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Summary. We describe Bayesian models for economic and financial time series that
use regressors sampled at finer frequencies than the outcome of interest. The models
are developed within the framework of dynamic linear models, which provide a great
level of flexibility and direct interpretation of results. The problem of collinearity of in-
traperiod observations is solved using model selection and model averaging approaches
which, within a Bayesian framework, automatically adjust for multiple comparisons and
allows us to accurately account for all uncertainty when predicting future observations.
We also introduce novel formulations for the prior distribution on model space that al-
low us to include additional information in a flexible manner. We illustrate our approach
by predicting the gross domestic product of United Stated using the term structure of
interest rates.
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1. Introduction

Some classes of economic data are typically available only at low frequencies; examples
include gross domestic product (GDP), gross national product (GNP), consumption
index, inflation rate and other macroeconomic indicators. However, many of these se-
ries can be effectively explained by predictors that are observed at higher frequencies.
For instance, GNP, which is sampled quarterly, has been shown to be explained by
the behavior of interest rates, which is available on a monthly basis (see Estrella &
Hardouvelis (1991) and references therein), or even daily (Ghysels & Wright, 2006).
A similar situation arises with weekly and monthly stock market volatility, which can
be explained by high frequency market data, often tick-by-tick (Ghysels et al., 2006).

Simultaneously using all low frequency frequency predictors available is typically
unfeasible, as collinearity might lead to overfitting. Traditional methods solve the
frequency disparity by aggregating the variables at the highest frequency available. In
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many cases this implies a loss of valuable information that might potentially enhance
the predictive power of the model.

Borrowing from existing literature about distributed lag models, Ghysels et al.
(2002) and Ghysels et al. (2007) recently proposed a class of models, called MIDAS
(Mixed Data Sampling) regression, which allows dependent and independent variables
to be sampled at heterogeneous frequencies. In this approach lagged explanatory
variables are weighted by coefficients that come from deterministic specifications such
as Almon lags and Beta polynomials. As a consequence the problem of parameter
proliferation is parsimoniously solved without sacrificing a certain degree of flexibility.

MIDAS regression is particularly attractive when the number of regressors is large
and fast computation is required. For instance, financial data are often available at
5-minutes intervals and other methods would be cumbersome to apply in such cases.
However, in many circumstances a deterministic and time-static structure as the
one used in MIDAS, is not flexible enough. On one hand, enforcing a deterministic
structure on the coefficients of the model might potentially induce artifacts in the
analysis. For example, periodic patterns, with relevant regressors separated by a fixed
number of periods, cannot be captured by a typical MIDAS specifications. On the
other hand, MIDAS regression is static in nature, but the influence of the predictors
can easily change in time as other (unobserved) concomitant variables evolve.

The main purpose of this paper is to show how Bayesian model selection and
model averaging can be used to model mixed frequency data while preserving a par-
simonious model structure and automatically adjust for multiple comparisons. Our
approach is developed within the context of dynamic linear models (DLMs) (West &
Harrison, 1998), which have become a standard tool in Bayesian time series analysis,
especially in finance and econometrics (Quintana & West, 1987; Quintana, 1992; Put-
nam & Quintana, 1995; Aguilar & West, 2000; Carvalho & West, 2007). DLMs are an
extremely flexible class of model that allow us to easily combine dynamic regression
with trends, periodicities and autoregressive components. Specifically, this paper dis-
cusses how model selection can be introduced in dynamic regression models and how
prior distributions on the space of models can be used to enforce “soft” restrictions
on the paramters, similar to those implemented in MIDAS regression.

Model comparison approaches that use frequentist hypothesis tests have been pre-
viously used in the context of mixed frequency data to deal with the problem of multi-
collinearity (see for example Birchenhall et al. (1999) and Campos et al. (2003)). The
Bayesian approach we advocate in this paper has a number of theoretical and practi-
cal advantages. First, model selection (in contrast to the structural constraints used
in MIDAS models) can provide interesting insights into the economic process being
modeled. Second, Bayesian methods for model comparison automatically adjust for
multiple comparisons and allow us to efficiently explore the full model space. Third,
model averaging (as opposed to model selection) is optimal for prediction purposes,
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in the sense of minimizing predictive squared error loss. Finally, predictions obtained
by Bayesian model averaging (in contrast to frequentist prediction) correctly account
for model and estimation uncertainty.

The price to pay for these advantages is slightly more complicated and time-
consuming computational algorithms. Since the posterior distributions arising from
the models discussed here are too complex to be analytically tractable, we resort
to simulation algorithms. In particular, we focus on Markov Chain Monte Carlo
(MCMC) samplers (see Smith & Roberts (1993) and Robert & Casella (2004) for an
introduction). As the name indicates, MCMC algorithms construct a Markov chain
whose stationary distribution corresponds to the posterior distribution of interest.
This is done by iteratively sampling from the full conditional distribution of blocks
of parameters. The result is a sequence of dependent samples from the posterior
distribution of the model; inference on functionals of parameters can be easily per-
formed using ergodic averages. This paper shows that, in the context of dynamic
linear model, it is possible to implement MCMC algorithms that move across mod-
els of varying dimension without without resorting to cumbersome transdimensional
algorithms like reversible jump MCMC samplers (Green, 1995).

As an illustration of our methodology, we discuss models that explain quarterly
GNP growth as a function of the monthly spreads in interest rates, calculated as the
difference between 3 months and 10 years yields of treasury bonds. The models also
include trends and autoregressive components, providing a powerful prediction tool
as well as interesting insight into monetary policy.

The paper is organized as follows: In Section 2 we describe the basic MIDAS model
of Ghysels et al. (2002) and provide a more detailed motivation for our approach. In
Section 3 we review Bayesian model selection and model averaging. In Section 4 we
review dynamic linear models and describe how model selection can be performed
in this setting. Section 5 discusses the role of prior distributions in model selection
and presents priors that can be used to mimic the weighted structure behind MIDAS
models while providing additional flexibility. In Section 6 we develop a model to
predict GNP growth that incorporates the slope of the term structure as predictors.
Finally, Section 7 provides a brief discussion and some future directions for research.

2. Motivation: Mixed frequency data and the MIDAS regression model

As an initial motivation, consider a multiple regression model

yt = β0 +
p∑
j=1

βjxt−j/3 + εt εt ∼ N(0, σ2) (1)

where yt and xt represent, respectively, the rate of GNP growth and the slope of the
term structure of the interest rate at period t = 1, . . . , T . The fractional notation in
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the subindexes simply recognizes the fact that interest rates are reported monthly,
while GNP is reported quarterly.

Since the term structure of interest rates tends to evolve slowly in time, the set
of predictors in (1) tends to be highly correlated, possibly leading to overfitting. In
MIDAS regression, this problem is solved by imposing a parametric structure on the
coefficients β = (β1, . . . , βp)′. For example, Beta polynomials can be used, in which
case,

βi = b
w(i/p, λ1, λ2)∑p
s=1 w(i/p, λ1, λ2)

wi(z, λ1, λ2) = zλ1−1(1− z)λ2−1 λ1, λ2 ≥ 1 (2)

Note that
∑p
j=1 βj = b. Therefore, we can think of the weights as spreading the

predictive power of the interest rates across the different lags of the term structure.
This is done in such a way that coefficients change smoothly with the lag. Since
the parametric form depends only on three parameters (b, λ1 and λ2), parsimony is
preserved no matter how many lags are included. However, the use of a parametric
representation for the coefficients of the model also implies strong restrictions on what
lags of the interest rate significantly affect GDP. In particular, the beta polynomials
in (2) imply that the distribution of weights is unimodal, with the weights growing
until they reach a maximum around z = (λ1 − 1)/(λ1 + λ2 − 2) and then decay
smoothly. If there is a periodic pattern in the effect of interest rates (for example,
if it is the slope of the term structure at the end of each quarter that affects GDP),
Beta polynomials are ill suited to capture it. Choosing more flexible parametric forms
(including mixtures of Beta polynomials) can help alleviate the problem, but might
unnecessarily increase the number of parameters.

The main insight behind MIDAS models is that if a given lag of the term structure
is significant to explain GDP, then lags that are close to it should also be significant.
In other words, only a small number of adjacent lags are necessary for prediction, and
the colinearity problem can be fixed by forcing the coefficients of the other lags to be
close to zero. This motivates an alternative approach to mixed frequency regression,
in which variable selection approaches are used to identify important lags. Rather
than constraining the value of the coefficients themselves as is done in MIDAS, we can
use prior distributions to favor clustered patterns in the coefficients to be included in
the model.

Although conceptually straightforward, the use of variable selection in the context
of mixed frequency data implies a number of practical challenges. First of all, the
number of models to be compared grows exponentially with the number of lags under
consideration. This means that any procedure needs to control family-wise error rate,
which will be in general larger than the error rate associated with every individual
pairwise test. It also means that we need to design algorithms that efficiently explore
the model space if the models are to be implemented in settings where the number of
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lags is large. In second place, predictions generated by the model need to account for
the uncertainty involved in the selection of the set of relevant lags in order to avoid
underestimation of prediction errors. Finally, it is important that the methodology
developed can be incorporated into more complex hierarchical models; in particular,
it is important that we can allow the coefficients relating the term structure of interest
rates to GDP to evolve smoothly in time. For example, in the analysis of historical
data over long periods of time, institutional and other changes might imply that
dependence among variables structure will change in time. In the following sections,
we develop models that tackle these three issues.

3. Bayesian model selection and prediction

Since different lags of the term structure provide essentially equivalent information, a
natural alternative to a strong parametric form on the coefficients of the model is to
select just a subset of the variables to be included in the model. In that case, we are
left with a collection of modelsM = {M1, . . . ,MK}, corresponding to each one of the
possible K = 2p possible subset of regressors. It is usually convenient to represent
these models using indicator variables ξ = (ξ1, . . . , ξp) such that ξi = 1 if variable i
in included in the model, and 0 otherwise. Model Mk is associated with a likelihood
pk(y|βk) and a prior distribution p(βk), where βk is the subset of coefficients β
corresponding to the variables included in Mk.

Given prior probabilities Pr(M1), . . . ,Pr(MK) for each one of the models in M,
we can use Bayes theorem to obtain updated posterior probabilities,

Pr(Mk|y) =
mk(y)Pr(Mk)∑K
s=1ms(y)Pr(Ms)

where

mk(y) =
∫
pk(y|βk)pk(βk)dβk (3)

Posterior model probabilities measure the relative strength of evidence in favor of
each model. When a single model needs to be picked (for example, if we are interested
in which lags of the term structure affect the GNP) the optimal choice under a 0-1
loss function is the highest posterior probability model, Mk∗ , where

k∗ = arg max
k
{Pr(Mk|y)}

Note that choosing a specific model might be particularly relevant from the point
of view of policy design. For example, choosing the relevant lags of the term structure
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in the previous model allows us to determine how long it will take for FED intervention
to affect the real economy, or if it will have any effect at all.

Bayesian procedures for model selection like the one just described automatically
adjust for multiple comparisons, as long as a hierarchical structure is used to specify
{Pr(Mk)}Kk=1 (Jefferys & Berger, 1992; Scott & Berger, 2003); some examples of hier-
archical specifications relevant for mixed frequency data will be discussed in Section
5.1. This means that no ad-hoc adjustment (Bonferroni, FDR, etc) is necessary to
control family-wise error rates.

Maximum probability models can be very helpful in understanding the underlying
economic process generating he data. However, since they are derived from a 0-1
loss function, maximum probability models are not necessarily optimal for prediction
(Draper, 1995; Hoeting et al., 1999). Instead, the optimal prediction rule for a new
observation y∗ under squared prediction error loss function is obtained as a weighted
average the predictions provided by each model under consideration,

ŷ∗ =
K∑
k=1

E(y∗|Mk,y)Pr(Mk|y)

Even if for any reason model average prediction is not viable and a single model
is to be used for forecasting, the median probability model is typically a better op-
tion than the maximum probability model (Barbieri & Berger, 2004). The median
probability model is defined as the model that includes all variables whose marginal
inclusion probability qi is greater than 1/2, where qi =

∑
Mk∈Mi

Pr(Mk|y) and Mi

is the subset ofM containing all models that include variable i. A note of caution on
the use of marginal inclusion probabilities is in order. Unlike, frequentist approaches
where p-values and confidence bands are equivalent, Bayesian posterior credible inter-
vals and posterior model probabilities might yield contradicting results (see Jefferys
(1990) for an example). This might happen when data is unusual under both hypoth-
esis, but happens to be more unusual under the complex model, and can be seen as
a consequence of Lindley’s paradox (Lindley, 1957; Shafer, 1982). Our application in
Section 6 provides an enlightening example.

Computation of Bayes factors can be a complex task, as it requires the calculation
of the multidimensional integrals in (3). When these integrals are available in closed
form (as in Gaussian linear models) and the number of model is moderate (typically,
p ≤ 20) we can design simulation algorithms that directly sample over the full space
M at each iteration and, conditionally on the model chosen, generate samples from
the model parameters. A simple description of the algorithm is,

(a) Sample the model index k ∈ {1, . . . ,K} according to their posterior probabilities
{Pr(Mk|y)}Kk=1
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(b) Conditional on k, sample β by setting the coefficients corresponding to variables
not included in k to zero and by sampling the rest (contained in βk) from

pk(βk|y) ∝ pk(y|βk)pk(βk)

If (3) is available in closed form but the parameter space is too large, step (a)
above can be replaced by a Metropolis step that allows for local moves on the space
of models (see George & McCulloch (1997) for an excellent review). It is typical to
use a symmetric proposal distribution

q(ξ(p)|ξ(c)) = qd if
p∑
i=1

|ξ(p)i − ξ
(c)
i | = d

where ξ(c) and ξ(p) correspond to the current and the proposed model respectively,
and qd is the probability of proposing a change that implies adding/deleting d variables
to the model (see George & McCulloch (1997) for details). This is the approach we
adopt in the following sections.

The most complex case when (3) is not available in closed form requires the use of
transdimensional MCMC algorithms that allow us to move across spaces of different
dimension, for example, the reversible jump algorithm (Green, 1995). In the following
section we show how these ideas just described in the context of linear regression can
be extended to dynamic linear models.

4. Dynamic linear models and dynamic regression

Using the notation in West & Harrison (1998), let yt for t = 1, . . . , T be a univariate
time series. Given the quadruplets

{Ft,Gt, Vt,Wt}Tt=1

where Ft is a known n-dimensional row vector, Gt is a n× n matrix, Vt is a positive
scalar, and Wt is a n × n symmetric positive-semidefinite matrix, a dynamic linear
model (DLM) is defined by two groups of equations. The observational equations
take the form

yt = Ftθt + νt νt ∼ N(0, Vt) (4)

and describe how observations are linked to the sequence of (unobserved) state vectors
θ1, . . . ,θT , while the state equations

θt = Gtθt−1 + ωt ωt ∼ N(0,Wt) (5)
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describe how the state vectors evolve in time. Both noise processes are assumed to
be independent, and an initial condition θ0 ∼ N(m0,C0) is assumed. DLMs are
extremely flexible and are able to accommodate a number of different behaviors. For
example, a simple alternative to capture trends is to use a local constant polynomial,
in which case n = 1, Gt = 1 and Ft = 1, i.e., the evolution equation describes a
simple unidimensional random walk. Autoregressive components of order q can be
accommodated by taking

F′t =


1
0
...
0

 Gt =


φ1 φ2 · · · φq−1 φq
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 Wt =


U 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


where φi stands for the autoregressive coefficient associated with the i-th lag. Finally
if a set p predictors x1t, . . . , xpt are available at time t a dynamic regression can be
accommodated by taking Ft = (x1t, . . . , xpt) and Gt = Ip, where Ip denotes the
identity matrix of dimension p. Note that, taking Wt = 0 leads directly to the static
multiple regression model we used as motivation in Section 2; hence, the presence of
evolution noise allows the regression coefficients to adapt in time generating a model
that is a linear regression only locally. See West & Harrison (1998) for a complete
description.

When the quadruplets {Ft,Gt, Vt,Wt}Tt=1 are assumed to be known, the posterior
and marginal predictive distributions can be obtained in closed form. However, this
is rarely a realistic setting, as structural terms like autocorrelation coefficients or
evolution are rarely known a priori. A simple mechanism to model the evolution
variance Wt is information discounting (see West & Harrison (1998), Chapters 2.4
and 6.4). In the simplest case of a single discount factor 0 < δ ≤ 1, the evolution
variance is specified as Wt = (1−δ)Var(θt−1|yt−1, . . . , y1)/δ. Note that δ = 1 implies
Wt = 0, and no evolution is allowed. In most application, δ ∈ [0.8, 1].

A fully hierarchical specification of the DLM typically requires the use of MCMC
methods for inference. In this case, the state parameters are sampled conditionally
on the quadruplets using a Forward-Filtering-Backward-Sampling (FFBS) algorithm
(Carter & Kohn, 1994; Frühwirth-Schnatter, 1994), while the structural parameters
are in turn sampled conditionally on the current imputed values for the state pa-
rameters. In the forward step of the FFBS algorithm, the posterior distributions
are sequentially updated by exploiting conjugacy. Starting with p(θ0), we can ob-
tain p(θt|yt, . . . , y1) and p(yt|yt−1, . . . , y1) from p(θt−1|yt−1, . . . , y1). In the backward
step, the conditional distributions p(θt−1|θt, yT , . . . , y1) are constructed and used to
sequentially sample from the joint distribution p(θT , . . . ,θ1|yT , . . . , y1). Incidentally,
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note that the FFBS algorithm also provides an efficient mechanism to integrate out
the unknown parameters θ1, . . . ,θT and compute p(yT , . . . , y1) since

p(yT , . . . , y1) =
T∏
t=1

p(yt|yt−1, . . . , y1).

In the context of variable selection in dynamic regression, this allows us to im-
plement the simple MCMC schemes described at the end of Section 2 and avoid
transdimensional algorithms.

5. Prior distributions for mixed frequency data regressions

5.1. Priors on model space
When the model space is finite, uniform distributions are frequently used as a default
option. However, uniform priors are often restrictive and, not being hierarchical,
do not automatically adjust for multiple comparisons. In this section, we discuss
three types of hierarchical priors on model space, Bernoulli-type priors, order-inducing
priors and truncated geometric priors. Bernoulli-type priors are standard in Bayesian
model selection, especially in stochastic search variable selection schemes (George &
McCulloch, 1993). Given 0 < η < 1, a prior in this class is obtained by setting
p(ξi) = ηξi(1− η)1−ξi independent for all i. This implies that

p(Mk) = η|Mk|(1− η)p−|Mk|

where |Mk| = ξ(k)
′
ξ(k) is the number of variables in model Mk (dimension of the

model). In other words, |Mk| is the number of regressors that is included in Mk.
The hyperparameter η, representing the prior probability that any single variable is
included in the model, controls the sparsity induced by the prior. Therefore, values
of η close to zero favor models that include few regressors, and viceversa. Since
sparsity depends so crucially on η, we employ a Beta hyperprior, η ∼ Be(a0, b0),
where a0/(a0 + b0) corresponds to the proportion of the variables that are expected
to be significant a priori.

Bernoulli priors are easy to elicit and understand, but treat all variables equally.
However, one of the most interesting insights from MIDAS models is that high fre-
quency predictors are more likely to be relevant if the adjacent ones are. Positional
information can be introduced in the prior using Markov-switching structures. In
particular, consider a prior such that p(ξ1) = ηξ1(1− η)1−ξ1 and for i > 1

p(ξi|ξi−1) =

{
(1− π0)ξiπ1−ξi

0 ξi−1 = 0
πξi

1 (1− π1)1−ξi ξi−1 = 1
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In words, the most recent lag of the predictor variable is included in the regression
with probability η, and from then on lag i is included in the model with probability
π1 if lag i − 1 is also included, and with probability 1 − π0 otherwise. Therefore,
the sequence ξ1, . . . , ξp defining the model follows a Markov chain with stationary
distribution,

e0 =
1− π0

2− π0 − π1
e1 = 1− e0

The values of π0 and π1 close to 1 imply high persistence rates, therefore favoring
models that include consecutive lags. Again, since the properties of the prior crucially
depend on π0 and π1, we estimate them using hyperpriors π0 ∼ Be(a1, b1) and π1 ∼
Be(a2, b2) and choose a1/(a1 + b1) > 1/2 and a2/(a2 + b2) > 1/2. Rather than
modeling η separately, we set η = e1 = (1− π1)/(2− π0 − π1). Therefore, η can also
be interpreted as the marginal probability that any variable is included in the model,
just as in the Bernoulli prior.

Note that the Markov switching prior includes the Bernoulli prior as a special
case when π1 = 1 − π0. In addition, it allows us to induce ordering in the lags
being included in the model, in a similar way to the Almond lags and Beta weights
specifications used for MIDAS regression. However, the constraints introduced by
our model, while also preserving parsimony, are much less restrictive. On one hand,
it allows any single regression coefficients to take any value independently of other
coefficients, while preserving parsimony by excluding redundant variables from the
model.

Truncated geometric distributions are an alternative to order inducing priors that
are appropriate when interest focuses in models where a regressor is included only if
all its predecessors are also included. Principal component regression is an excellent
example where this type of specification is natural. Specifically, a truncated geometric
prior takes the form

Pr(Mk) =
ν(1− ν)k

1− (1− ν)p+1

where Mk corresponds to the model such that ξi = 1 for i ≤ k and ξi = 0 otherwise.
Note that the support of this prior is relatively small, as only p+ 1 models have non-
zero probabilities. As before, ν controls the complexity of the models; each additional
regressor decreases the probability of the model by a factor of (1 − ν). Also, taking
the limit ν → 0 yields a uniform prior on model space. In the sequel, we estimate the
hyperparameter ν by using a Beta hyperprior, ν ∼ Be(aν , bν). Note that truncated
geometric priors are reminiscent of MIDAS regression models with step functions that
are covered, for instance, in (Ghysels et al., 2007).
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5.2. Priors on parameter space
Although Bayesian model comparison methods that use proper priors are consistent
under mild regularity condition, improper priors can be dangerous in Bayesian model
selection and model average (Kass & Raftery, 1995). This is unlike estimation prob-
lems, where reference or other objective but improper priors are typically adequate.

In nested models like the mixed data regression model we have been discussing,
improper priors are typically adequate only for parameters that are common to all
models under consideration (a formal argument for this practice is given in Berger
et al. (1998)). When used for parameters under selection, standard improper priors
(which are determined only up to a multiplicative constant) typically lead to inde-
terminate posterior probabilities. The same happens for proper but diffuse priors
(Natarajan & McCulloch, 1998), where the problem can be hard to capture as lack
of mixing in the sampler might be hard to detect.

There is ample literature in objective priors for model selection in general (Berger
& Pericchi, 2001), and linear regression (Berger & Pericchi, 1996b,a) and dynamic
linear models (Rodriguez & Pericchi, 2000) in particular. However these objective
priors are hard to adapt to multilevel hierarchical specifications like the ones we
describe in the following section. Instead of trying to elicit objective priors, we note
that in mixed frequency regression, enough prior information is typically available to
elicit reasonable prior distributions for the parameters in the model. In the context of
our motivating example, expectations on the maximum and minimum value for GNP
and interest rates spread can be used to decide on reasonable ranges for the priors on
the regression coefficients. For example, it is reasonable to assume that annualized
GNP growth rates over 8% (in absolute value) are highly unlikely in the US; similarly,
we do not expect to see spreads over 10% in either direction. Therefore, we would use
a prior distribution for each coefficient βi that places most of its probability on the
interval (−0.8, 0.8). We use this type of specification along with sensitivity analysis
in our empirical studies.

6. Understanding the relationship between GNP growth and interest rates in
the US

6.1. The data
In this section we construct a model for the quarterly growth of GNP between January
1955 and April 2005. The dataset is seasonally adjusted. Netting in the initial values,
a total of T = 201 observations are available for the dependent variable

yt = 400 log
(

GNPt
GNPt−1

)
,
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Fig. 1. Annualized GNP growth rate and lagged interest rate spreads in the US economy
between 1954 and 2005

where GNPt denotes the value of GNP at quarter t (hence, y1 corresponds to the
annualized growth rate during the first quarter of 1955). Among other components,
the model includes information on the monthly behavior of interest rates during the
previous 2 years as an explanatory variable in the model. This information is sum-
marized through the slope of the term structure, namely the spread between the long
term (10 year) and the short term (3 month) interest rates. The GNP series together
with the lagged values of the interest rates spread are depicted in Figure 1.

6.2. Model formulation
6.2.1. Bayesian mixed frequency regression models for macroeconomic data

The model is built by the superimposition of three distinct blocks: a local polynomial
trend µt capturing the average level of the series, a latent autoregressive process zt
capturing the inertia in the behavior of the GNP, and a dynamic regression component
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with coefficients βt = (βt1, . . . , βtp)′ capturing the influence of interest rates levels
during the previous year. Specifically, the observational equation for the model takes
the form

yt = zt + µt + Xk
tβ

k
t + νt νt ∼ N(0, V ) (6)

For the three components model, we structure the regression vector as

Xt = (xt−2/3, xt−1, . . . , xt−23/3)

where xl denotes the spread on quarter l. Again, we use fractional subindexes to
denote the infraperiods on which the predictor is observed (in this case, months). We
include a total of p = 22 months of information on interest rates, starting with the
first month of the quarter and going back two years, but other schemes are possible.
The superscript k ∈ {1, . . . , 222} denotes the regression model, corresponding to one
of the subsets of the p variables being entertained. The inclusion of an autoregressive
term follows standard practice in macroeconomics modeling (for example, see Shen
(1996), Clements & Galvao (2008) and references therein). However, as pointed out
by Ghysels et al. (2002) and Clements & Galvao (2008), standard AR-MIDAS models
can exhibit a seasonal response of y to some of the x’s, irrespective of whether the x’s
displays a seasonal pattern. Clements & Galvao (2008) solve this by introducing the
autoregressive dynamics as a common factor, in the style of Hendry & Mizon (1978).
Including the autoregressive component as a latent process, as we do in this paper, is
an alternative route to circumvent this issue.

The parameters of the model are allowed to evolve according to the state equations

zt = φzt−1 + εt εt ∼ N(0, U) (7)(
µt
βkt

)
=
(
µt−1

βkt−1

)
+$t $t ∼ N(0,Σk

t ) (8)

where φ is the autoregressive coefficient of the process. Therefore, we assume that
the evolution noise for the autoregressive component of the model has a constant (but
unknown) variance U . On the other hand, the joint evolution of the variance for the
trend and dynamic regression coefficients is specified through two discount factors, δµ
and δβ , such that

Σk
t = ∆Var(µt−1,β

k
t−1|y1, . . . , yt−1)∆′ ∆ = diag

{√
1− δµ
δµ

,

√
1− δβ
δβ

1′p

}
(9)

where 1p denotes a column vector of dimension p with 1’s in all entries (see West
& Harrison (1998), Chapters 2.4 and 6.4). Therefore δµ controls the information
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discounting for the trend, while δβ controls the level of information discounting for
the regression coefficients.

Modeling the evolution of the autoregressive component separately from the trend
and regression simplifies prior elicitation and interpretation of the model. For any
given model k, we can rewrite (5), (6) and (7) in terms of the DLM formulation in
(3) and (4) as

yt = Fkt θ
k
t + νt νt ∼ N(0, V ) (10)

θkt = Gkθkt−1 + ωt ωt ∼ N(0,Wt) (11)

where θkt = (zt, µt,βkt )′ is the |Mk| + 2 vector of state variables at time t for model
k, Gk = diag{φ, 1, 1, . . . , 1} is the (|Mk|+ 2)× (|Mk|+ 2) evolution matrix for model
k, ωt = (εt,$′t)

′ is the evolution |Mk|+ 2 vector of describing the evolution noise on
the state variables, Wk

t = diag{U,Σk
t } is (|Mk|+ 2)× (|Mk|+ 2) the block diagonal

evolution covariance matrix for model k at time t, and Fkt = (1, 1,Xk
t ) is the |Mk|+ 2

design vector at time t for model k.
The model is completed by specifying priors on the unknown parameters, for

which we exploit subjective information. For the prior on model space, we employ
the order-inducing priors described in Section 5.1, and set mildly informative pri-
ors π0 ∼ Be(3, 1) and π1 ∼ Be(3, 1). Conditional on being included in the model,
the dynamic regression coefficients are assigned independent normal priors at time
0, β0i ∼ N(0, 0.252) if ξi = 1. Note that, following the discussion in Section 5.2, the
variance has been chosen to provide high support to the interval (−0.75, 0.75). Sensi-
tivity analysis was performed, with values of the standard deviation between 0.1 and
1 yielding similar results. Priors on the variance components are set as conditionally
conjugate U ∼ IGam(2, 2) and V ∼ IGam(10, 0.5), which implies that E(U) = 1 and
E(V ) = 0.05 a priori. This pair of priors favor small observational variances compared
to the evolution variance of the autoregressive process. The discount factors δµ and
δβ are assigned discrete priors over the set {0.85, 0.90, 0.95, 0.99, 0.999} in order to
simplify computation. Finally, the initial states for the trend and autoregressive term
are assigned conditionally conjugate normal priors z0 ∼ N(0, 32) and µ0 ∼ N(0, 32),
again in line with our expectations about rates of growth.

6.2.2. Bayesian principal component regression for macroeconomic data
We also discuss a similar model as the one described above that replaces the lagged
slopes of the term structure by their principal components, ordered by the proportion
of the variability they explain. Principal components analysis has been repeatedly
used in the literature to deal with multicollinearity problems. Indeed, principal com-
ponents are orthogonal by construction, and typically a handful of them is enough to
explain most of the variability in the predictors.
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In this application, the principal components have a very interesting interpreta-
tion; for example, the first principal component (explaining 66% of the variability in
the data) is approximately the average slope of the term structure during the last
two years, while the second principal component (explaining 18% of the variability)
contrasts the average variability during the first half of the period with the variability
during the second half. Similar interpretations can be attached to the other principal
components. A more detailed discussion, along with part of the loadings matrix, can
be seen in Appendix B. Instead of an order inducing prior, we employ a truncated
geometric prior, which allows us to decide how many of the most relevant principal
components should be included in the model. As discussed in Section 5.1, a prior
of this type greatly simplifies computation by dramatically reducing the number of
models to be considered, but for the same reason it reduces the flexibility of the mod-
els. The hyperparameter ν, controlling the sparsity in the model, is given a prior
ν ∼ Be(1, 9)

6.3. Results
We employ the MCMC sampler detailed in Appendix A to fit the model described
above. The algorithm was run for 40,000 iterations following a 5,000 iteration burn-in
period. Examination of diagnostic plots showed adequate mixing and no evidence of
lack of convergence. In order to corroborate this observation, we used the Gelman-
Rubin convergence test (Gelman & Rubin, 1992), which compares the variability
within and between multiple runs of the sampler with overdispersed starting values;
we monitored the marginal probabilities of inclusion of each of the 22 lags under
consideration, the autocorrelation coefficient and the observational and structural
variances as the parameters of interest. In every case, confidence intervals for the
convergence statistic R contained the reference value 1, as expected for non-divergent
chains.

Figure 2 shows a decomposition of the original GNP series into the three structural
components described in the previous section. The decomposition is almost identical
for both the regression and the principal component models. It reveals a very subtle
trend, with the average growth rate increasing from 1.9% to 1.97% in the 50 years
under consideration The posterior mode for the discount factor of the trend is δµ is
0.99. Most of the variability in the sample can be explained by the autoregressive
process. Our estimate of the autocorrelation coefficient is 0.24 (posterior mean), with
a 90% symmetric credible interval (0.08 , 0.36). The variance of the observational
noise is negligible, with the posterior expectation of V being around 0.0011. It is
interesting to note that the data favors a static regression model. Indeed, the poste-
rior distribution for the discount factor δβ concentrates on 0.999, leading to almost
constant estimates of the regression coefficients.
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Fig. 2. Decomposition of the US GNP time series into three structural terms. Residuals are
shown, reveling no apparent patterns and an extremely good fit.
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Table 1. Marginal probability of inclusion for the principal components of the lagged slope of the
term structure.

Prin. comp. 1 2 3 4 5 6 7 8 9 10 11

Marginal Pr. 0.98 0.85 0.54 0.48 0.46 0.45 0.45 0.39 0.36 0.34 0.32

Prin. comp. 12 13 14 15 16 17 18 19 20 21 22

Marginal Pr. 0.31 0.30 0.26 0.22 0.18 0.15 0.12 0.08 0.06 0.03 0.02

Next, we explore in more detail the influence of the term structure on growth. For
the Bayesian model averaging specification, most of the posterior probability (0.67)
is assigned to models that contain between 7 and 13 lags. Posterior probability for
models containing two or less lags is less than 10−3, and the posterior probability
of the model without any lag included is less than 10−5. However, the maximum
probability model provides very little information; it includes lags 4, 6, 8, 12, 15,
18, 20 and 22, but its estimated posterior probability is only 10−4. On the other
hand, the second most likely model has a similar posterior probability but includes a
different set of lags.

Since individual models are of little help in understanding how the different lags
affect growth, we turn our attention to the individual probabilities of inclusion for the
coefficients, which are presented in Table 2. Note that, marginally, only the 4, 8 and
12-month lags of the term structure have a significant impact on GNP, although a
number of other lags are close to significance. This shows that information on consecu-
tive lags is decidedly redundant, indicating that the standard assumptions underlying
MIDAS models might not be appropriate in this problem. Compatible with these ob-
servations, we note that E(π0) = 0.47 and E(π1) = 0.41, with 90% symmetric credible
probability intervals (0.24, 0.71) and (0.22, 0.61) respectively, indicating low persis-
tence. The differences between using credible intervals and posterior probabilities for
model selection is demonstrated in this problem by the coefficient corresponding to
lag 22. Its marginally probability of inclusion is only 0.36, but the probability of
being negative given that it is different from zero is 0.95. Had we used credible bands
to decide which coefficients should be included (which is approximately equivalent to
using a p-value based on a normal approximation), our conclusion would have been
the opposite.

For the principal component regression model, Table 1 shows the marginal inclu-
sion probabilities for each of the principal components. The results are enlightening;
note that most of the predictive information contained in the slope of interest rates
is provided by the average slope over the previous two years (PC1), the biannual rate
of change in the slope (PC2), and the average annual rate of change (PC3). This
suggests that the common practice of aggregating rates is reasonable, but falls short
of incorporating all the important information.
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Table 2. Marginal probability of inclusion for different lags of the slope of the term structure of
interest rates.

Lag 2 3 4 5 6 7 8 9 10 11 12

Marginal Pr. 0.32 0.46 0.63 0.48 0.47 0.35 0.62 0.44 0.44 0.38 0.50

Lag 13 14 15 16 17 18 19 20 21 22 23

Marginal Pr. 0.45 0.36 0.48 0.38 0.37 0.37 0.41 0.35 0.36 0.36 0.42

Finally, we discuss the predictive performance of the model. Table 3 presents
one-step-ahead, out-of-sample predictions for the growth rate between the first quar-
ter of 2003 and the first quarter of 2005, as well as the associated mean squared
prediction error, for seven alternative models: MA, which corresponds to the model
average Bayesian regression prediction, MM corresponds to the median regression
model, MPM is the maximum probability regression model, PC is the model average
prediction from the principal component regression model, LAR is a latent autoregres-
sive model without regressors, MIDAS-AR corresponds to a static MIDAS regression
model using Beta weights (see the description in Section 2) and incorporating an AR
component (Clements & Galvao, 2008), and AR, a purely autoregressive process. The
MIDAS model was fitted by adapting the code designed by Arthur Sinko and avail-
able at http://www.unc.edu/∼sinko/MATLAB.html, while the parameters of the AR
process were estimated using maximum likelihood methods.

Note that the best performance is produced by model averaging over the original
space of predictors, closely followed by MIDAS-AR and the principal component (PC)
regression model. The predictions from the AR and the LAR model are very similar;
this is consistent with our low estimate of the observational noise V (indeed, taking
V = 0 reduces the LAR to an AR model). Also, in line with our discussion in Section
3, both the median probability model and maximum probability model have a larger
mean squared predictive error than both MA and PC. However, it is surprising that
the predictive error of the MPM model is larger than the predictive error form the
AR and LAR models.

6.4. Discussion
The results presented above suggest that: 1) the AR component plays a key model
in the performance of predictive models for economic output, and 2) including high-
frequency term structure information can also improve prediction. This is in line
with results previously reported in the literature (see Clements & Galvao (2008) and
references therein). However, the results for the discount factors and the MM and
MIDAS-AR predictive errors seem to indicate that, at least for this data set, a DLM
specification is unnecessary and a regular static regression is a reasonable model.

The results also suggest that introducing soft constraints through prior distribu-
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Table 3. Mean-squared out-of-sample prediction error associated with eight al-
ternative prediction models. MA corresponds to the model average prediction,
MPM as the maximum probability model, MM to the median model, PC is the
model incorporating principal components, LAR is a Bayesian latent AR model
without predictors, MIDAS-AR to a static MIDAS regression model incorporat-
ing an AR component, and AR to the purely autoregressive process. The true
column corresponds to the values actually observed.

Quarter MA MPM MM PC LAR MIDAS-AR AR True

2003-I 4.06 4.40 4.29 4.36 2.68 3.11 2.71 4.38
2003-II 4.81 4.70 4.66 4.72 3.57 3.70 3.54 6.96
2003-III 4.52 5.13 4.83 4.90 3.97 4.49 3.99 4.38
2003-IV 5.34 5.38 5.51 5.40 3.08 4.16 3.06 3.74
2004-I 4.62 5.16 4.43 4.45 3.98 4.27 3.98 2.17
2004-II 4.11 4.36 4.50 4.53 2.62 3.82 2.62 3.94
2004-III 5.23 5.37 5.54 5.42 3.97 4.51 3.99 2.86
2004-IV 3.95 4.26 3.50 3.98 3.01 3.13 2.99 3.80
2005-I 3.97 4.15 4.01 3.90 3.97 3.34 3.94 3.11

MSE 2.19 2.79 2.46 2.31 2.51 2.23 2.52 *

tions produces modest improvements over the hard constrains used by the AR-MIDAS
models, at least for this data set. However, the choice of model to be used for pre-
diction seems to be critical when soft constrains are used. Maximum probability
models can produce very poor predictive results, while principal component models
(with truncated geometric priors) can generate competitive results, albeit not as good
as those produced by MIDAS-AR or model average over the full space of regression
models.

7. Conclusions

This paper describes a Bayesian approach to mixed frequency data regression. In
particular, we discussed a dynamic model for quarterly GNP growth prediction that
incorporates high frequency (monthly) information on the slope of the term structure
of interest rates a predictor. In order to deal with the strong multicollinearity in
the predictor series, our approach uses Bayesian model selection and model averaging
tools along with structured priors on the model space. Besides greater flexibility and
improved forecasting power, the models we discuss provide structural information
about the underlying economic process that is unavailable from aggregation or MIDAS
models. For example, MIDAS models do not provide a way to test for significance of
individual lags on GNP.

One of the main contributions of this paper is to introduce hierarchical distri-
butions on the space of models that automatically adjust for multiple comparisons
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and allow us to include relevant prior information. In particular, the order-inducing
priors based on a simple Markov process can be used to mimic the specification of
MIDAS models, while allowing for greater flexibility. In addition, we introduce priors
for dynamic principal component regression that enforce components explaining large
proportions of the variability in the predictors to be included in the model.

Although we have focused on models that are conditionally homoscedastic and
Gaussian, our approach can be easily extended to include more general error specifi-
cation. For example, heteroskedasticity in the observational equation can be accom-
modated using the stochastic volatility model discussed in Uhlig (1997). Computa-
tion of the marginal predictive distributions as well as posterior sampling can be done
through a small adaptation of the FFBS algorithm discussed in this paper, for details
see (West & Harrison, 1998, Chapter 10). Similarly, non-Gaussian error structures
can be obtained through mixing. A number of widely used distributions, including the
Student t and the power exponential family can be obtained through scale mixtures of
normals. Also, finite mixtures of normals can be used to approximate any absolutely
continuous distribution, as long as enough component are used. Models of this type
can be fitted by introducing a sequence of independent and identically distributed
auxiliary variables ζ1, . . . , ζT associated with each observation. Conditionally on the
auxiliary variables, the error distribution is Gaussian and computation proceeds us-
ing the same algorithms discussed here, while each ζt has to be sampled from its
associated full conditional distribution.

¿From a methodological perspective, our examples illustrates the difference be-
tween prediction (for which model averaging is optimal), and the validation of a scien-
tific theory (for which model comparison/variable selection approaches are necessary).
Although both approaches use essentially the same inputs, the insights obtained are
in general very different.

The models we describe in this paper can be easily extended to include multiple
variables sampled at various frequencies. Similarly, they can accommodate more
complex error structures through the use of hierarchical specifications. In particular
heavy-tailed error distributions and stochastic volatility models can be incorporated
through mixing over the parameters of the normal errors. Along this lines, we are
currently working on applications of this class of models to multiresolution models
for volatility prediction, with applications to option pricing.

The model selection approach discussed in this paper assumes that significant
coefficients remain so as time evolve. A more realistic approach would allow a different
set of regressors at each point in time. We are currently working on this type of
approach, which presents some additional difficulties. In first place, we need to design
dynamic priors on the space of models that allow for simple computation while at
the same time providing enough flexibility. Second, we need to deal with possible
identifiability issues arising from allowing both coefficients and models to evolve in
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time.
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A. Markov chain Monte Carlo sampler

Given initial values for all unknown parameters in the model, the algorithm updates
their values iteratively by sampling from the following full conditional distributions:

Step 1 Conditional on V , δβ , δµ, φ, and U sample the model k and the state parameters
{(µt, zt,βt)}Tt=1 using a FFBS algorithm. To do this, let θkt = (zt, µt,βkt ) be the
|Mk|+2 vector of state variables at time t for model k, Gk = diag(φ, 1, 1, . . . , 1)
the (|Mk|+ 2)× (|Mk|+ 2) evolution matrix, and Wk

t = diag(U,Σk
t ) the block

diagonal (|Mk|+2)×(|Mk|+2) evolution covariance matrix and Fkt = (1, 1,Xk
t )

be the |Mk|+ 2 observational design vector.

– Forward Filtering step. For k = 1, . . . , 2p and t = 1, . . . , T compute
θkt |Dt, · · · ∼ N(mk

t ,C
k
t ), where:

mk
t = akt + Ak

t e
k
t

Ck
t = Rk

t −Ak
tQ

k
t (Ak

t )′

Ak
t = Rk

t (Fkt )′(QkT )−1

ekt = yt − fkt
akt = Gkmt−1

Rk
t = GkCk

t (Gk)′ + Wk
t

fkt = Fkt a
k
t

Qkt = FktR
k
t (Fkt )′ + V

– Sample k from a discrete distribution with probabilities proportional to:

pk(y1, . . . , yT | · · · ) =
T∏
t=1

pk(yt|Dt, · · · ) =
T∏
t=1

N(yt|fkt , Qkt )
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– Backward Sampling. Conditional of k, and for t = T − 1, . . . , 0 set the the
entries of β not included in βk equal to zero and sample

(θkt |θ
k
t+1) ∼ N(hkt ,H

k
t )

where:

hkt = mk
t + Bk

t (θkt − akt )

Hk
t = Ck

t −Bk
tR

k
t+1B

k′

t

Bk
t = Ck

tG
k′(Rk

t+1)−1

Step 2 Conditional on the the state parameters and the data, sample V from

V −1| · · · ∼ Gam

(
aν +

T

2
, bν +

∑T
t=1 ν̂

2
t

2

)

where ν̂t = yt − zt − µt − Fktβ
k
t and a prior V −1 ∼ Gam (aν , bν)

Step 3 Conditional on the the state parameters and U , sample φ from φ| · · · ∼ N(m̂, Ĉ)
where

m̂ = Ĉ

(
mφ

Cφ
+

(
∑T
t=1 z

2
t−1)(

∑T
t=1 zt−1zt)

U

)
Ĉ =

(
1
Cφ

+
(
∑T
t=1 z

2
t−1)

U

)−1

and a priori φ ∼ N(mφ, Cφ).

Step 4 Conditional on the the state parameters and φ sample U from

U−1| · · · ∼ Gam

(
aε +

T

2
, bε +

∑T
t=1 ε̂

2
t

2

)

where ε̂t = zt − φzt−1 and a priori U−1 ∼ Gam (aε, bε)

Step 5 Conditional on all other parameters, sample δβ and δµ from a discrete distribu-
tion with probabilities proportional to:

T∏
t=1

N(θt|Gθt−1,Wt(δµ, δβ))
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Table 4. Loadings matrix for the principal components analysis of the slope of the term
structure of interest rates.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
Lag 65.9% 18.2% 5.4% 3.2% 2.3% 1.8% 1.0% 0.4%

2 -0.1735 0.2868 -0.2642 -0.2408 -0.1279 0.2821 -0.5250 0.4433
3 -0.1890 0.2821 -0.2711 -0.2238 -0.1936 0.1433 -0.0552 -0.1570
4 -0.1950 0.2875 -0.2601 -0.1896 -0.1734 -0.0084 0.2678 -0.4022
5 -0.2075 0.2660 -0.2120 -0.0479 -0.0322 -0.0883 0.3100 -0.1563
6 -0.2177 0.2356 -0.1271 0.0725 0.1837 -0.2757 0.0926 0.3030
7 -0.2203 0.2178 -0.0338 0.1888 0.3406 -0.3428 0.0190 0.2782
8 -0.2283 0.1803 0.0556 0.2655 0.2492 -0.2092 -0.0176 -0.1057
9 -0.2350 0.1406 0.1197 0.2740 0.1372 0.1917 -0.1765 -0.2199
10 -0.2337 0.1029 0.2257 0.3090 0.0521 0.3724 -0.1381 -0.1837
11 -0.2365 0.0541 0.2881 0.2189 -0.0527 0.2465 -0.0234 -0.0255
12 -0.2408 0.0188 0.2454 0.0592 -0.3079 0.0313 0.1759 0.1119
13 -0.2353 -0.0273 0.2850 -0.0622 -0.4235 -0.0976 0.2001 0.1987
14 -0.2326 -0.0827 0.2777 -0.1544 -0.2614 -0.1114 0.0577 0.1578
15 -0.2340 -0.1059 0.1927 -0.2476 0.0376 -0.2235 -0.2329 0.0198
16 -0.2254 -0.1502 0.1501 -0.3585 0.2012 -0.2183 -0.2789 -0.1644
17 -0.2176 -0.2012 0.0710 -0.3121 0.2064 -0.0766 -0.0501 -0.3212
18 -0.2179 -0.2118 -0.0432 -0.1688 0.2198 0.2599 0.1372 -0.0231
19 -0.2058 -0.2466 -0.1455 -0.0911 0.2427 0.3654 0.2682 0.1951
20 -0.1921 -0.2831 -0.1972 0.0185 0.1582 0.1772 0.1909 0.2217
21 -0.1906 -0.2780 -0.2310 0.1633 -0.1052 -0.1003 0.1007 0.0761
22 -0.1751 -0.2879 -0.2932 0.2703 -0.2331 -0.1984 -0.0707 -0.1107
23 -0.1571 -0.2956 -0.3008 0.2611 -0.2323 -0.0989 -0.3768 -0.1255

B. Principal component analysis for the term structure of interest rates

Table 4 provides the first eight columns of the loadings matrix of the loadings matrix
for the principal components analysis of the slope of the term structure of interest
rates. Components are ordered according to the percentage of variability explained,
computed as the variance of the component divided by the total variance in the data.
We can roughly interpret the first principal component which explains 66% of the
variability in the interest rates, as the (negative) average of the slope during the last
two years. Similarly, the second principal component contrasts the very recent and
the very old interest rates, roughly how much the slope has changed over the last
two years, while the third principal component compares the rates around the center
of the series with the rates at the beginning and the end of the two years period
under analysis. Surprisingly enough, this decomposition is very similar to the one
that would have been obtained from a wavelet analysis of the series using a Haar
basis system.
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