The Reproductive Biology of Steepness, A Fundamental Metric of Population Dynamics and Strategic Fisheries Management

Marc Mangel (1), Jon Brodziak (2), and Gerald DiNardo (2) (1) Center for Stock Assessment Research and Department of Applied Mathematics and Statistics, University of California, Santa Cruz, CA 95064; (2) Pacific Islands Fishery Science Center, Honolulu, HI

Abstract

The relationship between the biomass of reproductively mature individuals (spawing stock) and the resulting offspring added to the population (recruitment), the stock recruitment relationship, is a fundamental and challenging problem in all of population biology. The steepness of this relationship is the fraction of unfished recruitment obtained when the spawning stock biomass is 20% of its unfished level. Since its introduction about 20 years ago, steepness has become widely used in fishery management, where it is usually treated as a statistical quantity. Here, we investigate the reproductive biology of steepness, using both unstructured (biomass) and age-structured models. We show that if one has sufficient information to construct a density independent population model (maximum per capita productivity and natural mortality for
the unstructured case or maximum per capita productivity, natural mortality and schedules of size and maturity at age for the structured model) then one can construct a point estimate for steepness. Thus, minimal information about the demography of a cohort leads to inferences about steepness, which cannot be chosen arbitrarily. If one assumes that individual survival fluctuates within populations, then it is possible to construct a prior distribution for steepness from this same minimal demographic information. We develop the ideas for both compensatory (Beverton-Holt) and over-compensatory (Ricker) stock-recruitment relationships. We illustrate our ideas with an example concerning bluefin tuna.

Introduction

Understanding the relationship between the biomass of reproductively mature individuals (spawing stock) and the resulting offspring added to the population (recruitment), the stock recruitment relationship, is a fundamental and challenging problem in all of population biology. For example, strategic fisheries management requires estimates of biological reference points that often critically depend upon the nature of the stock-recruitment relationship (Brodziak 2002). The Beverton-Holt stock recruitment relationship (Beverton and Holt 1957/1993) is widely used in stock assessments of marine fishery resources and is an important feature of several modeling packages that are used for stock assessments. The recovery of threatened or endangered populations is in large part determined by the resilience of reproduction. In some assessments of Pacific tuna and billfish stocks, the available data are insufficient to directly estimate spawner recruitment relationship. In such cases (and others, e.g. Pacific rockfish Sebastes spp) it has become common practice to use the steepness of the stock recruitment relationship in lieu of the entire relationship.

Steepness was introduced by Mace and Doonan (1988), who defined it as the fraction of unfished recruitment $\left(R_{0}\right)$ when the spawning stock biomass is 20% of its unfished level $\left(B_{0}\right)$. They assumed that production follows a Beverton-Holt stock recruitment relationship so that when spawning biomass is B the resulting recruitment $R(B)$ is

$$
\begin{equation*}
R(B)=\frac{B}{\alpha+\beta B} \tag{1}
\end{equation*}
$$

where α and β are parameters. In the form of Eqn 1 these parameters have clear, if somewhat unnatural interpretations. That is $\frac{1}{\alpha}$ is the maximum per capita production of recruits (i.e., the limit of $R(B) B$ for small B) and $R(B)$ approaches $\frac{1}{\beta}$ as B increases.

If B_{0} and R_{0} denote the unfished spawning biomass and recruitment at that spawning biomass and h denotes steepness (Mace and Doonan (1988) use Δ) then

$$
\begin{equation*}
R_{0}=\frac{B_{0}}{\alpha+\beta B_{0}} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
h R_{0}=\frac{0.2 B_{0}}{\alpha+0.2 \beta B_{0}} \tag{3}
\end{equation*}
$$

which can be used to relate α and β to steepness

$$
\begin{array}{r}
\alpha=\frac{B_{0}}{R_{0}} \frac{1-h}{4 h} \\
\beta=\frac{5 h-1}{4 h R_{0}} \tag{5}
\end{array}
$$

In the intervening years, a tradition has developed in which one estimates the parameters of the unfished stock (B_{0} and R_{0}) and specifies the steepness, after which the parameters in Eqn 1 can be determined from Eqns 4 and 5. In many cases, particularly data poor situations, it is common to use plausible values of steepness in the absence of alternative information. This is an implicit Bayesian approach, even if it is not acknowledged as such.

In other cases, when one assumes that recruitment is mainly determined by the environment, h is often set equal to 1 . For example, Aires-da-Silva and Maunder (2007), who use a BervertonHolt stock recruitment relationship in the stock assessment of bigeye tuna, write "In practice, it is often difficult to estimate steepness because of a lack of contrast in spawning biomass and because there are other factors (e.g. environmental influences) that can cause recruitment to be extremely variable. For the current assessment, recruitment is assumed to be independent of stock size (steepness $=1$). There is no evidence that recruitment is related to spawning stock size for bigeye in the EPO [Eastern Pacific Ocean] and, if steepness is estimated as a free parameter, it is estimated to be close to 1 . We also present a sensitivity analysis with steepness= $0.5 "$ (pg 111). Maunder (2007) makes the same assumption in the stock assessment for yellowfin tuna (pg 9), conducts a sensitvity analysis when $h=0.75$, and reports that best estimate when treating steepness as a free parameter is $h=0.54$. Clearly, there is a need to understand the biology of steepness.

Determining the probable value of steepness for marine species is a very important research topic. Stock-recruitment steepness is intrinsically related to the resilience of a species to harvesting and effectively determines the average productivity of fishery resources within a stationary
environmental regime. The topic of estimating steepness has been addressed through metaanalyses of stockrecruitment data for several species and taxa (Myers et al. 1999). For example, Meyers et al (1999) estimated a family level median steepness for the scombrids (using data on Atlantic bluefin tuna, bigeye tuna, chub mackerel, Atlantic mackerel, southern bluefin tuna, and yellowfin tuna) at 0.52 with 20 and 80 percentiles 0.30 and 0.72 respectively; their median estimate for swordfish Xiphias gladius was 0.88.Although the Myers et al. paper was considered by many to be a breakthrough, the statistical approach was limited to commercially-exploited species for which there were sufficient data to conduct an assessment. Such species represent a modest fraction of the potential fishery resources worldwide. Thus, while Myers et al. (1999) provided a useful empirical basis for developing an informative prior belief about the steepness of some species for analyzing population dynamics, many other species were not considered and indeed could not be considered if the analyses were repeated today. Dorn (2002) developed a hierarchical Bayesian method for advice on harvest rates for west coast rockfish for which he constructed a prior for steepness and Munch et al (2005) show how to find a posterior distribution for steepness using Bayesian nonparametric methods. He et al (2006) use a stochastic simulation to construction a prior for steepness based on long-term persistence of the stock.

At the end of the day, however, steepness itself must be firmly rooted in the evolutionary ecology of the species and reproductive biology of a stock must surely be important for its management (Morgan 2008). More problematic, however, was the lack of an explanatory theory to predict steepness based on the evolutionary ecology and associated life history parameters of a species, information which is more readily available and less expensive to generate than assessment data (there are other concerns with the meta-analyses, lack of representativeness of the selected stocks, bias towards temperate fishes, lack of independence of stock response to the impact of environmental variation on recruitment). This paper provides a new look at the evolutionary ecology of steepness and its theoretical basis. A practical framework for estimating the probable value of steepness is developed based on life history parameters.

We use scombrids to illustrate the framework for estimating the probable value of steepness because they are commercially-valuable, highly productive, and intensively-exploited fishery resources for which steepness is often assumed to be unity in stock assessments. This assumption implies an ecologically optimistic compensatory response in the stock-recruitment dynamics at low fish stock sizes and can lead to unrealistic expectations about stock resilience at high harvest rates.

In the next section, we begin with the production model, for which one is required to know maximum per capita productivity and natural mortality to be able to construct steepness. We then consider the age-structured model, for which one additionally needs to know the schedule of size and maturity as a function of age. We show the conditions under which the age-structured result collapses to the production model. We then discuss sources of stochasticity and uncertainty, focussing on variation in mortality rates. We use a Monte Carlo simulation to estimate maximum productivity from early life history (egg to recruited) stages. We illustrate our analysis using data on bluefin tuna and, in the On-Line Appendix provide data on a variety of other scombrids. We construct priors for steepness based on reproductive biology and then fit these to transformed beta-densities. Finally, we discuss extensions of the method.

Methods

Although biomass production models are currently out of favor among many fisheries scientists, we begin with such a model and then introduce the more commonly used age structured model and show how steepness in the two models is related.

The Production Model

We work with a biomass production model, very much in the spirit of MacCall (2002). We let $B(t)$ denote the total biomass at time t and assume that the fraction of males at birth is r, so that spawning (i.e. female) biomass at any time is $(1-r) B(t)$. If M is the rate of natural
mortality and F is the rate of fishing mortality then the dynamics of biomass are

$$
\begin{equation*}
\frac{d B}{d t}=\frac{\alpha_{p}(1-r) B}{1+\beta(1-r) B}-(M+F) B \tag{6}
\end{equation*}
$$

where α_{p} is subscripted to note production and has units of new biomass per existing spawning biomass per time, so that it is a rate, comparale to the rate of natural mortality M or of fishing mortality F. Clearly, if we were just interested statistical estimation of parameters, rather than a more complete biological interpretation, $1-r$ could be folded α_{p} and β. However, by keeping $1-r$ out of the parameters, we are explicitly able to connect total biomass with spawning (female) biomass.

The steady state biomass at fishing mortality rate F is

$$
\begin{equation*}
\bar{B}(F)=\frac{1}{\beta(1-r)}\left(\frac{\alpha_{p}(1-r)}{M+F}-1\right) \tag{7}
\end{equation*}
$$

so that

$$
\begin{equation*}
B_{0}=\frac{1}{\beta(1-r)}\left(\frac{\alpha_{p}(1-r)}{M}-1\right) \tag{8}
\end{equation*}
$$

We thus see that existence of a steady state requires that the dimensionless variable $\frac{\alpha_{p}(1-r)}{M}>1$ and that density dependence scales the overall size of the steady state. Thus, this parametrization in some sense separates the roles of α and β in determining B_{0}. The separation becomes even clearer when we consider steepness.

According to its definition, steepness is

$$
\begin{equation*}
h=\frac{\frac{0.2 \alpha_{p}(1-r) B_{0}}{1+0.2 \beta(1-r) B_{0}}}{\frac{\alpha_{p}(1-r) B_{0}}{1+\beta(1-r) B_{0}}} \tag{9}
\end{equation*}
$$

from which we obtain

$$
\begin{equation*}
h=0.2 \cdot \frac{1+\beta(1-r) B_{0}}{1+0.2 \beta(1-r) B_{0}} \tag{10}
\end{equation*}
$$

However, in light of Eqn 8

$$
\begin{equation*}
\beta(1-r) B_{0}=\left[\frac{\alpha_{p}(1-r)}{M}-1\right] \tag{11}
\end{equation*}
$$

so that we find

$$
\begin{equation*}
h=\frac{\alpha_{p}(1-r)}{4 M+\alpha_{p}(1-r)} \tag{12}
\end{equation*}
$$

which can also be rewritten as

$$
\begin{equation*}
h=\frac{\frac{\alpha_{p}(1-r)}{M}}{4+\frac{\alpha_{p}(1-r)}{M}} \tag{13}
\end{equation*}
$$

Note that as $\alpha_{p} \rightarrow \infty, h \uparrow 1$ and as $\alpha_{p}(1-r) \downarrow M, h \downarrow 0.2$, as they must. This equation was derived by Myers et al (1999) using a discrete-time Ricker model and without considering sex ratio. As will be seen, the continuous time production and discrete time age structured models are deeply interconnected.

The Age Structured Model

In a standard age-structured model with Beverton-Holt recruitment, $N(a, t)$ denotes the number of individuals of age a alive at time t. For the recruited class

$$
\begin{equation*}
N(0, t)=\frac{\alpha_{s} B_{s}(t)}{1+\beta B_{s}(t)} \tag{14}
\end{equation*}
$$

where $B_{s}(t)$ is the spawning biomass at time t and α_{s} has units of new individuals/spawning biomass and is subscripted with s to denote that this is a structured model. The spawning biomass is

$$
\begin{equation*}
B_{s}(t)=(1-r) \sum_{a=1}^{a_{\max }} N(a, t) W_{f}(a) p_{f, m}(a) \tag{15}
\end{equation*}
$$

where $W_{f}(a)$ is the mass of a female at age a and $p_{f, m}$ is the probability that a female of age a is mature and $a_{\max }$ is the maximum age that an individual can attain (with suitable modification of the dynamics of the last age class, we can incorporate a 'plus' group into this formulation).

For ages $a>0$ we have

$$
\begin{equation*}
N(a, t)=N(a-1, t-1) e^{-Z(a-1)} \tag{16}
\end{equation*}
$$

where $Z(a-1)$ is the total mortality at age $a-1$, given by the sum of natural mortality $M(a-1)$ and fishing mortality $F(a-1)$ at age. Since neither of the mortality rates depend upon time the population will reach a steady state and a stable age distribution.

We let B_{0} and R_{0} the values of spawning biomass and associated recruitment in this steady state and in the absence of fishing and $\bar{N}(a)$ the number of individuals of age a in this steady state so that

$$
\begin{equation*}
\bar{N}(a)=S(a) \cdot R_{0} \tag{17}
\end{equation*}
$$

where $S(a)$ is survival from age 0 to age a, i.e. $S(a)=\prod_{i=0}^{a-1} e^{-M(i)}$. In the steady state, Eqn 14 becomes

$$
\begin{equation*}
R_{0}=\frac{\alpha_{s} B_{0}}{1+\beta B_{0}} \tag{18}
\end{equation*}
$$

and where

$$
\begin{equation*}
B_{0}=(1-r) \sum_{a=1}^{a_{\max }} \bar{N}(a) W_{f}(a) p_{f, m}(a) \tag{19}
\end{equation*}
$$

We now define

$$
\begin{equation*}
\bar{W}_{f}=\sum_{a=1}^{a_{\max }} S(a) W_{f}(a) p_{f, m}(a) \tag{20}
\end{equation*}
$$

which has the interpretation of the expected surviving mature biomass per recruit. Since $\bar{N}(a)=$ $S(a) R_{0}$ and $B_{0}=(1-r) R_{0} \bar{W}_{f}$ we have

$$
\begin{equation*}
R_{0}=\frac{\alpha_{s} \cdot(1-r) R_{0} \bar{W}_{f}}{1+\beta \cdot R_{0} \bar{W}_{f}} \tag{21}
\end{equation*}
$$

which can be seen as an equation for R_{0}. In particular, we have

$$
\begin{equation*}
\beta(1-r) R_{0} \bar{W}_{f}=\alpha_{s}(1-r) \bar{W}_{f}-1 . \tag{22}
\end{equation*}
$$

When spawning stock biomass is 20% of B_{0} the recruitment is

$$
\begin{equation*}
R=\frac{\alpha_{s}(1-r) \cdot 0.2 R_{0} \bar{W}_{f}}{1+\beta(1-r) \cdot 0.2 R_{0} \bar{W}_{f}} \tag{23}
\end{equation*}
$$

and in analogy to Eqns 12, 13 steepness is

$$
\begin{equation*}
h=\frac{\frac{\alpha_{s} \cdot 0.2(1-r) R_{0} \bar{W}_{f}}{1+\beta \cdot 0.2(1-r) R_{0} \bar{W}_{f}}}{R_{0}} \tag{24}
\end{equation*}
$$

so that

$$
\begin{equation*}
h=\frac{0.2 \alpha_{s}(1-r) \bar{W}_{f}}{1+0.2 \beta(1-r) R_{0} \bar{W}_{f}} \tag{25}
\end{equation*}
$$

and in light of Eqn 22

$$
\begin{equation*}
h=\frac{0.2 \alpha_{s}(1-r) \bar{W}_{f}}{1+0.2\left[\alpha_{s}(1-r) \bar{W}_{f}-1\right]}=\frac{\alpha_{s}(1-r) \bar{W}_{f}}{4+\alpha_{s}(1-r) \bar{W}_{f}} \tag{26}
\end{equation*}
$$

This equation generalizes Eqn 5 and following of Myers et al (1999).
To connect Eqns 13 and 26 note that the production model requires that $M(a)$ is a constant (M). Then

$$
\begin{equation*}
S(a)=e^{-M a} \tag{27}
\end{equation*}
$$

In addition, the production model cannot have age structure, let us assume that we can replace $W_{f}(a) p_{f, m}(a)$ in Eqn 20 by a constant, say $\bar{W}_{f, m}$, interpreted as the average biomass of a spawning female. With this assumption we can rewrite Eqn 20 as

$$
\begin{equation*}
\bar{W}_{f}=\sum_{a=1}^{a_{\max }} e^{-M a} \bar{W}_{f, m}=\bar{W}_{f, m} \frac{1-e^{-M a_{\max }}}{1-e^{-M}} \tag{28}
\end{equation*}
$$

If $a_{\max }$ is sufficiently large then the numerator in the last expression in Eqn 28 is approximately 1. If M is not too large, then we can Taylor expand the denominator as $1-e^{-M} \approx M$. Thus $\bar{W}_{f} \approx \frac{\bar{W}_{f, m}}{M}$ and Eqn 26 becomes

$$
\begin{equation*}
h=\frac{\alpha_{s}(1-r) \frac{\bar{W}_{f, m}}{M}}{4+\alpha_{s}(1-r) \frac{\bar{W}_{f, m}}{M}} \tag{29}
\end{equation*}
$$

By defining $\alpha_{p}=\alpha_{s} \bar{W}_{f, m}$ Eqns 13 and 29 are the same.
For completeness, in the Appendix we derive the analogue of Eqn 26 for the case of an over-compensatory recruitment function.

Accounting for Uncertainty and Stochasticity

Eqns 13 and 26 involve the quantities $\alpha_{p}, M, r, \alpha_{s}$ and \bar{W}_{f}. We assume that $W(a)$ is the result of a model based on von Bertalanffy growth in length so that $W(a)=c_{1} \cdot L(a)^{c_{2}}$ where c_{1} and c_{2} are constants and where

$$
\begin{equation*}
L(a)=L_{\infty}\left(1-e^{-k\left(a-a_{0}\right)}\right) \tag{30}
\end{equation*}
$$

where L_{∞} is asymptotic size, k is the growth rate, and a_{0} is the (theoretical) age at which size is 0 or is a parameter that allows us to account for the initial condition $L(0)=l_{0}$. It is possible to associate probability distributions with both asymptotic size and growth rate (e.g. Siegfried and Sanso 2006) from single set of data or to conduct a meta-analysis on published growth curves (see the On-line Appendix for examples of those).

Uncertainty in M for the production model or $M(a)$ for the age structured model will lead to stochasticity in survival trajectories and we focus on such uncertainty here, postponing for the future including distributions on life history parameters.

First consider the production model. If M were known with certainty then survival to age a is given by Eqn 27. To characterize variation in the rate of natural mortality, we use the gamma density (Mangel 2006) so that

$$
\begin{equation*}
\operatorname{Pr}[m \leq M \leq m+d m]=f(m) d m+o(d m)=\frac{\lambda^{\nu}}{\Gamma(\nu)} e^{-\lambda m} m^{\nu-1} d m+o(d m) \tag{31}
\end{equation*}
$$

where $o(d m)$ denotes terms that are higher order powers of $d m$ (ie $d m^{2}$ etc). In this formulation the expected value of M is $E(M)=\bar{M}=\frac{\nu}{\lambda}$ and the coefficient of variation is $C V(M)=\frac{1}{\sqrt{\nu}}$.

Given that M has a probability distribution, imagine drawing a sequence $m_{0}, m_{1},, m_{2}, m_{3}, \ldots, m_{a-1}$ from the gamma density given by Eqn 31. From those, we can construct a random variable $\tilde{S}(a)$ for survival to age a according to

$$
\begin{equation*}
\tilde{S}(a)=\prod_{i=0}^{a-1} e^{-m_{i}} \tag{32}
\end{equation*}
$$

In this way we can generate a family of survival trajectories that account for the uncertainty in natural mortality, and also allow for individuals experiencing differences in natural mortality at age.

Although the assumption of a constant rate of natural mortality is commonly used in stock assessments, it cannot apply across the range of a fish's life - where individuals may be prey when young and predators when older. When such data are available, they should be used. For example, for yellowfin and bigeye tuna Hampton (2000) shows classical trajectories of mortality as a function of age: a rapid decline from the youngest age class a leveling out of mortality and
then an increase of mortality with increasing age (also see Chen and Watanabe 1989). This suggests that we replace constant natural mortality by a function of size and age, as in

$$
\begin{equation*}
M(l, a)=m_{0}+\frac{m_{1}}{l}+m_{2} \cdot a \tag{33}
\end{equation*}
$$

where $L(a)=l$ is length at age a and the parameters m_{0}, m_{1} and m_{2} are to be determined. Such data, in which age and length are treated separately, do not exist to our knowledge. However, if length is a known function of age, then $M(l, a)=M(l(a), a)=M(a)$ only. We take these as the means for the probability density Eqn 31 and assume that the same value of ν applies to the case of constant mortality or age dependent mortality.

Given the distribution of age-dependent mortality, we follow a prescription similar to the one leading to Eqn 32 to develop survival to age functions that take size dependent natural mortality into account and these can be used in the age structured model.

The Early Life History

In almost all fishery population dynamics models, the early life history of the fish is treated separately from the later ages (the notion being that the von Bertalanffy parameter a_{0} captures the early life history). However, a biological interpretation of steepness requires that we consider the early life history in more detail. Suppose that a fish is recruited to the population dynamics model at mass $W(0)$ after a juvenile period of d_{l} days. We let $w_{l}(d)$ denote the wet mass of the larvae on day d.

Assuming exponential growth during this phase (Kaji et al 1996, Shoji et al 2005) we have

$$
\begin{equation*}
w_{l}(d)=w_{l}(0) \cdot \exp \left(k_{l} \cdot d\right) \tag{34}
\end{equation*}
$$

where k_{l} is determined so that the individual grows from $w_{l}(0)$ to $W(0)$ in d_{l} days.
To compute the expected mass that an egg contributes to future biomass, we need to find the survival during the period before being recruited to the population dynamics model. We use McGurk (1986) to characterize mortality. In particular, we let $M_{l}\left(w_{d}\right)$ denote the daily
mortality rate of an individual of dry mass w_{d}. McGurk (1986, Eqn 7) reports that if If w_{d} is less than $w_{c}=0.00504 g$ then

$$
\begin{equation*}
M_{l}\left(w_{d}\right)=2.2 \cdot 10^{-4} \cdot w_{d}^{-.85} \tag{35}
\end{equation*}
$$

and otherwise (McGurk 1986, Eqn 2)

$$
\begin{equation*}
M_{l}\left(w_{d}\right)=5.26 \cdot 10^{-3} \cdot w_{d}^{-.25} \tag{36}
\end{equation*}
$$

Eqn 35 applies to fish eggs and larvae and Eqn 36 to juvenile fish (McGurk 1986, Figure 1). Fish eggs and larvae typically have a different hydration factor than juveniles. We use the general values reported by Kamler (1992) of a 65% hydration factor for eggs and larvae and 85% for juveniles and convert the crossing value of dry weight, w_{c} to a wet weight value by assuming the weight wet crossing is $4.76 \cdot w_{c}$ (obtained by averaging the wet weights based on 65% or 85% hydration).

Larval survival to day $d, S_{l}(d)$) (with $S_{l}(0)=1$) is

$$
\begin{equation*}
S_{l}(d)=S_{l}(d-1) \cdot \exp \left(-M_{l}\left(w_{d}\right)\right) \tag{37}
\end{equation*}
$$

Because survival may be a very small number, it is also useful to consider the accumulated mortality $M_{a}(d)$ to day d. We have $M_{a}(0)=0$ and

$$
\begin{equation*}
M_{a}(d)=M_{a}(d-1)+M_{l}\left(w_{d}\right) \tag{38}
\end{equation*}
$$

Thus, we compute dry weight from $w_{l}(d-1)$ and then use Eqn 35 or 36 as appropriate.

Interpreting α_{p} and α_{s}

We are now provide an interpretation of α_{p} and α_{s}. First consider α_{p}. Note that

$$
\begin{equation*}
\frac{\alpha_{p}(1-r) B}{1+\beta(1-r) B}=\alpha_{p}(1-r) B \cdot \frac{1}{1+\beta(1-r) B} \tag{39}
\end{equation*}
$$

Thus $\alpha_{p} B$ is the maximum rate at which biomass is added before density dependence acts and $\frac{1}{1+\beta(1-r) B}$ is the fraction of that biomass which survives to increase the population.

To find α_{p}, consider a female fish of age a, with mass $W(a)$, length $L(a)$, and probability of being mature $p_{f, m}(a)$. Suppose that $\mathcal{E}(W(a))$ is the batch fecundity of this individual and s_{f} is the spawning frequency. Each egg contributes $W(0) \cdot S_{l}\left(d_{l}\right)$ to new biomass so that

$$
\begin{equation*}
\alpha_{p}=\frac{\mathcal{E}(W(a)) \cdot W(0) \cdot S_{l}\left(d_{l}\right) \cdot s_{f}}{W(a)} \tag{40}
\end{equation*}
$$

(In practice, $\operatorname{since} \mathcal{E}(w)$ will be a typically large number and $S_{l}\left(d_{l}\right)$ a small number, it is wiser to compute their product as $\mathcal{E}(w) \cdot S_{l}\left(d_{l}\right)=\exp \left(\log \left(\mathcal{E}(w)-M_{a}\left(d_{l}\right)\right)\right)$.

In order to implement Eqn 40, we employ a simulation algorithm. Imagine K populations of simulated fish, with N female fish in each population. We denote the age of the $n^{\text {th }}$ fish in the $k^{t h}$ population by $a_{n, k}$. It is found by choosing a uniformly distributed random variable $\tilde{U}_{n k}$ and then setting $\tilde{S}\left(a_{n, k}\right)=\tilde{U}_{n k}$. For the case of constant mortality M, this equation is easily solved and we find $a_{n, k}=-\frac{1}{M} \log \left(\tilde{U}_{n k}\right)$. For the case of age-dependent natural mortality we first find the age j that makes $\sum_{a=0}^{j} M(a)<\log \left(\tilde{U}_{n k}\right)<\sum_{a=0}^{j+1} M(a) ; a_{n, k}$ is then this age plus a linearly interpolated increment between the two years. When employing these algorithms, for the case of constant natural mortality, each population k experienced a different value of m, drawn from the gamma density in Eqn 31; for the case of age dependent mortality, each population expereinced a series of values of $m_{0}, m_{1}, \ldots m_{a-1}$, drawn from age-specific gamma densities.

Once we know the age of the fish, we know its length, weight, and probability of being mature. It is then possible to compute $\alpha_{p}(n, k)$ from Eqn 40. The total biomass in population k is $\sum_{n=1}^{N} W\left(a_{n, k}\right)$ and the total reproduction is $W(0) \cdot S_{l}\left(d_{l}\right) \cdot s_{f} \sum_{n=1}^{N} \mathcal{E}\left(W\left(a_{n, k}\right)\right)$. Thus the estimate for α_{p} in this population is

$$
\begin{equation*}
\tilde{\alpha_{p}}(k)=W(0) \cdot S_{l}\left(d_{l}\right) \cdot s_{f} \frac{\sum_{n=1}^{N} \mathcal{E}\left(W\left(a_{n, k}\right)\right)}{\sum_{n=1}^{N} W\left(a_{n, k}\right)} \tag{41}
\end{equation*}
$$

which is a random variable because $a_{n, k}$ is a random variable. Note that the units of α_{p} are new biomass per spawning biomass while those of α_{s} are new individuals per spawning biomass. Thus with $W(0)$ removed, Eqn 40 gives us an estimate α_{s} and with $W(0)$ removed, Eqn 41 provides an estimate of $\tilde{\alpha}_{s}(k)$. Note that the sex ratio would appear in both numerator and denominator of Eqn 41, thus cancelling, so that we can think of the simulation as drawing only female fish.

Eqns 13 and 43 (or Eqn 26 and the modification of Eqn 43 for the age structured model) allow us to generate a frequency distribution for steepness based on the K populations (we use $K=200$ for computation) of N fish (we also use $N=200$ for computations). To create the frequency distribution, we discretize values of steepness between 0.2 and 1.0 in increments of 0.013. Repeating the process summarized in Eqns 13 or 26, and 41 multiple times allows us to obtain multiple versions of the frequency distribution for steepness. Since steepness ranges between 0.2 and 1 , it is natural to fit the frequency distribution of steepness to a transformed beta density (Mangel 2006). To do this, we introduce the variable $y=1.25 \cdot h-0.25$ which ranges from 0 to 1 as steepness ranges from 0.2 to 1.0. Thinking of steepness now as a random variable, \tilde{h}, the transformed variable also becomes one \tilde{y} and

$$
\begin{align*}
& E[\tilde{y}]=1.25 \cdot E[\tilde{h}]-0.25 \tag{42}\\
& \operatorname{Var}[\tilde{y}]=1.5625 \cdot \operatorname{Var}[\tilde{h}] \tag{43}
\end{align*}
$$

If \tilde{y} follows a beta density with parameters a_{β}, b_{β}, so that its probability density is $f_{\beta}(y)=\frac{\Gamma\left(a_{\beta}+b_{\beta}\right)}{\Gamma\left(a_{\beta}\right) \Gamma\left(b_{\beta}\right)} y^{a_{\beta}-1}(1-y)^{b_{\beta}-1}$, and if we introduce the parametriizations (Dorazio and Royle 2003) $\mu_{\beta}=\frac{a_{\beta}}{a_{\beta}+b_{\beta}}$ and $\tau_{\beta}=a_{\beta}+b_{\beta}$ then

$$
\begin{array}{r}
E[\tilde{y}]=\mu_{\beta} \\
\operatorname{Var}[\tilde{y}]=\frac{\mu_{\beta} \cdot\left(1-\mu_{\beta}\right)}{\tau_{\beta}+1} \tag{45}
\end{array}
$$

We thus obtain numerical values for μ_{β} and τ_{β} from Eqns 42-45 and then determine the values of the beta density from $a_{\beta}=\tau_{\beta} \cdot \mu_{\beta}$ and $b_{\beta}=\tau_{\beta} \cdot\left(1-\mu_{\beta}\right)$.

An Example With Bluefin Tuna

To illustrate our ideas, we use the parameters reported in Bayliff (1994) for northern bluefin tuna. Bayliff (1994) estimates natural mortality to have mean value $\bar{M}=0.276$ and that the 90% confidence interval for mortality is [0.16,0.471]. Anonymous (2008) give age dependent mortality
$M(a)$ for bluefin tuna: $M(0)=1.6, M(1)=0.46, M(2)=0.27, M(3)=0.2$ and $M(a)=0.12$ for $a \geq 4$.

We use von Bertanalffy growth (Eqn 30) with the paramaters that Bayliff (1994) cites from Yukinawa and Yabuta (1967): $L_{\infty}=320.5 \mathrm{~cm}, k=.1035 \mathrm{yr}^{-1}$, and $a_{0}=-0.7034 \mathrm{yr}$. We assume the length weight allometry $W(a)=.001 L(a)^{2.4}$. These values produce a fish that is about 215 cm and 400 kg at age 10 (see results for more details). We assume that the probability that a fish is mature at age a is

$$
\begin{equation*}
p_{m}(a)=\frac{e^{\frac{a-a_{50}}{\sigma_{m}}}}{1+e^{\frac{a-a_{50}}{\sigma_{m}}}} \tag{46}
\end{equation*}
$$

where a_{50} is the age at which 50 percent of a cohort is mature. We choose $a_{50}=5$.
For the early life history, we use an initial egg wet mass of $0.00035 g$, which corresponds to an egg radius of about 0.5 mm and assumes neutral buoyancy at $25^{\circ} \mathrm{C}$ and assume 256 days [corresponding to the value of a_{0}] to $W(0)=1.76 \mathrm{~kg}$. For spawning information, we use Chen et al (2006). Batch fecundity at length L is

$$
\begin{equation*}
\mathcal{E}(L(a))=3.24 \cdot 10^{5} \cdot L-5.21 \cdot 10^{7} \tag{47}
\end{equation*}
$$

Spawning frequency is every 3.3 days during the spawning season, which is 6 weeks from late April to mid-June.

Results

Using Bayliff's (1994) data, we find that $\nu=9.7$ for the probability density in Eqn 31. The resulting probability density (Figure 1a) is peaked close to the mean and relatively symmetric, although there is a somewhat wider right hand tail. There is noticeable variation in survival determined by Eqn 32 (Figure 1b) and especially at the oldest ages where we expect fish to be the biggest and most productive (Figure 1c). When we do the same assuming age dependent mortality, we generate a series of probability densities for mortality rate (Figure 1d) which then
show more variation in survival (Figures 1e,f). For the von Bertlanffy growth parameters given above, length at age is nearly a linear function as Bayliff (1994) noted, and the inflection point in mass at age occurs very early in the life of a tuna. The probability that an individual is mature ranges from about 20% at age 4 to nearly 100% at age 8 .

In Figure 2, we show the probability distributions obtained for 2 oo replicate runs of our method using the production model (panel a) or the age structured model (panel b). The production model shows a relatively tight distribution and an excellent fitted beta density, with a peak around $h=0.85$ and all of the probability in about $0.8 \leq h \leq 0.92$. The situation changes noticeably when he age-structured model is used. Now, nearly the entire range of steepness is possible and the fitted beta density, while generally doing well, misses the peak.

Discussion

In this paper, we have shown how to formulate steepness for a production model (Eqn 13) such as might be used in the management of data-poor fisheries and for an age-structured model (Eqn 26) for a fishery that is richer in data. We have also shown (Eqns 27-29) how the two formulations are connected by making simplifying assumptions about the age structure. For data poor fisheries, in the absence of an empirical estimate of the natural mortality rate, the value for the mean of natural mortality rate for could be obtained estimated from basic life history information like the age of maturity $\left(a_{m}\right)$ and the growth coefficient (k) assuming Beverton-Holt life history invariants (Jensen 1996, Mangel 2006, Mangel et al 2007).

By assuming that annual mortality is a random variable with a gamma density, we have been able to derive our main result - a prior for steepness that can be fit with a transformed beta density (Figure 2). Clearly fluctuations in annual mortality is only one source of variation. Our results are conditioned, on asymptotic size L_{∞}, growth rate k, and the mortality rate in the early life history. A fuller analysis would construct prior distributions on each of these, using the kind of data described in the On-Line Appendix, to thus construct an even fuller
probability distribution for steepness. He et al (2006) used an evolutionary persistence principle for a production model as a means of constructing a prior for steepness and showed that low values of steepness are unlikely because of the low probability that a population with such low values can persistence in the face of recruitment fluctuations. Our result for the production model could be combined with that of He et al (2006), which requires an assumption about the rate of natural mortality, but only in a qualitative way since He et al (2006) did not assume fluctuations in the rate of natural mortality.

Perhaps most importantly, Eqns 20 and 26 (and 53) show that as soon as we are able to develop a demographic model for the survival and reproduction of a cohort (Eqn 20) we are able to obtain a point estimate for steepness (Eqn 26 or 53). That is, an important message is that steepness is endogenous to the demography of the stock; it cannot be chosen arbitrarily This point is buried in other work on steepness, but needs to be made explicit: demographic information about the fate of a cohort also tells us about the reproductive resilience of the population.

This is of more than academic or theoretical interest. Many fish stocks are managed on the basis of reduction in Spawning Per Recruit ($S P R$). That is, if we define Lifetime Egg Production when fishing mortality is F as $L P R(F)$ then

$$
\begin{equation*}
S P R(F)=\frac{L E P(F)}{L E P(0)}=\frac{\sum_{a=0}^{a_{\max }} e^{-\sum_{a^{\prime}=0}^{a-1}(M(a)+F(a))} W_{f}(a) p_{f, m}(a)}{\sum_{a=0}^{a_{\max }} e^{-\sum_{a^{\prime}=0}^{a-1} M(a)} W_{f}(a) p_{f, m}(a)} \tag{48}
\end{equation*}
$$

where $F(a)$ is the product of F and a measure of selectivity of the fishery for individuals of age a. The typical management strategy is to choose $F_{x \%}$ so that $S P R\left(F_{x \%}\right)=x / 100$ but such management has often had to be readjusted to be more conservative (ie to increase x because of declines of stocks). Note that Eqn 48 includes all of the information needed to obtain a point estimate for steepness, so we are thus able to ask if the $S P R$ chosen for management is consistent with the reproductive resilience implied by the steepness. Most importantly, assuming steepness $h=1$ to assess intensively exploited resources is not a good idea and cannot be consistent with the demographic information. Using yield-based biological reference points that implicitly
assume a steepness of $h=1$, e.g., $F_{M A X}$ or $F_{0.1}$ is also a bad idea.
The structured model can clearly be extended to species that change sex, e.g., protogynous hermaphrodites such as the Hawaiian grouper Hapuùpuù (Epinephelus quernus), California sheephead (Semicossyphus pulcher (Ayres, 1854)), black sea bass (Centropristis striata (Linnaeus, 1758)), gag grouper (Mycteroperca microlepis (Goode and Bean, 1879)), or red grouper (Epinephelus morio (Valenciennes, 1828)) by adjustment of the population dynamics and maturity schedule (Alonzo and Mangel 2004, 2005; Alonzo et al 2008). Both the production and structured model can be extended to account for changes in steepness due to fluctuating environmental regimes, such as the California Current System - and Eqns 13 and 26 provide direction on what variables should be measured. As described in the Appendix, our approach immediately extends to species that may exhibit overcompensatory stock-recruitment dynamics, such as Dungeness crab (Cancer magister).

For the example of bluefin tuna that we considered, the results are consistent with the expectation that steepness is relatively high for this stock and that environmental forcing is an important determinant of recruitment strength. Such environmental forcing can be built into the early life history through fluctuations in mortality rate and into productivity through fluctuations in egg production. There is much more to be done by taking a biological rather than statistical view of steepness.

Acknowledgments

This work was mainly supported by the Pacific Islands Fishery Science Center through grant XX to MRAG Americas. The final stages were supported by the Center for Stock Assessment Research, a partnership between the Southwest Fisheries Science Center Santa Cruz Laboratory and the University of California Santa Cruz. For comments on previous versions of the manuscript we thank...

Appendix: The Over-compensatory Recruitment Function

In this Appendix, we derive the analogue of Eqn 26 for the case of an over-compensatory recruitment function. That is, we replace Eqn 14 by

$$
\begin{equation*}
N(0, t)=\alpha_{s} B_{s}(t) e^{-\beta B_{s}(t)} \tag{49}
\end{equation*}
$$

where $B_{s}(t)$ is still given by Eqn 15 and the age dependent dynamics in Eqn 16 apply. Note that we could generalize even further (but will not do so) by writing

$$
\begin{equation*}
N(0, t)=\alpha_{s} B_{s}(t) f_{d}\left(B_{s}(t), \beta\right) \tag{50}
\end{equation*}
$$

where $f_{d}(z, \beta)$ characterizes the nature of the density dependence and is a decreasing function of z and β.

In the steady state, we have

$$
\begin{equation*}
R_{0}=\alpha_{s} B_{0} e^{-\beta B_{0}} \tag{51}
\end{equation*}
$$

and where B_{0} is still given by Eqn 19 . We solve Eqn 51 for βB_{0}; noting that $B_{0}=(1-r) R_{0} \bar{W}_{f}$ allows us to cancel R_{0} from both sides and obtain

$$
\begin{equation*}
\beta B_{0}=\log \left(\alpha_{s}(1-r) \bar{W}_{f}\right) \tag{52}
\end{equation*}
$$

Steepness is now

$$
\begin{equation*}
h=\frac{\alpha_{s}(1-r) 0.2 B_{0}^{-0.2 \beta B_{0}}}{\alpha_{s}(1-r) B_{0} e^{-\beta B_{0}}}=0.2 e^{0.8 \beta B_{0}} \tag{53}
\end{equation*}
$$

Substituting Eqn 52 into the final term on the right hand side of Eqn 53 we obtain

$$
\begin{equation*}
h=0.2\left(\alpha_{s}(1-r) \bar{W}_{f}\right)^{0.8} \tag{54}
\end{equation*}
$$

Note that now steepness no longer ranges from 0.2 to 1 , but rather from 0.2 to ∞; which was noted by Steve Munch in conversation with one of us (MM) many years ago. This can be understood as follows. The function $b e^{-\beta b}$ is maximized at $b^{*}=\frac{1}{\beta}$, so that for values of $B_{0}>b^{*}$, R_{0} declines. A large value of B_{0} may thus imply a small value of recruitment, and reducing the
stock to 20% of that value may increase recruitment by many multiples of the value at B_{0}. This is a small, but perhaps under-appreciated point.

For the more theoretically inclined reader, we note that if we use Eqn 50, then steepness is

$$
\begin{equation*}
h=0.2 \alpha_{s}(1-r) \bar{W}_{f} f\left(0.2 f^{-1}\left(\frac{1}{\alpha_{s}(1-r) \bar{W}_{f}}\right)\right) \tag{55}
\end{equation*}
$$

where f^{-1} is the inverse function of the density dependent term on the right hand side of Eqn 50 , ie $f\left(f^{-1}(x)\right)=f^{-1}(f(x))=x$.

References

Allendorf, F.W., England, P.R., Luikart, G., Ritchie, P.A. and N. Ryman. 2008. Genetic effects of harvest on wild animal populations. Trends in Ecology and Evolution 23:327-337

Alonzo, S.H. and M. Mangel. 2004. The effects of size-selective fisheries on the stock dynamics of and sperm limitation in sex-changing fish. Fishery Bulletin 102:1-23

Alonzo, S.H. and M. Mangel. 2005. Sex-change rules, stock dynamics, and the performance of spawning-per-recruit measures in protogynous stocks. Fishery Bulletin103:229-245

Alonzo, S.H., Ish, T., Key, M., MacCall, A.D. and M. Mangel. 2008. The importance of incorporating protogynous sex change into stock assessments. Bulletin of Marine Science 83:163-179

Anonymous. 2008. Report of the Pacific Bluefin Tuna Working Group Workshop. International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean.

Ashley, M.V., Willson, M.F., Pergams, O.R.W., O'Down, D.J., Gende, S.M., and J.S. Brown. 2003. Evolutionary enlightened management. Biological Conservation 111:115-123

Bayliff, W.H. 1994. A Review of the Biology and Fisheries for Northern Bluefin Tuna, Thunnus thynnus, in the Pacific Ocean. FAO Fisheries Technical Paper 336:244-295

Beverton, R.J.H. and S.J. Holt. 1957/1993. The Dynamics of Exploited Fish Populations. Chapman and Hall, London

Biro, P.A. and J.R. Post. 2008. Rapid depletion of genotypes with fast growth and bold personality traits from harvested fish populations. Proceedings of the National Academy of Sciences 105:2919-2922

Brodziak, J. 2002. In search of optimal harvest rates for West Coast groundfish. North American Journal of Fisheries Management 22:258-271

Chen and Watanabe 1989. Age dependence in the natural mortality coefficient in fish population dynamics. Nippon Suisan Gakkaishi 55:205-208

Chen, K., Crone, P., and Hsu. 2006. Reproductive biology of female Pacific bluefin tuna Thunnus orientalis from south-western North Pacific Ocean. Fisheries Science 72:985-994

Dorazio, R.M. and J.A. Royle. 2003. Mixture models for estimating the size of a closed population when capture rates vary among individuals. Biometrics 59:351-364

Dorn, M.W. 2002. Advice on west coast rockfish harvest rates from Bayesian meta-analysis of stock-recruit relationships. North American Journal of Fisheries Management 22:280-300.

Engelhard, G.H. and M. Heino. 2004. Maturity changes in Norwegian spring-spawning herring Clupea harengus: compensatory or evolutionary responses? Marine Ecology Progress Series 272:245-256

Ernande, B., Diekmann, U., and M. Heino. 2004. Adaptive changes in harvested populations: plasticity and evolution of age and size at maturation. Proceedings of the Royal Society of London B 271:415-423

Hampton, J. 2000. Natural mortality rates in tropical tunas: size really does matter. Canadian Journal of Fisheries and Aquatic Sciences 57:1002-1010

He,X., Mangel, M. and A. MacCall. 2006.A prior for steepness in stock-recruitment relationships, based on an evolutionary persistence principle. Fishery Bulletin 104: 428-433

Hilborn, R. and M. Mangel. 1997. The Ecological Detective. Confronting Models with Data. Princeton University Press, Princeton, NJ

Jensen, A. 1996. Beverton and Holt life history invariants result from optimal trade-off of
reproduction and survival. Canadian Journal of Fisheries and Aquatic Sciences 53:820-822
Itano, D.G. 2001. The Reproductive Biology of Yellowfin Tuna (Tunnus albacares) in Hawaiian Waters and the Western Tropical Pacific Ocean: Project Summary. JIMAR (Joint Institute for Marine and Atmospheric Research) Contribution 00-328, JIMAR University of Hawaii, Honolulu, Hawai'i

Kaji, T., Tanaka, M., Takahashi, Y., Oka, M., and N. Ishibashi. 1996. Preliminary observatons on development of Pacific bluefin tuyna Thunnus thynnus (Scombridae) larvaae reared in the laboratory, with special reference to the digestive system. Marine and Freshwater Research 47:261-269

Kamler, E. 1992. Early Life History of Fish. An energetics approach. Chapman and Hall, London and New York

Kuparinen, A. and J. Merilä. 2007. Detecting and managing fisheries-induced evolution. Trends in Ecology and Evolution 22:652-659

MacCall, A.D. 2002. Use of known-biomass production models to determine productivity of west coast groundfish stocks. North American Journal of Fisheries Management 22:272-279

Mace, P.M. and I.J. Doonan. 1988. A Generalised Bioeconomic Simulation Model for Fish Population Dynamics. New Zealand Fishery Assessment Research Document 88/4, Fisheries Research Centre, MAFFish, POB 297, Wellington, NZ

Mangel, M. 2006. The Theoretical Biologist's Toolbox. Cambridge University Press, Cambridge and New York

Mangel, M., Kindsvater, H.K. and M.B. Bonsall. 2007Evolutionary analysis of life span, competition, and adaptive radiation, motivated by the Pacific rockfishes (Sebastes). Evolution 61:1208-1224

Maunder, M.N. 2007. Status of Yellowfin Tuna in the Eastern Pacific Ocean in 2006 and Outlook. Inter-Amer. Tropical Tuna Commission Stock Assessment Report, 8: 3-103. (www.iattc.org/PDFFiles2/SAR8-YFT-ENG.pdf)

Maunder, M. N. and S.J. Harley. 2006. Evaluating tuna management in the Eastern Pacific Ocean. Bulletin of Marine Science 78:593-606

McGurk, M.D. 1986. Natural mortality of marine pelagic fish eggs and larvae: the role of spatial patchiness. Marine Ecology Progress Series 34:227-242

Morgan, M.J. 2008. Integrating reproductive biology into scientific advice for fisheries management. Journal of Northwest Atlantic Fisheries Science 41:37-51

Munch, S.B., Kottas, A. and M. Mangel. 2005. Bayesian nonparametric analysis of stockrecruitment relationships. Canadian Journal of Fisheries and Aquatic Sciences 62:1808-1821

Myers,R.A., Bowen, K.G., and N.J. Barrowman. 1999. Maximum reproductive rate of fish at low population sizes. Canadian Journal of Fisheries and Aquatic Sciences 56: 2404-2419

Rijnsdorp, A.D., Grift, R.E., and S.B.M. Kraak. 2005. Fisheries-induced adaptive change in reproductive investment in North Sea Plaice (Pleuronectes platessa)? Canadian Journal of Fisheries and Aquatic Sciences 62:833-843

Schaefer, K.M., Fuller, D.W., and N. Miyabe. 2005. Reproductive biology of bigeye tuna (Thunnus obesus) in the eastern and central Pacific Ocean. Inter-America Tropical Tuna Commission Bulletin 23(1):3-31

Shoji, J., Machara, T., and M.Tanaka. 2005. Larval growth and mortality of Japanese Spanish mackerel (Scomberomorus niphonius) in the central Seto Inland Sea, Japan. Journal of the Marine Biological Association U.K. 85:1255-1261

Siegfried, K. I. and B. Sans (2006). Two Bayesian methods for estimating parameters of the von Bertalanffy growth equation. Environmental Biology of Fishes 77: 301-308

Thompson, G.G. 1992. Management advice from a simple dynamic pool model. Fishery Bulletin 90:552-560

Captions for Figures

Figure 1 a) The gamma frequency distribution $f(m)$ for constant natural mortality estimated from Eqn XXX and b,c) sample survival trajectories created by assuming annual mortality is drawn from that distribution on a yearly basis. d) If we assume age dependent mortality with the same coefficient of variation as that used in panel a), then there is a family of probability distributions for the rate of mortality, depending upon age a and this introduces more variability in survival to age (panels e,f). Regardless of whether we use constant or age dependent mortalities, the consequence is variation in survival, which will then feed into variation in steepness.

Figure 2. We used Eqn 41 to simulate 200 times, 200 populations, each with 200 fish. From that we can construct an empirical frequency distribution, for which we show the mean (solid line) and standard deviation (error bars) and then estimate the parameters for a beta density (Eqns 42-45). In panel a) we show the results for the production model and in panel b) the results for the age-structured model.

Figure 1a.pdf

Figure 1b.pdf

Figure 1c.pdf

Figure 1d.pdf

${ }_{522}$ Figure 1e.pdf

Figure 1f.pdf

Figure 2a.pdf

Figure 2b.pdf

