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Abstract

The analysis of the three dimensional structure of proteins is an important topic
in molecular biochemistry. Structure plays a critical role in defining the function of
proteins, and is more strongly conserved than amino acid sequence over evolutionary
timescales. A key challenge is the identification and evaluation of structural similarity
between proteins; such analysis can aid in understanding the role of newly discovered
proteins, and help elucidate evolutionary relationships between organisms. Computa-
tional biologists have developed many clever algorithmic techniques for comparing pro-
tein structures; however, all are based on heuristic optimization criteria making statisti-
cal interpretation somewhat difficult. Here we present a fully probabilistic framework for
pairwise structural alignment of proteins. Our approach has several advantages, includ-
ing the ability to capture alignment uncertainty, and to estimate key 'gap’ parameters
which critically affect the quality of the alignment. We show that several existing align-
ment methods arise as maximum a posteriori estimates under specific choices of prior
distributions and error models. Our probabilistic framework is also easily extended to
incorporate additional information - we demonstrate this by inclusion of primary se-
quence information to generate simultaneous sequence-structure alignments that can
resolve ambiguities obtained using structure alone. This combined model also provides
a natural approach for the difficult task of estimating evolutionary distance based on
structural alignments. The model is illustrated by comparison with well-established
methods on several challenging protein alignment examples.

1 Introduction

Protein alignment is among the most powerful and widely used tools available for inferring
homology and function of gene products, as well as determining evolutionary relationships
between organisms. In particular, protein sequence alignment uses information about the
identity of amino acids to establish regions of similarity, and has a long history of providing
valuable insights. For example, the alignmen{ of a putative human colon cancer gene with



a yeast mismatch repair gene played a crucial rule in its identification and characterization
(Bronner, 1994; Papadopoulos, 1994; Zhu et al., 1998).

Sequence alignment is most useful for shorter evolutionary distances, when amino acid
composition has not drifted dramatically from a common ancestor. However, when compar-
ing proteins that are distantly related, sequence conservation may be too dilute to establish
meaningful relationships. Because a protein’s function is largely determined by its three
dimensional structure, and significant sequence mutation can occur while maintaining this
structure, it is widely recognized that structural similarity is conserved over much longer
evolutionary timescales than sequence similarity. In addition, sequence alignment cannot
detect convergent evolution, when proteins with similar 3D structure and carrying out sim-
ilar functions have evolved from unrelated genes.

Aligning 3D structures requires choosing which amino acids to match as in sequence
alignment, but has the added complexity of handling coordinate frames arising from arbi-
trary rotation and translation. Early work in structural alignment (Rao and Rossmann,
1973; Rossmann and Argos, 1975, 1976) developed techniques that iterate between a rigid
body registration and an alignment step, and Satow et al. (1986) introduced the use of Dy-
namic Programming (applied to sequence alignment by Needleman and Wunsch (1970)) as
an efficient way to construct the alignment given a registration. Similar methods have been
adopted by many authors Cohen (1997); Gerstein and Levitt (1998); Wu et al. (1998). Most
work uses penalized root mean squared deviation (RMSD) between corresponding backbone
a-carbon (C,) atoms to measure quality of the alignments, but several other measures have
been proposed, including soap-bubble surface metrics (Falicov and Cohen, 1996), differen-
tial geometry (Kotlovyi et al., 2003), and heuristic rules like the SSAP method of (Taylor
and Orengo, 1989).

An alternative to iterative methods is the use of distance geometry avoid the registration
problem, representing each protein by a pairwise distance matrix between all C,, atoms; the
popular DALI (Holm and Sander, 1993) method is an example of this approach. Other tech-
niques are specially tailored for the large-scale computational demands of rapid searching of
large protein databases, sometimes employing highly redundant representations of the data;
these include geometric hashing (Altschul et al., 1990; Fischer et al., 1994; Wallace et al.,
1996), graph algorithms (Taylor, 2002), and clustering methods like VAST (Gibrat et al.,
1996). And some authors combine these ideas with additional heuristics produce faster
or more accurate algorithms, including CE (Shindyalov and Bourne, 1998) and PROSUP
(Lackner et al., 2000). Detailed reviews on pairwise structural alignment methods can be
found in Brown et al. (1996), Eidhammer et al. (2000) and Lemmen and Lengauer (2000).

The profusion of methods shows the difficulties involved in performing structural align-
ments: in defining how to measure alignment quality, and in computing ’best’ alignments
efficiently. It has been well documented in the literature that different algorithms can
produce alignments sharing very few amino acid pairings, and are sensitive to both the
initial alignment and the specific choice of algorithm parameters Godzik (1996); Zu-Kang
and Sippl (1996); Gerstein and Levitt (1998). Additional complications arise when trying
to determined the significance of different alignments Although significant effort has been
devoted to this point and important progress made (Lipman and Pearson, 1985; Mizuguchi
and Go, 1995; Levitt and Gerstein, 1998; Gerstein and Levitt, 1998), the solutions remain

based on heuristics and upper bounds that are difficult to interpret. Finally, all the methods
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described above approach the structural alignment as an optimization problem, finding a
single best alignment. However, structural comparisons obtain substantial uncertainty aris-
ing evolutionary divergence, experimental measurement error and protein conformational
variability, and parameter choices for comparison metrics and optimization algorithms. from
evolutionary changes and measurement error, while hiving the To address these sources of
variability, approaches based on explicit statistical modeling are desirable, and the results
of structural comparisons require careful analysis to understand the impact of uncertainty.

In this paper, we develop a full Bayesian statistical approach to pairwise protein struc-
ture alignment, combining techniques from statistical shape analysis (Dryden and Mardia,
1998a; Small, 1996; Kendall et al., 1999) and Bayesian sequence alignment (Zhu et al.,
1998; Webb et al., 2002; Liu and Lawrence, 1999). This represents one aspect of a gen-
eral Bayesian framework developed here and elsewhere (Schmidler, 2003, 2004, 2006, 2007;
Wang and Schmidler, 2008). Green and Mardia (2006) have independently developed a
related approach for hierarchical Bayesian alignment of protein active sites. However, our
approach differs in a number of important points: we introduce hierarchical priors on the
space of alignments that are equivalent to the standard affine gap penalty of classical align-
ment approaches, but allow us to estimate the parameters controlling the complexity of the
alignment. We also introduce an efficient computational approach that allows rapid com-
putation and both enables identification of alternative alignments and provides measures
of their uncertainty. A significant advantage of our formulation is the unification of many
existing alternative methods for structural alignment, which can be seen as special cases of
MAP alignment under different specific choices of error models or alignment priors. This
provides valuable insight into the relationships and properties of existing algorithms.

Another powerful advantage of a fully probabilistic framework is the ability to incorpo-
rate disparate sources of information in a natural and coherent fashion. Using our Bayesian
structural alignment model as a platform, we also develop a fully probabilistic approach
for simultaneous sequence-and-structure alignment, which combines information from both
primary sequence and 3D structure. In the absence of unambiguous geometric matching
for highly-divergent proteins or low-resolution structural data, amino acid identities or pre-
ferred substitutions can significantly alleviate the remaining uncertainty. We demonstrate
this approach on some difficult structural alignment problems from the literature. Finally,
we show that our simultaneous alignment approach provides a natural method for esti-
mating evolutionary distances directly from structure comparison, a notoriously difficult
task.

2 Bayesian protein structure alignment

Let X, x3 and Y}, x3 be coordinate matrices for two proteins, with rows x; (y;) containing
coordinates of the C, of the i*" amino acid. Denote an alignment between X and Y by the
match matrix M such that [M];; = 1 if residues X; and Y; are matched, and 0 otherwise.
Also, denote by Xy and Yas the [M| =37, [M];; non-zero rows of M'X and M'MY, giving
the coordinates of the matched residues. Since each position in X can be matched to at
most one position in Y, each row and column of M contains at most one non-zero entry;
M is the adjacency matrix for a bipartite graph.

We adopt a Bayesian approach to structuge alignment which defines a prior distribution



on alignments P(M) and, given a probability model for the coordinates matrices X and Y
conditional on M, obtains the posterior distribution:

P(X,Y | M)P(M)

POTTXY) = b x v [ 3 P(D)

where the marginal likelihood P(X,Y) = ) ,, P(X,Y | M)P(M) involves a sum over
all possible alignments. Although the number of matchings is exponential in n and m,
inferences may be obtained by Monte Carlo sampling from the posterior P(M | X,Y) to
approximate posterior summaries such as the posterior mode

M = argmj\%xP(M | X,Y) (1)
or marginal alignment matrix (p;;) for p;; = >, mi; P(M | X,Y).

2.1 Likelihood

We adopt a probabilistic model for matched regions of the proteins given by
Yu] = [Xnm) + € e ~ N(0,0%1) (2)

where [X] denotes the size-and-shape of X, formally defined (Dryden and Mardia, 1998b;
Kendall et al., 1999) as an equivalence class of invariant matrices under the group of Eu-
clidean transformations:

[X]={XR+pu:RcSO(3) ucR}.

Here SO(3) is the special orthogonal group of 3 x 3 rotation matrices. Alignment using
non-rigid transformations is described elsewhere Schmidler (2007).
The likelihood is then given by the joint density:

P(X,Y | M) = P(Yy | Xm)P (X)P(YM)

3|M|
= (270%)" 2 exp— 22HYM (XuR+10)FP(X) I] fwld  3)
€Yy

where || X||p = tr(X’'X) is the Frobenious norm, f(-;)) is a one-parameter density for
inserted/deleted positions, P(X) the probability distribution describing the shape of the
reference protein X. Here (]% M, [iar) are the optimal rotation and translation placing X and
Y on a common coordinate system, obtained by least-squares calculations R=UVT and
fi = Yar — Xpr R with V,U € SO(3) obtained from singular value decomposition Y;5C Xy =
UDVT where C = [I — %HT} is a centering matrix.

The likelihood (3) may be interpreted as the profile likelihood for M, maximizing over
nuisance parameters (u, R) conditional on M. For most structural alignments, uncertainty
on the (u, R) given M is minimal. Alternatively, parameters (u, R) may be assigned prior
distributions and integrated out. Green and Mardia (2006) and Wang and Schmidler (2008)
adopt this approach, and Schmidler (2006, 2007) discuss both approaches.

We may also interpret (3) as a sampling density defined directly on (a local tangent space
approximation to) the underlying shape spage of the configurations, replacing 3 |M| with



3| M| — 6, the dimension of the shape manifold, in the normalizing constant. The exponent
1 Yar — (XarRas +17),)||% = d%(X,Y) is known as the (squared) partial Procrustes distance,
and serves as the Riemannian metric on this (size-and) shape space (Dryden and Mardia,
1998a; Kendall et al., 1999). Therefore (3) effectively defines a rotation/translation pair
associated with every matching M, allowing inference to proceed over the space of possible
M only rather than (M, R, u).

In what follows, we take f(:|]\) = A = 1/|Q| uniform over a bounded region ; then
A can be interpreted as a baseline gap penalty as discussed in Section 2.4. Note that the
factorization P(X,Y) = P(Y | X)P(X) means the marginal distribution P(X) cancels in
the posterior distribution, and may be left unspecified so long as it is assumed independent
of parameters M and 2. This is similar to a proportional hazards model where the baseline
risk is left unspecified to obtain a semiparametric survival model. In addition, the isotropic
error model ensures the model is symmetric in X and Y if we take

P(X) =[] flailN).

r,€X

2.2 Prior on the alignment matrix

Prior distributions on matchings P(M) may be specified in a variety of ways; here we adopt
an gap-penalty formulation familiar in the sequence and structure alignment literature,
where unmatched stretches of amino acids are penalized by the affine function:

s(M)
u(M;g,h) = gs(M) +h Y Li(M)
=1

with gap-opening penalty g and gap-extension penalty h, where s(M) is the number of gaps
in alignment M and [;(M) is the length of the i gap. Exponentiating and normalizing
this function provides a prior on M (Liu and Lawrence, 1999), essentially a Markov chain
parametrized as a 'Boltzmann chain’ Gibbs random field. (Saul and Jordan, 1995; Schmidler
et al., 2007).

P(M | g,h) = Z(g, hye(M 9 (4)

with normalizing constant Z. This prior encourages grouping of matches together along the
protein backbone. It allows for explicit control over the number of gaps, compared to e.g.
the prior of Green and Mardia (2006) which only controls the expected total length.
Under the affine-gap-penalty prior, sampling may be done efficiently using stochastic re-
cursions analogous to those of standard sequence alignment algorithms (Liu and Lawrence,
1999), along with additional Monte Carlo steps, as described below. Note that this prior
requires the alignment to be preserve the sequential order along the polypeptide backbone,
requiring topological equivalence of the two proteins. More general priors applicable for
comparing proteins of potentially different topologies (convergent evolution) are easily ac-
commodated with the introduction of additional Monte Carlo steps, but will be described
elsewhere. Although the prior allows for simultaneous gaps on both proteins, for identifi-
ability purposes we do not allow gaps in X to be followed by gaps in Y (see Webb et al.

(2002) for details).
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2.3 Hyperpriors

In standard sequence and structure alignment algorithms, the gap parameters g and h
are assigned fixed values. However, they have a critical effect on the resulting alignment,
with large opening gap penalties ¢ tending to produce alignments with few gaps and vice
versa. In the context of sequence alignment, Liu and Lawrence (1999) treat (g, h) as nui-
sance parameters assign hyperpriors, integrating them out to obtain a marginal posterior
distribution over alignments. We similarly assign g and h Gamma hyperpriors

g~ Ga(agv bg) h ~ Ga(aha bh) (5)

with hyperparameters (ag,bg,an,bp) chosen to be diffuse. An alternative is to utilize
manually-obtained reference alignments (for example, BAIIBASE, see Thompson et al.
(1999) and Thompson et al. (2005)) to obtain informative priors for g and h. The model is

completed by specifying inverse-gamma prior 02 ~ 1Ga(a,, b, ) on variance parameter 2.

2.4 Many existing structure alignment algorithms are special cases

Rather than summarize the posterior P(M | X,Y’) by Monte Carlo sampling, we may in-
stead obtain a single MAP alignment (1). by maximizing the (log-) posterior. Conditioning
on parameters § = (02, g, h, \), we obtain

log(P(M | X,Y,0)) = —g\M\ log(2mo) — %d%(XM,YM) + (n+m — |M])log(\)
+ Iog(Z(g, h)) - U(M;g, h) (6)

and noting that ng\l/[) li(M) = (n+ m) — 2|M]| this is equivalent to minimizing
dp(Xar, Yar) + u(Mi g, 17) + C(0%, X, 9, 1)

where g* = 02(g+ 3 log(2m0) +log ) and h* = 02h, and C(c?, A, g, h) is independent of M.
Therefore the MAP estimate for M with (g, h, A, o) fixed corresponds to a global alignment
obtained via dynamic programming (Needleman and Wunsch, 1970), using RMSD under
optimal least-squares rotation/translation as the dissimilarity metric, with gap opening and
extension penalties given by ¢* and h*. Here (% log(2mo) + log A) serves as a lower bound
on the gap extension penalty.

Note that relative posterior probabilities of two alignments differing by an unmatched
pair (x;,y;) is greater than one if and only if

lyj — (xiR+ )] < g"(1 = &;j) + h™&;

where &;; is an indicator taking value 1 if removing the pair (x;,y;) creates a new gap in the
alignment and 0 otherwise. Thus the model favors inclusion of pairs below a dynamically
estimated threshold given by ¢* and h*. Since these threshold parameters are estimated
from the data (compared to standard optimization-based alignment algorithms where they
are fixed a priori), our approach automatically controls for the error rates associated with
multiple comparisons.
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It is also worth noting that the assumption of normally distributed errors in (2) may be
replaced with an alternative error model, altering the dp term in (3) and the corresponding
posterior distribution. In particular, robust error models with heavy tails may be consid-
ered (e.g. Student-t or double exponential distributions) to account for possible outliers.
In this way, our probabilistic formulation provides statistical insight into various existing
optimization-based algorithms.

For example, Gerstein and Levitt (1998) define the similarity between residues z; and

yj by
C

1+ (%)2

where d;; denotes the distance between ¢ and j under the current optimal registration and ¢
and dy are arbitrarily chosen constants. Then dynamic programing is employed to obtain the
alignment M maximizing the similarity between proteins, defined by Z(i7 feM S;j. This is
equivalent to obtaining the MAP estimate under our Bayesian model when the distribution
of the error € is given by f(z) o exp {—M (1+ (ac/d%))_l}, which is an exponentiated

Sij =

Cauchy density. (Note that f(z) is indeed a proper density as [ exp{—w;%}dm < 00).
Thus our unified probablistic framework allows us to interpret such heuristics in terms of
their underlying assumptions about the data generating process.

3 Computational algorithms
Combining (3), (4) and (5) we obtain the posterior distribution:
P(M,g,h,o*|X,Y) o P(X,Y|M,0%)P(M|g, h)P(c*) P(g) P(h)

This posterior can be explored using a Markov chain Monte Carlo algorithm that iterates
between sampling from the conditional distributions, P(M]|g, h,02, X,Y), P(g,h|M,X,Y)
and P(c?|M, X,Y). The variance o2 is obtained by standard conjugate update:

3 1
0'2|M,X,Y ~ 1Ga <ao' + §|M’,bg + 2d2p(XM,YM)> .

The gap penalty parameters (g,h) are updated jointly by a two-dimensional geometric
random walk proposal with Metropolis-Hastings acceptance probability v ((g,h), (¢, 1))
equal to

Z(g/7 h/)efu(M;g/,h’) g/h/

1 g ag—1/3./ ap—1 —(b (91_9)+bh(h’—h))
" Z(g,h)e—u(M;g,h) gh( /9)* (R /h) e (b )

The normalizing constants Z(g, h) required for (7). can be calculated efficiently via the
recursions provided in Appendix A.

As shown by Schmidler (2003), if we condition on registration parameters (R, u), the
alignment matrix M may be sampled from its full conditional distribution using a forward-
backward algorithm similar to that of sequence alignment (Zhu et al., 1998; Liu and
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Lawrence, 1999) and described in Appendix A. Wang and Schmidler (2008) use this ap-
proach for structural alignment. However, here we have instead defined the likelihood (3)
directly on shape space using maximal values (R, ft) associated with each distinct M, so
this is no longer the case. But we may still use this efficient block Gibbs step to generate ef-
ficient Metropolis-Hastings proposals P(M — M) with distribution q(M’; Ry, puar) where
(Rar, o) is the registration associated with the current state M, and

ao(M';R,p) & P(M')(2m0) 2 e a2 W =XaelE TT p(ln)

Yi€Y

where X3y = XarR + 1//. This g can be sampled efficiently using the recursions of
Appendix A. The proposed M’ is then accepted according to the Metropolis-Hastings

criteria
— i { W(M')Q(M;RM',MM’)}
v =min< 1, .
m(M)q(M'; Rar, pnr)

with the necessary normalizing constants of ¢ obtained from the sampling recursions.

These dynamic programming proposals are highly efficient for local sampling, and suf-
ficient for closely matched proteins. However, when multiple alternative alignments with
distinct rotation/translations exist, mixing between them will be slow. We therefore add
an additional Metropolized independence step where global moves are proposed without
conditioning on (R, ). To construct the independence proposal distribution, we generate
a library of viable registrations using the following procedure:

1. Compute the least-squares registration for each pair of consecutive 6-residue subse-
quences on protein X to each such subsequence on Y.

2. If the subsequence RMSD is less than threshold §, include the corresponding registra-
tion in the library.

The library is computed only once when the algorithm is initialized, and stored for use
throughout the simulation. At each independence proposal a registration (R, ') is drawn
uniformly at random from the library, and a new alignment M’ proposed from q(M’; R', 1/),
again using the forward-backward algorithm, and accepted according to the Metropolis-
Hastings criteria

+ — min {17 m(M")g(M; R, i) }

m(M)g(M'; R'p/)

4 Bayesian synthesis of sequence and structure information

Another advantage of the Bayesian probabilistic framework given above is the ability to
seamlessly incorporate additional information when available. For example, our approach
leads to a natural algorithm for performing alignments based on primary sequence and
tertiary structure simultaneously. This allows alignments which synthesize two types of
information - geometric conservation of the protein architecture and physico-chemical prop-
erties and evolutionary information provided by sidechain identities. As an important con-
sequence, our approach enables the estimation evolutionary distances from structure com-
parison, which has previously been quite difﬁgcult (Chothia and Lesk, 1986; Johnson et al.,



1990; Grishin, 1997; Levitt and Gerstein, 1998; Wood and Pearson, 1999; Koehl and Levitt,
2002). This has important implications because structure is much more strongly conserved
than sequence, enabling comparisons across much longer evolutionary timescales.

The model given by (3) for structural observations is easily extended to account si-
multaneously for both sequence and structure information by assuming the structure and
sequence to be conditionally independent given the alignment M, ie. P(A* AY, XY |
M,0) = P(A®,AY | M,0)P(X,Y | M,0). We take the conditional likelihood of the se-
quences given the alignment to be:

pAr, A e) = [ ewray) [T e, ) I] ec.4Y) (8)
(3,5)eM igM jEM

where AY is the i-th amino acid in protein x, ©(a, b) gives the probability of residues a and
b being matched on related sequences and O(a,-) = ©(-,a) gives the marginal probability
for residue a. This is the standard likelihood form of sequence alignment (Bishop and
Thompson, 1986), and these joint and marginal distributions are the basis of standard
sequence alignment substitution matrices such as PAM and BLOSSUM (Dayhoff and Eck,
1968; Henikoff and Henikoff, 1992), where the distributions are estimated from alignments
of closely related proteins. For example the PAM-k substitution can be written as ¥ =

(Uk(a, b)) where
@k(a, b)
U (a,b) = 10log;, (@(a, -)@(-,b))
Sequence alignment may then be formulated as a maximum-likelihood or Bayesian inference
problem (Durbin et al., 1998; Zhu et al., 1998; Liu and Lawrence, 1999; Bishop and Thomp-
son, 1986), including inferences on k which estimate the evolutionary distance between the
two protein sequences.

Multiplication of equations (3) and (8) directly yields a model for simultaneous inference
on M which combines both sequence and structure information. However as pointed out
structure is generally much more strongly conserved than sequence; thus we would like to
weight the contribution of structure information in determining the alignment more heavily
than that of sequence. In this way the sequence alignment information will server primarily
to provide supplementary information in portions of the alignment where structural in-
formation leaves uncertainty; as we will see it also permits the estimation of evolutionary
distance from the largely structure-based alignment.

To control the relative weighting of sequence and structure information we introduce

a discount (or inverse temperature) parameter 7, which results in the modified sequence
likelihood

Il jyear ©(AT, AN Tigar OCAT, ) T1jgas ©C, AD)"
2oaes ave L jyem @(Agp* Ay*)” HigM 9( 7ol 'gM o, Ay)"
x Yy n
L I )
>4, O Am Ay) EA ( EA Ap)n

(i,3)eM

Pr(A*, AY[M, ©,n) =

Note that n = 1 corresponds to simple multiplication of the sequence and structure likeli-
hoods (3) and (8). However, asn — 0, Pr(A?, g4y|M , ©,n) approaches a uniform distribution



for every O, with n = 0 reducing to the structure-only model (8). In fact, we can consider
estimating 7 itself, generally restricting 7 < 1. Then 77 may be interpreted as a measure of
agreement between sequence and structure, and may shrink to downweight the importance
of sequence matching when it is clearly incompatible with the structural information.

5 Examples

We apply our Bayesian structural alignment algorithm to a number of illustrative examples.
Hyperparameter values used are given in Table 1: the prior distribution for 0? has mean
1.5A and variance 1.0A, in line with the results for analogous proteins in Chothia and
Lesk (1986), and the prior mean for h is about 40 times larger than the prior mean for g
following Gerstein and Levitt (1998). Results were robust to moderate changes in these
hyperparameters. All inferences described are based on 100,000 samples obtained after a
burn-in period of 20,000 iterations, with convergence verified by visual inspection of the trace
plots and using the Gelman-Rubin convergence test (Gelman and Rubin, 1992). Monitored
quantities include the length of the alignment, the rotation angles corresponding to rotation
matrix Rz, the translation vector fips and the two gap penalty parameters (g, h). We report
MAP alignments unless otherwise noted.

(425 bg ap, bh Clg bg
225 (15| 2 [ 1/2| 2 |20

Table 1: Hyperparameter values used in the examples.

We first analyze 16 pairs of proteins from Ortiz et al. (2002). This list includes pairs
of very different lengths and proteins from various structural classes, including mainly «,
mainly 3, and o + 3. Table 2 summarizes the results obtained using three different values
for A ranging from a relatively low (7.6) to the relatively high (9.6), and compares the
Bayesian alignments against those obtained using the popular CE algorithm (Shindyalov
and Bourne, 1998). In most cases, the differences between Bayesian and CE alignments are
important; in more than half the examples less than 20% of the matched residues coincide.
These differences are mostly due to the way CE handles gaps: to reduce the computational
complexity, CE assumes that gaps cannot be introduced simultaneously in both proteins.
Similar restrictions can be easily introduced in our model by setting ¢;;(2,3) = 0, and
when this is done the results for both methods tend to agree. Generally speaking, the
added flexibility means that the quality of the Bayesian alignments is superior to CE: it
tends to produce alignments containing more matched residues but with a lower RMSD.

Some pairs of proteins seem to be somewhat sensitive to the choice of A (for example,
1ACX-1COB), while the alignment of other pairs seem to be remarkably robust (for ex-
ample, 1TUBQ-FRD). In general, larger values of A (which imply larger penalties for both
opening and extension) tend to generate longer alignments. The sensitivity of the model to
A is not surprising; indeed, setting A = 0 immediately implies that the optimal alignment
is empty for any pair of proteins. The model is robust to small changes in A, which can
be absorbed by adapting on the value of g and h. However, when A is increased by a large
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amount, we set a new baseline threshold that pairs of residues need to satisfy in order to be
included in the alignment, favoring the alignment of sections that were previously not close
enough to be aligned. When structural similarity varies dramatically along the alignment
(as is the case for some pairs in our list), this “threshold effect” can produce important
changes in the resulting alignment. In general we can think of A\ as controlling the tightness
of the alignment. In our our experience, a conservative value such as A = 7.6 works well in
most applications, and we use this value in further illustrations.

Table 2 also shows the posterior median of the gap penalties for each alignment. Opening
penalties range between 5 and 9, while extension penalties range from 0.01 to nearly 0.9,
reflecting the differing levels of similarity across different pairs.

Next, we consider in detail the alignment of two a proteins from the globin family,
5MBN and 2HBG. Figure 1 presents both the marginal alignment matrix (which provides
information on the uncertainty associated with the alignment) and the MAP alignment,
comparing it against that obtained from CE. The most striking feature about this example
is that different alignment methods tend to disagree in regions where the uncertainty in the
Bayesian alignment is high (the regions surrounding the gap between residues 47 and 62 of
5MBN:_, the extremes of the helix between residues 81 and 98 of 5SMBN:_, and at the very
end of the alignment). This is an additional argument for using a probabilistic alignment
framework, rather than relying on a single optimum. In Figure 2 we show the prior and
posterior distributions associated with both gap penalty parameters in this example, which
demonstrate that the model does learn about and adapt these parameters.

Finally we explore the alignment of the o 4 3 proteins ICEW:I and 10UN:A. Lackner
et al. (2000) describe two alternative alignment for these proteins having a comparable
number of equivalent residues (70 vs. 68) and RMSD (2.4A both), which arise by shifts in
the alignment of the secondary structures. Figure 3 shows the marginal alignment prob-
abilities for all pairs of residues. Unlike the previous example, uncertainty levels in this
alignment are very high, particularly in the a-helix region between residues 10 and 20. The
two alternative alignments for this region correspond to the two alignments described in
Lackner et al. (2000). However, the alignment of the rest of the proteins corresponds to the
70 residue alignment discussed by authors. This example shows how the global sampling
of the full posterior enables the model to automatically weight the relative importance of
closely related alternative alignments, and how the estimation of gap penalties can further
improve this.

5.1 Combined Sequence-Structure Alignment

To illustrate the performance of our simultaneous sequence-and-structure alignment ap-
proach, we consider two pairs of proteins that have been previously analyzed in the lit-
erature. For convenience we consider a discrete set of discount factors ranging from 0 to
1 in increments of 0.1, along with 21 PAM matrices ranging from PAM100 to PAM300.
Non-informative uniform prior distributions on are used for both discount factors and PAM
matrices. All results are based on 130,000 iterations of the Gibbs sampler, after a burn-in
period of 30,000 iterations.

In the first example we analyze two kinases studied by Bayesian sequence alignment in
Zhu et al. (1998); a guanylate kinase from yeast (1GKY) and an adenylane kinase from the
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beef heart mitochondrial matrix(2AK3_A), which are VAST structural neighbors (Gibrat
et al., 1996). A structural alignment for these proteins using the combinatorial extension
(CE) algorithm (Shindyalov and Bourne, 1998) shows very little sequence similarity (un-
der 13% identity). Figure 4 compares our structural and simultaneous sequence-structure
alignments for these two proteins by showing the marginal probability of aligning any pair
of residues, integrated over all other parameters in the model (including PAM matrices and
discount factors). Both algorithms tend to agree on which regions should be aligned. For
example, both avoid aligning the section of the a-helix located between residues 150-162 in
1GKY and residues 175-191 in 2AK3:A (marked III in Figure 4). The axes for these helixes
are not parallel, producing a big divergence at the C terminus.

In spite of the similarities, some differences are evident among both models. For exam-
ple, a section of the alignment starting at residue 108 of 1GKY (marked II in Figure 4) is
excluded when the sequence information is included in the analysis. Both proteins present
a short helix in this region, and they can be structurally aligned reasonably well. However,
there are important incompatibilities in the two sequences for these helices, which suggests
that this section is not functionally important. Table 3 presents the sequence correspon-
dence associated with the structural alignment of this section, along with the scores for each
site. Note that the structural alignment implies no conserved residues in the area and the
substitution of various basic and acidic amino acids by either hydrophobic or hydrophilic
residues. Indeed, of the eight substitutions, only one happens between members of a com-
mon chemical group. This is local discrepancy between sequence and structure which is not
seen in other regions of the proteins, and suggests that the region should dropped from the
alignment. Similarly, a couple of short regions in the remote site for mono and triphosphate
binding located between residues 35-80 for 1GKY and 38-73 in 2AK3:A (marked I in Fig-
ure 4), that show a moderate probability of being aligned under the structural model, are
downweighted (but not completely removed) when the sequence information is included.
This region, which was probably functionally important in an ancestor, has degraded since
both proteins diverged and does not seem functionally active in these proteins. These two
minimal changes in the alignment lowers the RMSD from 3.5Ato a median of 1.95A (with
90% high posterior density interval of (1.84, 2.17)).

Figure 5 shows the marginal posterior probability distribution over PAM matrices that
arises from our joint sequence-structure model, contrasting it with the results in Zhu et al.
(1998). Whereas the sequence-based analysis in the original paper led to a multimodal
posterior with modes at PAMs 110, 140 and 200, our posterior is smooth and unimodal, with
its mode located between PAM200 and PAM210. This demonstrates the strong additional
information obtained by aligning based on structure and sequence simultaneously: virtually
all sequence alignments which are compatible with structural alignment indicate the larger
larger evolutionary distance (posterior mean 212, median 206). The marginal mode for the
temperature is 1 (posterior probability 0.57), indicating that there is very little need to
discount sequence with respect to structure information.

Our second example focuses on comparing the single-chain fused Monellin from the
Serendipity berry (1IMOL:_A) and the chicken egg white Cystatin (ICEW:_I) analyzed pre-
viously in Lackner et al. (2000) and Kotlovyi et al. (2003). Figure 6 shows the Bayesian
alignments obtained with and without inclusion of sequence information. Again the two

alignments are quite similar as expected, but the sequence information leads to small re-
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finements in the structural alignment. For example, two alternative alignments of the
initial strand are supported by structure-only alignment, with the one where 1:MOL:A is
shifted towards the C terminus being slightly preferred (this is also the one preferred by
CE). However, incorporation of sequence information reverses this to prefer the N-terminus
shifted alignment (approximate posterior probabilities of 0.85 vs 0.15), and examination of
the sequences strongly supports this choice. Table 5 shows the sequence alignment under
both alternatives, with amino acids colored by a simple classification according to physico-
chemical properties (Table 4) to demonstrate the improved similarity on top of amino acid
identity. The sequence-structure alignment yields six matches in amino acid type, includ-
ing an additional two identities and a hydrophilic match on top of the three hydrophobics
achieved by the structural alignment. The corresponding price paid in structural distance
(mean RMSD of 1.91A versus 1.89A, with both 90% hpd regions being (1.81A,2.05A)) is
insignificant. This example clearly shows that incorporation of sequence information can
refine structural alignments in areas where the structure alignment is ambiguous.

Figure 7 shows the joint posterior distribution over PAM matrices and discount factors
for this example. Relative to the previous example, there is more uncertainty in both the
evolutionary distance and the discount factor. The diagonal pattern in the plot suggests an
obvious dependence between these two parameters. This is to be expected, as both 1 and
evolutionary distance increase the entropy of the joint amino acid distribution. Nevertheless,
the results point towards a relatively large divergence time (recall one is a plant protein
and the other is an animal protein), with the mode of the distance at 210.

To avoid confounding of PAM and tempering parameters, one parameter may be cho-
sen in advance and fixed. For example, the substitution matrix may be chosen to reflect
prior information about evolutionary distance and inference performed only on the discount
factor, or viceversa. When 1IMOL_A and 1CEW_I are aligned using PAM250 as the fixed
substitution matrix, the resulting distribution for discount factor is very similar: the mode
is located at 7 = 0.6 with a posterior probability of 0.32, and most the remaining mass
concentrates in 7 = 0.5 and n = 0.7, both with posterior probability of 0.24. Differences
in the actual alignments are not obvious from the marginal distribution plot (not shown).
However, a more detailed look at the values shows that fixing the PAM matrix further
decreases the probability of the CE-like alignment below 10%.

The examples show that simultaneous estimation of PAM distance and discount factor
may be difficult. Since larger evolutionary distances increase sequence divergence/decrease
sequence conservation, both low discount values and high PAM distances imply more toler-
ance to substitutions. One way to measure substitution tolerance is via the Shannon entropy
of the joint distributions (Figure 8). Although increasing n and k both increase this entropy,
they do so in slightly different ways. We observe that PAM100 with a temperature of 0.8
has roughly equivalent entropy to untempered PAM200. However, PAM100/0.8 assign a
much larger probability of match than does PAM200/1.0, as seen by the darker diagonal.
In addition, temperature increases treat all combinations of amino acids in the same way,
and thus low probability regions tend to disappear quickly. This is not so for increases in
the evolutionary distances. In the limit of k, the PAM joint distribution will converge to
the product of independent marginal distributions given by the stationary distribution of
the underlying Markov chain (estimated as overall population frequencies). In contrast, as

the discount factor approaches 0, the joint distribution and thus the marginal distributions
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converge to uniform. Figure 8a also shows that differences between PAM matrices grow
weaker as the discount factor decreases. In the extreme case when 1 = 0, all matrices are
equivalent. Thus restricting or fixing the discount factor is important to improve inference
on evolutionary distances.

Finally, it is important to mention that we have not found alternative methodologies in
the literature capable of this type of information synthesis, against which to compare our
results. One of the few methods available is an extension of the combinatorial extension (CE)
method Shindyalov and Bourne (1998), accessible via http://cl.sdsc.edu/ce.html. However,
in this implementation there is little control on the choice of substitution matrices and, for
the examples we have studied, the sequences seems to have little practical influence in the
final results.

6 Conclusions

We have presented a unifying probabilistic framework for protein structure alignment, based
on Bayesian hierarchical modeling. Computationally efficient MCMC algorithms for sam-
pling the posterior distribution enable us to directly account for uncertainty over alignments,
including identification of alternative alignments and evaluation of their relative impor-
tance. Our model provides insights into the relations between and assumptions of standard
optimization-based alignment techniques, along with a unifying framework that facilitates
comparisons between them. It also naturally incorporates additional information, such as
the inclusion of sequence information in structural alignments. As a byproduct of the lat-
ter, we obtained a model which can estimate evolutionary distance directly from structural
alignment, an otherwise difficult task. The examples shown clearly highlight how these ad-
vantages of our model aid in identification of functionally relevant regions and in resolving
ambiguities in alignments. By introducing a discount parameter, we are able to control the
influence of the sequence information on the final alignment, an important characteristic
missing in previous attempts to combine sequence and structure. As noted, PAM distance
and discount factor are correlated, and inference on evolutionary distance will therefore be
more reliable if additional information is used to determine the discount factor; this is an
area for additional study. Finally, we feel that that sequence-structure alignments provide
the most insight when when used in conjunction with structure-only alignments as done in
the examples. Comparisons between the two appear to provide more direct information on
conservation than do comparisons between structure-only and sequence-only alignments.
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A Dynamic programming forward-backward sampling

As shown by (Schmidler, 2003), if we condition on registration parameters (R, i), the align-
ment matrix M may be sampled from its full conditional distribution using a forward-

backward algorithm similar to that of sequence alignment (Zhu et al., 1998; Liu and
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Lawrence, 1999). Let v; ;(k) be the probability of the alignment of the i'* prefix of X
and the j** prefix of Y ending in type k, with & = 1 meaning that both final residues are
aligned, k = 2 inserts a gap in X and k = 3 inserts a gap in Y. Then

3 3
vig (1) =Y aig(k, Doicyj1 (k) vij(2) = ik, 2)vio (k)
k=1 k=1

3
vig(3) = ik, 3)vi 1 (k)
k=1
and letting dgj = |ly; — (#;R+ 11/)||? the transition weights are given by

A exp{—ﬁd?j} k=1

(2#02)%

qm.(l7 k) — exp{g =+ h} (lv k) = (17 2) or (13 3)
exp{g} (I,k)=(2,2) or (3,3) or (2,3)
0 (I,k) = (3,2)

In order to ensure identifiability of the alignments, we do not allow a gap in Y to follow a
gap in X, hence ¢32 = 0. The initialization of these recursions are

A 1,
)= G o | gyt |

A 1 )

A 1 )
vi;(1) = (2mo2)i2 P {_Mdzl +U—1Dg+ h}

v1,;(2) =exp{(j +1)g + h} and v;1(3) =0
Note that vy, ., contains the sum over all alignments, and given (g, h) the same algorithm
with ¢; ;(1,1) = 1 can be used to efficiently compute the normalizing constant Z(g,h) in

the gap-penalty prior (4), as required for the acceptance probability (7). Once g; ;(k) is
available for all (7, ), the alignment is sampled backwards, starting with

 Unm(k)
> Onm (1)
and then conditionally adding a matched pair or a gap on one of the proteins with proba-
bilities.
gi—1,j—1(l, k)vi—1j—1(k)
St Gi-1,j—1 (1 k)vim1, o1 (k)

ui (k1) =
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Figure 1: Bayesian structural alignment of 5SMBN and 2HBG. (a) Marginal alignment prob-
ability matrix for all pairs of residues, showing uncertainty associated with the alignment.
(b) Plot of all sampled alignments (c) Comparison of the MAP alignment (red) with the
CE alignment (blue); common regions are shown in purple.
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Figure 2: Prior and posterior distributions for gap penalty parameters obtained for the
Bayesian alignment of globins 5MBN and 2HBG. The Bayesian approach allows the algo-
rithm to adaptively determine the appropriate gap parameters rather than treating them
as fixed.
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Figure 3: Marginal alignment matrix for the Bayesian structural alignment of IOUN:A
and 1CEW:I. The posterior uncertainty in the alignment can be seen at the N-terminus,
where two possible alignments of the a-helix at positions 10-20 have comparable posterior
probabilities.
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Figure 4: Marginal probabilities over aligned pairs for 1IGKY and 2AK3:A. (a) Shows
alignments based only on structure, while (b) presents alignments that also incorporate
sequence information. Note that although there is some structural similarity in regions I
and II, sequence similarity in these areas is low.

2AK3:A|R T L P
1GKY G V K S
-3 0 1

Q A A
V K I

E
A
0

w

-2 -1 -1

Table 3: Sequence alignment of corresponding to the best structural alignment between
region IT of 2AK3:A and 1GKY, with residues 93-100 of 2AK3:A matched with residues
103-111 of 1GKY. Numbers correspond to the PAM 250 (log-odds) scores for each matched
residue pair, and clearly show that despite the shape similarity, there is little evidence of
common ancestry in this region of the protein.

Group | Type Amino acids
1 Non-polar, hydrophobic | A, V, L, I, P, M, F, W
2 Polar, hydrophilic G, S, T,C,N,Q,Y
3 Acidic D, E
Basic K, R, H

Table 4: Simple amino acid classification based on chemical properties

23



Posterior Probability
Posterior Probability

Xurew Nvd Xujew Avd
(a) (b)

Figure 5: Posterior probabilities of PAM distances based on sequence information alone (a)
and based on the Bayesian sequence-structure alignment
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Table 5: Sequence alignment of the first strand of IMOL:A and 1CEW:I induced by the
two alternative models. (a) Mode using structural information only and (b) Mode under
the Bayesian simultaneous sequence-structure alignment. Colors refer to the classification
in Table 4; note the improvement in matching of chemical classes.
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Figure 6: Marginal probabilities over aligned pairs for IMOL:A and 1CEW:I. (a) Shows
alignments based only on structure, while (b) presents alignments that also incorporate
sequence information. Circles show the strand region discussed in Table 5.
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Figure 7: Heat map representation of the joint posterior distribution over discount factors
and PAM matrices for 1:MOL:A and 1ICEW:I.
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Figure 8: (a) Entropies of the joint from induced by different evolutionary distances and
tempering parameters. (b) Heat map plots of the joint distributions. Amino acids are
ordered alphabetically order starting Alanine in the lower-left.
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