = x.410
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Captions for Figures504

Figure 1 a) The gamma frequency distribution f(m) for constant natural mortality estimated505

from Eqn XXX and b,c) sample survival trajectories created by assuming annual mortality is506

drawn from that distribution on a yearly basis. d) If we assume age dependent mortality with507

the same coefficient of variation as that used in panel a), then there is a family of probability dis-508

tributions for the rate of mortality, depending upon age a and this introduces more variability in509

survival to age (panels e,f). Regardless of whether we use constant or age dependent mortalities,510

the consequence is variation in survival, which will then feed into variation in steepness.511

Figure 2. We used Eqn 41 to simulate 200 times, 200 populations, each with 200 fish. From512

that we can construct an empirical frequency distribution, for which we show the mean (solid513

line) and standard deviation (error bars) and then estimate the parameters for a beta density514

(Eqns 42-45). In panel a) we show the results for the production model and in panel b) the515

results for the age-structured model.516
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