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1 Introduction

In seeking to extend the scope of standard parametric families of distributions one is nat-

urally led to mixture models. Continuous mixture models, arising through a parametric

continuous family of mixing distributions, typically achieve increased heterogeneity but

are still limited to unimodality and usually symmetry. Finite mixture distributions pro-

vide more flexible modeling, since with appropriate mixing, and sufficiently large number

of mixture components, they can approximate a wide range of density shapes.

Hence, mixture models are commonly utilized to provide a flexible framework for

modeling distributions with non-standard features. Under this setting, inferential interest

focuses on the mixture distribution rather than the individual components that comprise

the mixture. In this context, key Bayesian modeling approaches build on discrete mixtures

with an unknown number of components or nonparametric mixture models based mainly

on Dirichlet process (DP) priors (see, e.g., the respective reviews in Marin, Mengersen

and Robert, 2005, and Müller and Quintana, 2004).

The methodology proposed in this paper is concerned with mixture deconvolution

problems, which provide another important application area for finite mixture models.

We consider univariate continuous distributions on the real line, for which the density of

a general finite mixture model can be denoted by
∑k

j=1 πjfj(·), where the fj(·) are densi-

ties on R, and the mixture weights πj ≥ 0 with
∑k

j=1 πj = 1. For mixture deconvolution

settings, of primary interest is inference for the subpopulations fj(·) comprising the mix-

ture population model, which thus shifts the focus to mixtures with a specified, typically

small, number of components, k, each one of which has a specific interpretation under

the particular application. For instance, in epidemiological studies, the subpopulations

of interest may correspond to non-diseased and diseased subjects (and thus k = 2), or

the entire mixture may model an infected population with components corresponding to
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k distinct stages of infection.

It is well known that the mixture components fj(·) in the general mixture model

∑k

j=1 πjfj(·) are not identifiable without restrictions on the model parameters. Various

forms of identifiability results are possible when the fj(·) are assumed to correspond to

specific parametric families of distributions (e.g., Titterington, Smith and Makov, 1985).

Addressing the nonidentifiability issue is more challenging under a semiparametric mix-

ture model setting where the fj(·) are left unspecified under a classical nonparamet-

ric approach, or assigned nonparametric priors under Bayesian nonparametric model-

ing. Recent work of Bordes, Mottelet and Vandekerkhove (2006) and Hunter, Wang and

Hettmansperger (2007) provides identifiability results for a more structured semiparamet-

ric version of the general finite mixture discussed above. Specifically,
∑k

j=1 πjf(· − µj),

where f(·) is a density on R, which is symmetric about 0, and the µj are component-

specific location parameters. In particular, Bordes et al. (2006), and, independently,

Hunter et al. (2007) proved identifiability when k = 2. Moreover, Hunter et al. (2007)

established also identifiability for k = 3, although under complex constraints on the loca-

tion parameters and mixture weights. In addition to the estimation approaches in Bordes

et al. (2006) and Hunter et al. (2007), classical semiparametric estimation techniques

have been proposed by Cruz-Medina and Hettmansperger (2004) and Bordes, Chauveau

and Vandekerkhove (2007).

Our objective is to develop a fully inferential Bayesian modeling framework for such

mixtures of location-shifted symmetric distributions. We focus on the two-component

mixture setting, πf(· − µ1) + (1 − π)f(· − µ2), and propose a Bayesian semiparametric

probability model based on parametric priors for µ1, µ2 and π, and a nonparametric

prior model for the symmetric density f(·), which is further taken to be unimodal. The

additional assumption of unimodality for f(·) is natural for deconvolution problems, and
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in our context, facilitates the choice of the prior for the nonparametric component of the

mixture model. In particular, we employ a nonparametric scale uniform DP mixture prior

for f(·) that supports the entire class of symmetric unimodal densities on R. We argue

that the combination of the theoretical identifiability results discussed above with flexible

probabilistic modeling for f(·) provides a practically useful framework for inference in

mixture deconvolution problems.

The outline of the paper is as follows. Section 2 presents the modeling framework, in-

cluding approaches to prior specification and methods for posterior inference, with techni-

cal details on the latter deferred to the Appendix. Section 3 illustrates model performance

through a simulation study and through analysis of data on eruptions of the Old Faith-

ful geyser. We also consider comparison with a two-component normal mixture model,

using a rainfall precipitation data set. Finally, Section 4 concludes with a summary and

discussion of possible extensions.

2 Methodology

Section 2.1 presents the modeling approach. Prior specification is addressed in Section

2.2, and posterior inference is discussed in Section 2.3.

2.1 Semiparametric modeling for the two-component mixture

We develop an approach to modeling and inference under the following two-component

mixture setting,

πf(y − µ1) + (1 − π)f(y − µ2), y ∈ R, (1)
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where f(·) is a density on R assumed to be unimodal and symmetric about 0, π is the

mixing proportion, and µ1 and µ2 are location parameters associated with the two mixture

components. We build a semiparametric modeling framework working with parametric

priors for π, µ1 and µ2, and a nonparametric prior model for f(·).

The foundation for constructing the probability model for f(·) is the representation

of non-increasing densities on the positive real line as scale mixtures of uniform densities.

Specifically, a density h(·) on R
+ is non-increasing if and only if there exists a distribution

function G on R
+ such that h(t) ≡ h(t; G) =

∫

θ−11[0,θ)(t)dG(θ), t ∈ R
+ (see, e.g., Feller,

1971, p. 158.) Using this result, we have a representation for f(·) through a scale mixture

of symmetric uniform densities, that is, f(y) ≡ f(y; G) =
∫

0.5θ−11(−θ,θ)(y)dG(θ), y ∈ R,

where the mixing distribution G is supported on R
+. This one-to-one mapping between

f and G enables a nonparametric model for f(·) through a nonparametric prior for G. In

particular, placing a DP prior on G, a scale uniform DP mixture emerges for f(·; G). We

refer to Brunner and Lo (1989), Brunner (1992; 1995), and Hansen and Lauritzen (2002)

for related work as well as Lavine and Mockus (1995), Kottas and Gelfand (2001), and

Kottas and Krnjajić (2009) for DP-based modeling involving variations and extensions of

the above representation leading to f(·; G).

As developed by Ferguson (1973), the DP serves as a prior model for random distri-

butions (equivalently, distribution functions) G, which, in our context, have support on

R
+. The DP is defined in terms of two parameters, a parametric base distribution G0

(the mean of the process) and a positive scalar parameter α, which can be interpreted as

a precision parameter; larger values of α result in DP realizations G that are closer to G0.

We will write G ∼ DP(α, G0) to indicate that a DP prior is used for the random distribu-

tion G. In fact, DP-based modeling typically utilizes mixtures of DPs (Antoniak, 1974),

i.e., a more general version of the DP prior that involves hyperpriors for α and/or the
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parameters of G0. The most commonly used DP definition is its constructive definition

(Sethuraman, 1994), which characterizes DP realizations as countable mixtures of point

masses (and thus as random discrete distributions). Specifically, a random distribution

G generated from a DP(α, G0) is (almost surely) of the form

G(·) =
∞

∑

`=1

w` δϑ`
(·) (2)

where δa(·) denotes a point mass at a. The locations of the point masses, ϑ`, are i.i.d.

realizations from G0; the corresponding weights, w`, arise from a stick-breaking mechanism

based on i.i.d. draws {ζk : k = 1, 2, ...} from a beta(1, α) distribution. In particular,

w1 = ζ1, and, for each ` = 2, 3, ..., w` = ζ`

∏`−1
k=1(1 − ζk). Moreover, the sequences

{ϑ`, ` = 1, 2, . . . } and {ζk : k = 1, 2, ...} are independent.

Utilizing the representation theorem discussed above with a DP prior for the mixing

distribution G, our proposed nonparametric prior probability model for the density f(·)

in (1) is given by

f(y) ≡ f(y; G) =

∫

R+

u(y; θ)dG(θ), y ∈ R; G | α, β ∼ DP(α, G0) (3)

where u(·; θ) = 0.5θ−11(−θ,θ)(·) denotes the density of the uniform distribution on (−θ, θ).

We take an inverse gamma distribution for G0 with mean β/(c − 1) (provided c > 1).

We work with fixed shape parameter c (with c > 1) and random scale parameter β with

prior density denoted by p(β). We also place a prior p(α) on the DP precision parameter

α. (Note that we retain the more common “DP prior” terminology even though the prior

for G is, in fact, a mixture of DPs.) The model is completed with priors p(µ1), p(µ2) and

p(π) for µ1, µ2 and π. Parameters µ1, µ2, π, α and β are assumed independent in their

prior. We discuss prior choice and specification in Section 2.2.
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Hence, the semiparametric model for the data = {yi : i = 1, ..., n} is given by

yi | π, µ1, µ2, G
ind.
∼ πf(yi − µ1; G) + (1 − π)f(yi − µ2; G), i = 1, ..., n

G | α, β ∼ DP(α, G0(·; β))

π, µ1, µ2, α, β ∼ p(π)p(µ1)p(µ2)p(α)p(β)

(4)

where f(·; G) is the scale uniform DP mixture defined in (3).

The model can be expressed hierarchically by introducing two sets of latent mixing

parameters for the observables yi, i = 1, ..., n. The first set of binary mixing parameters,

say, {zi : i = 1, ..., n}, can be used to break the two-component mixture πf(yi − µ1; G) +

(1−π)f(yi−µ2; G), so that the yi, given zi and µ1, µ2, G, are independent f(yi −µzi
; G),

and the zi, given π, are i.i.d. with Pr(zi = 1 | π) = π and Pr(zi = 2 | π) = 1 − π

(denoted below by Pr(zi | π)). The second set of mixing parameters, {θi : i = 1, ..., n},

is added to break the DP mixture f(yi − µzi
; G), where now the yi, given zi, µ1, µ2 and

θi are independent u(yi − µzi
; θi), and the θi, given G, are i.i.d. G. Therefore, the full

hierarchical model can be written as

yi | µ1, µ2, θi, zi
ind.
∼ u(yi − µzi

; θi), i = 1, ..., n

zi | π
ind.
∼ Pr(zi | π), i = 1, ..., n

θi | G
i.i.d.
∼ G, i = 1, ..., n

G | α, β ∼ DP(α, G0(·; β))

π, µ1, µ2, α, β ∼ p(π)p(µ1)p(µ2)p(α)p(β).

(5)

It is straightforward to show that if we integrate over the θi and then over the zi in (5),

we obtain (4).
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2.2 Prior specification

To apply the model developed in Section 2.1, we work with N(ak, b
2
k) priors (with standard

deviation bk) for µk, k = 1, 2, a beta(aπ, bπ) prior for π, a gamma(aα, bα) prior (with mean

aα/bα) for α, and an exponential prior (with mean 1/bβ) for β.

If prior information is available on the modes of the mixture distribution and their

relative weights, it can be used to specify the priors for µ1, µ2 and π. Less informative

prior specification is also possible, and indeed results in robust and accurate posterior

inference, as illustrated with the data examples of Section 3. Specifically, we use the same

normal prior for µ1 and µ2 with mean set equal to a guess at the center of the data,

and variance defined through a guess at the data range. Note that such an approach

may be too uninformative for a general parametric mixture, as shown with the rainfall

data in Section 3.3, but worked well under model (4) for all the data sets we considered.

Moreover, a uniform distribution on (0, 1) is the natural noninformative prior for π.

To specify the priors for the DP hyperparameters α and β, based on weak prior

information, we can use the role they play in the DP mixture prior model. The DP

precision parameter α controls the number, n∗ ≤ n, of distinct DP mixture components,

i.e., the number of distinct θi in (5) implied by the discrete random mixing distribution

G (e.g., Antoniak, 1974; Escobar and West, 1995). For instance, for moderately large

n, E(n∗ | α) ≈ α log{(α + n)/α}, which can be averaged over the gamma prior for α

to obtain E(n∗). Hence, prior beliefs about n∗ can be converted into particular prior

choices for α. We note that applications of DP mixture models involve mainly location

or location-scale mixing with unimodal kernels, in which case n∗ would typically be small

relative to n. In contrast to location DP mixtures, model (3) involves scale uniform

mixing, which typically implies a large number of mixture components, i.e., large n∗, to

model the underlying symmetric unimodal density f(·).
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Regarding the scale parameter β of the inverse gamma distribution G0, a practically

useful approach to prior specification emerges by considering the limiting case of model

(5) as α → ∞, which implies a distinct θi for each observation yi (i.e., n∗ = n). As

discussed above, this is a natural limiting case of DP mixture model (3). Then, the θi are

i.i.d. G0(·; β), and thus E(θi) = E{E(θi | β)} = E(β(c − 1)−1) = b−1
β (c − 1)−1. Therefore,

2b−1
β (c − 1)−1 can be used as a proxy for the range of the mixture kernel. Finally, based

on the guess at the data range, say, R, we use R/2 as a guess at the range of each mixture

component, and specify bβ through 2b−1
β (c−1)−1 = R/2. Recall that the shape parameter

c is fixed; for all the data examples of Section 3, c is set to 2, yielding an inverse gamma

distribution for G0 with infinite variance, and mean β.

Finally, for any particular prior specification it is straightforward to estimate the

associated prior predictive density, p(y0), which corresponds to model (5) for a single

generic y0. The corresponding mixing parameter θ0 arises, given β, from the G0(θ0; β)

distribution. Moreover, for the associated binary mixing parameter z0, we have Pr(z0 =

1 | π) = π and Pr(z0 = 2 | π) = 1 − π. Hence, marginalizing over z0, p(y0) is given by

∫ ∫

{πu(y0 − µ1; θ0) + (1 − π)u(y0 − µ2; θ0)}g0(θ0; β)p(π)p(µ1)p(µ2)p(β) dθ0dπdµ1dµ2dβ,

where g0 is the density of G0. Note that p(y0) is defined through only the center G0 of

the DP prior, i.e., the DP precision parameter does not enter its expression. The prior

predictive density reveals the combined effect of four of the five priors that need to be

specified in order to implement inference under model (4). Moreover, as shown with

the data examples of Sections 3.1 and 3.2, comparison of the prior predictive with the

posterior predictive density (the latter developed in Section 2.3) indicates the amount of

learning from the data for Bayesian density estimation under the semiparametric mixture

model (4).
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2.3 Posterior inference

To develop inference under the model of Section 2.1, we employ a Markov chain Monte

Carlo (MCMC) algorithm for posterior sampling from the marginalized version of model

(5) that results by integrating G over its DP prior,

yi | µ1, µ2, θi, zi
ind.
∼ u(yi − µzi

; θi), i = 1, ..., n

(θ1, ..., θn) | α, β ∼ p(θ1, ..., θn | α, β)

zi | π
ind.
∼ Pr(zi | π), i = 1, ..., n

π, µ1, µ2, α, β ∼ p(π)p(µ1)p(µ2)p(α)p(β).

(6)

The induced joint prior for the θi can be developed using the Pólya urn characterization

of the DP (Blackwell and MacQueen, 1973). Specifically,

p(θ1, ..., θn | α, β) = g0(θ1; β)

n
∏

i=2

{

α

α + i − 1
g0(θi; β) +

1

α + i − 1

i−1
∑

`=1

δθ`
(θi)

}

. (7)

As the above expression indicates, the discreteness of the DP prior induces a partition of

the vector of DP mixing parameters, θ = (θ1, ..., θn), into n∗ (≤ n) distinct components

θ∗j , j = 1, ..., n∗. The θ∗j along with configuration indicators (s1, ..., sn), defined by si = j

if and only if θi = θ∗j , provide an equivalent representation for θ. Denote by ψ the full

parameter vector consisting of z = (z1, ..., zn), θ, π, µ1, µ2, α, and β. The Appendix

provides the details of the MCMC method for sampling from the posterior of ψ. We note

that key to the good performance of the MCMC algorithm are joint updates for each pair,

(zi, θi), of mixing parameters corresponding to the i-th observation.

The samples from p(ψ | data) can be used to obtain posterior predictive inference

for y0, a generic new observation with corresponding latent mixing parameters z0 and

θ0. Adding y0, z0, and θ0 to the model structure in (5), and obtaining next the induced
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marginalized version (which thus extends (6)), we have

p(y0, z0, θ0,ψ | data) = u(y0 − µz0 ; θ0)p(θ0 | θ, α, β)Pr(z0 | π)p(ψ | data)

where the form of the conditional posterior, p(θ0 | θ, α, β), for θ0 arises from the DP Pólya

urn structure. Specifically,

p(θ0 | θ, α, β) =
α

α + n
g0(θ0; β) +

1

α + n

n∗
∑

j=1

njδθ∗j
(θ0).

Therefore,

p(y0 | data) =

∫ ∫

∑

z0

u(y0 − µz0 ; θ0)p(θ0 | θ, α, β)Pr(z0 | π)p(ψ | data) dθ0dψ

or, evaluating the sum over z0,

p(y0 | data) =

∫ ∫

{πu(y0 − µ1; θ0) + (1 − π)u(y0 − µ2; θ0)}p(θ0 | θ, α, β)p(ψ | data) dθ0dψ.

Based on this last expression, we can estimate the posterior predictive density as follows.

For each posterior sample ψr, r = 1, ..., B (where B is the posterior sample size), we can

draw θ0r from p(θ0 | θr, αr, βr), and then y0r from πru(y0−µ1r; θ0r) + (1−πr)u(y0−µ2r; θ0r).

A (smoothed) histogram of the posterior predictive sample, {y0r : r = 1, ..., B}, yields the

posterior predictive density estimate.

The posterior predictive density is a point estimate for the two-component mixture

density, in particular, it can be shown that p(y0 | data) = πE(f(y0 − µ1; G) | data) +

(1 − π)E(f(y0 − µ2; G) | data). Therefore, for any x ∈ R, a posterior point estimate for
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the underlying symmetric density f(x) ≡ f(x; G) in (3) is given by

E(f(x; G) | data) =

∫ ∫

u(x; θ0)p(θ0 | θ, α, β)p(ψ | data) dθ0dψ,

and this can be obtained similarly to the posterior predictive density estimate, using the

posterior samples for (θ, α, β) and the additional draws from p(θ0 | θ, α, β).

Finally, we note that the approaches to posterior inference discussed above utilize only

the posterior expectation of the random mixing distribution G. Although not needed for

the data illustrations considered in Section 3, the posterior distribution for G can be

sampled by augmenting each realization from p(ψ | data) with an additional draw from

the conditional posterior distribution for G, given (θ, α, β). This distribution is given by a

DP with precision parameter α+n and base distribution (α+n)−1 [αG0(·; β) +
∑n

i=1 δθi
(·)]

(Antoniak, 1974). The draw from the conditional posterior distribution of G can be

obtained using a truncation approximation to the DP based on its stick-breaking definition

given in (2) (e.g., Gelfand and Kottas, 2002; Kottas, 2006).

3 Data illustrations

We first study in Section 3.1 the performance of the semiparametric model with simulated

data. Next, Section 3.2 illustrates posterior predictive inference under the model with data

on eruptions of the Old Faithful geyser. Finally, in Section 3.3, we consider comparison

with a parametric mixture model, using a data set on rainfall precipitation.

3.1 Simulation study

The simulation study involved four data sets. In the first three cases, the data were

drawn from a mixture of two normal distributions with means of −1 and 2, and standard
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deviations of 1. The probability associated with the N(−1, 1) component was 0.15 for

the first data set, 0.25 for the second, and 0.35 for the third. To study results under an

underlying symmetric density with heavier tails, we also considered a data set generated

from a mixture of two t2 distributions (t distributions with 2 degrees of freedom) with

location parameters −1 and 2, common scale parameter 1, and probability 0.15 for the

first component. The sample size was n = 250 for all four simulated data sets.

Regarding the priors for the model parameters, for all four data sets, we used a

N(0, 102) prior for both µ1 and µ2, a uniform prior for π, and a gamma(50, 0.1) prior

for α (with mean 500). The shape parameter c of the base distribution G0 was set to 2,

and β was assigned an exponential prior with mean 2, based on a data range of 8 for the

approach of Section 2.2.

We used the MCMC posterior simulation method of Section 2.3 to obtain inference for

the model parameters and to estimate the symmetric density and the posterior predictive

density. For all the parameter estimates, convergence was tested using a criterion from

Raftery and Lewis (1995). Specifically, we computed I = (M +N)/Nmin, where M is the

number of burn-in iterations, N is the number of iterations after burn-in, and Nmin is the

size of a pilot sample. M , N , and Nmin were all calculated using the gibbsit program

(available at http://lib.stat.cmu.edu/general/gibbsit). Raftery and Lewis (1995)

appeal to empirical evidence to suggest that values of I greater than 5 are problematic.

In general, this diagnostic measure can be used to indicate problems in the chain due

to a bad starting value, high posterior correlation, or “stickiness” in the chain. In no

instance did any I value in the analysis of the simulated data sets exceed 2. Regarding

autocorrelations in the sampled chains for the model parameters, µ1 and µ2 were the more

challenging parameters requiring about 200 iterations for the autocorrelations to drop to

small values. This was also the case for the real data discussed in Sections 3.2 and 3.3.
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Figure 1: Simulated data from mixture of normals with true π = 0.15. The top row includes
prior densities (dashed lines) and posterior densities (solid lines) for π, µ1, and µ2. The bottom
left panel plots the symmetric density estimate (solid line) overlaid on the true underlying
standard normal density (dashed line). The bottom right panel shows the prior and posterior
predictive densities (dashed and solid lines, respectively) overlaid on the data histogram.

The results discussed below were based on 20000 burn-in iterations, followed by 600000

iterations taking output every 200th to obtain the final posterior sample of size 3000.

Figures 1–4 show for each of the four simulated data sets the prior and posterior

predictive density overlaid on the histogram of the raw data, as well as prior and posterior

density plots for π, µ1, and µ2. Also plotted in each figure is the estimate of the underlying

symmetric density overlaid on the corresponding density that was used to generate the

data, that is, the N(0, 1) density for Figures 1–3 and the standard t2 density for Figure 4.
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Figure 2: Simulated data from mixture of normals with true π = 0.25. The top row includes
prior densities (dashed lines) and posterior densities (solid lines) for π, µ1, and µ2. The bottom
left panel plots the symmetric density estimate (solid line) overlaid on the true underlying
standard normal density (dashed line). The bottom right panel shows the prior and posterior
predictive densities (dashed and solid lines, respectively) overlaid on the data histogram.

We note that in all simulation cases, the true values of µ1, µ2 and π are recovered

successfully by their corresponding posteriors. In Figures 1–3, the posterior uncertainty

for µ1 and µ2 changes with the true value of π, which should be anticipated, since the

amount of information from the data for each mixture component depends on the mixing

weight. In all four examples, the estimated posterior predictive density follows closely the

shape of the data histogram, thus indicating that posterior predictive inference resulting

from the model is accurate. Moreover, the symmetric density estimate recovers quite
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Figure 3: Simulated data from mixture of normals with true π = 0.35. The top row includes
prior densities (dashed lines) and posterior densities (solid lines) for π, µ1, and µ2. The bottom
left panel plots the symmetric density estimate (solid line) overlaid on the true underlying
standard normal density (dashed line). The bottom right panel shows the prior and posterior
predictive densities (dashed and solid lines, respectively) overlaid on the data histogram.

well the underlying symmetric density, especially, noting that in the bottom left panels of

Figures 1–4 we are comparing the model posterior point estimate with the true standard

normal or t2 density from which a single data set was generated for each case of the

simulation study. Finally, as is evident from Figures 1–4, the priors used for all simulated

data sets were very uninformative. Hence, it is noteworthy that, at least based on this

simulation experiment, the excellent performance of the model with regard to posterior

inference and posterior predictive estimation does not rely on strong prior information,

16



Figure 4: Simulated data from mixture of t2 densities with true π = 0.15. The top row includes
prior densities (dashed lines) and posterior densities (solid lines) for π, µ1, and µ2. The bottom
left panel plots the symmetric density estimate (solid line) overlaid on the true underlying stan-
dard t2 density (dashed line). The bottom right panel shows the prior and posterior predictive
densities (dashed and solid lines, respectively) overlaid on the data histogram.

but is rather driven by the data.

3.2 Old Faithful eruptions data

We consider two data sets on eruptions of the Old Faithful geyser in Yellowstone National

Park, USA (both included as part of the datasets R library). The first data set records

the duration of the eruption in minutes, and the second the waiting time in minutes

between eruptions. In both cases, the sample size is n = 272. Histograms of the eruption
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time and waiting time data are plotted in Figures 5 and 6, respectively, indicating a

bimodal shape for the underlying distributions.
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Figure 5: Old Faithful eruption time data. In all panels, the solid and dashed lines denote
results under the diffuse and the more informative prior choice, respectively (see Section 3.2 for
details). The top row includes prior densities (in red color) and posterior densities (in green)
for π, µ1, and µ2. The bottom left panel plots the symmetric density estimates, and the bottom
right panel shows the prior and posterior predictive densities (red and green lines, respectively)
overlaid on the data histogram.

To further illustrate robustness of posterior inference to the prior choice, for both data

sets, we obtained results under two distinct prior specifications, one inducing fairly diffuse

priors, and one implying more informative priors. In all cases, the shape parameter c of

the inverse gamma base distribution was set to 2, and thus the mean of G0 is given by

β. As in Section 3.1, we checked convergence of the MCMC algorithm using the criterion

from Raftery and Lewis (1995). In no case did the I value exceed 4. All results reported

below were based on a burn-in period of 20000 iterations, followed by 600000 iterations
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Table 1: Old Faithful eruption time data. 95% posterior intevals for model parameters
under the diffuse and the more informative prior choice discussed in Section 3.2.

Diffuse Diffuse Informative Informative
Parameter Lower Upper Lower Upper
π 0.30 0.42 0.30 0.42
µ1 1.94 2.06 1.95 2.07
µ2 4.28 4.40 4.28 4.40
β 0.71 0.94 0.69 0.97
α 361 634 109 206

taking output every 200th to obtain the 3000 posterior samples used for inference.

Focusing first on the the eruption time data, the diffuse set of prior specifications

corresponds to a N(4, 102) prior for µ1 and µ2, a uniform prior for π, a gamma(50, 0.1)

prior for α (with mean 500), and an exponential prior for β with mean 10. For the more

informative prior specification we used a N(2, 0.22) prior for µ1, a N(4.3, 0.22) prior for

µ2, a beta(6, 12) prior for π, a gamma(40, 0.25) prior for α (with mean 160), and an

exponential prior for β with mean 10. Figure 5 shows results for parameters π, µ1 and µ2,

the underlying symmetric density, and the posterior predictive density, under both sets of

priors. Moreover, Table 1 reports 95% posterior intervals for all model parameters. The

robustness of the estimates for the symmetric density and the posterior predictive density,

as well as of posterior inference results for the practically important model parameters π,

µ1 and µ2 is particularly noteworthy. The prior sensitivity for the DP precision parameter

α is typical with DP mixture models, since this DP prior hyperparameter is, in general,

more difficult to inform from the data. However, this aspect of the DP mixture prior

model does not affect substantially posterior predictive inference even with small sample

sizes; in our example, note that the two posterior predictive densities (bottom right panel

of Figure 5) are essentially indistinguishable.
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Figure 6: Old Faithful waiting time data. In all panels, the solid and dashed lines denote
results under the diffuse and the more informative prior choice, respectively (see Section 3.2 for
details). The top row includes prior densities (in red color) and posterior densities (in green)
for π, µ1, and µ2. The bottom left panel plots the symmetric density estimates, and the bottom
right panel shows the prior and posterior predictive densities (red and green lines, respectively)
overlaid on the data histogram.

Turning to the waiting time data, the diffuse prior specification involved a N(70, 1002)

prior for µ1 and µ2, a uniform prior for π, a gamma(50, 0.1) prior for α (with mean 500),

and an exponential prior for β with mean 100. The more informative prior specification

was based on a N(50, 52) prior for µ1, a N(80, 52) prior for µ2, a beta(6, 12) prior for π, a

gamma(40, 0.25) prior for α (with mean 160), and an exponential prior for β with mean

14.3. Results under both prior choices for parameters π, µ1 and µ2, for the underlying

symmetric density, and for the posterior predictive density are shown in Figure 6. Table 2

includes 95% posterior intervals for all model parameters, again, under both sets of priors.

As with the eruption time data, posterior inference for all model parameters (other than
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Table 2: Old Faithful waiting time data. 95% posterior intevals for model parameters
under the diffuse and the more informative prior choice discussed in Section 3.2.

Diffuse Diffuse Informative Informative
Parameter Lower Upper Lower Upper
π 0.28 0.41 0.29 0.40
µ1 52.6 55.6 52.6 55.5
µ2 79.0 80.7 79.0 80.7
β 12.2 16.5 11.7 16.6
α 358 634 104 203

precision parameter α) was robust to the very different prior specifications. This is also

the case for the symmetric density estimates, and for the posterior predictive density

estimates (bottom right panel of Figure 6) that capture well the bimodal density shape

suggested by the data for the waiting time distribution.

3.3 Rainfall precipitation data

Here, we study the performance of the semiparametric DP mixture model with one more

standard data set (available from the reldist R library), which records the average

amount of rainfall precipitation in inches for each of n = 70 United States (and Puerto

Rico) cities. The histogram of the data (included in Figure 8) suggests bimodality, albeit

with components that are not as well separated as the ones for the Old Faithful data of

Section 3.2.

The main objective with this example is to draw comparison with a parametric mixture

model. To this end, we consider the two-component mixture of normals

πN(y; µ1, σ
2) + (1 − π)N(y; µ2, σ

2) (8)
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which is a special case of (1) with parametrically specified symmetric density f(y) given

by a N(y; 0, σ2) density.

We center the comparison around label switching, a key challenge for Bayesian analysis

of mixture models (e.g., Celeux, Hurn and Robert, 2000; Stephens, 2000; Jasra, Holmes

and Stephens, 2005; Frühwirth-Schnatter, 2006). Label switching arises because the like-

lihood under a finite mixture distribution is invariant under permutations of the mixture

model parameter vector. Hence, unless the prior distribution includes information that

distinguishes between mixture components, the posterior distribution will be invariant

to permutations of the labeling of the parameters. A problematic implication of label

switching is that, for data sets that correspond to weakly separated mixture components,

the standard MCMC algorithms will encounter the symmetry of the posterior distribu-

tion resulting in switching of the labels for the component specific parameters. But then,

for instance, for a data set supporting a bimodal distribution, the posterior densities of

µ1 and µ2 under model (8) will be bimodal and identical. Although this will not affect

the posterior predictive density for the mixture distribution, it renders inference for the

individual mixture components impractical.

Here, we compare inference under the DP mixture model and the normal mixture

model in (8) without the use of any particular method to avoid label switching. Hence,

we implemented posterior inference under the normal mixture model using the standard

Gibbs sampling approach based on data augmentation with latent binary mixing param-

eters. We used a relatively informative inverse gamma prior for σ2 with shape parameter

2 and mean 50 (results were similar under both less and more dispersed priors for σ2).

For the DP mixture model, we used a gamma(50, 0.1) prior for α (with mean 500), and

an exponential prior for β with mean 10 (as before, the shape parameter c of the base

distribution G0 was set to 2). For both models, we used a uniform prior for π, and three
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different specifications for the independent normal priors for µ1 and µ2: a N(10, 102) prior

for µ1 and a N(50, 102) prior for µ2 (Prior A); a N(10, 302) prior for µ1 and a N(50, 302)

prior for µ2 (Prior B); and a N(35, 302) prior for both µ1 and µ2 (Prior C).

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

π

P
rio

r 
A

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

µ1

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

µ2

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

π

P
rio

r 
B

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

µ1

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

µ2

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

π

P
rio

r 
C

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

µ1

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

µ2

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

Figure 7: Rainfall precipitation data. Posterior densities for π, µ1, and µ2 under the DP mixture
model (solid lines) and the normal mixture model (dashed lines). Each row corresponds to one
of the three prior choices discussed in Section 3.3.

Under each of the two models, Figure 7 plots the posterior densities for µ1, µ2 and π

for prior choices A, B and C. The capacity of the parametric mixture model to identify

the two components depends on the prior choice for µ1 and µ2. The normal mixture

successfully distinguishes µ1 and µ2 in their posterior distributions under informative
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Figure 8: Rainfall precipitation data. Estimates for the symmetric density and the posterior
predictive density (the latter overlaid on the data histogram) under the DP mixture model
and the normal mixture model, denoted by the solid and dashed lines, respectively. Each row
corresponds to one of the three prior choices discussed in Section 3.3.

prior A, but yields bimodal posteriors under the other priors. We note that assigning

distinct informative prior means to µ1 and µ2, as in prior B, does not suffice to identify

the parameters (in fact, prior B results in unbalanced label switching). The results for

prior C correspond to typical label switching where the posterior densities for µ1 and µ2

are practically identical; this was also the case under a common N(35, 102) prior for µ1

and µ2 (results not shown). In contrast, the DP mixture model yields robust inference for

µ1, µ2 and π under the three priors, with posterior densities that seem plausible for the
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rainfall data. Prior C was the most challenging for the semiparametric model requiring

careful tuning of the variances for the Metropolis-Hastings proposals for µ1 and µ2 in the

MCMC algorithm. Increasing further the prior variance for µ1 and µ2 results in label

switching under the DP mixture model.

The posterior predictive densities under both models capture the general shape of the

rainfall data histogram (see Figure 8). However, under all three priors, the DP mixture

model is more successful in capturing the first mode. This can be attributed to the shape

of the underlying symmetric density; as shown on the left panels of Figure 8, the tail

behavior of the symmetric density, as estimated by the DP mixture model, is evidently

non-Gaussian.

We note that, when applied to the Old Faithful data of Section 3.2, the normal mix-

ture model in (8) yields similar results with the DP mixture model, also without facing

issues with label switching. Hence, the superior performance of the semiparametric mix-

ture model with the rainfall data is likely due to a combination of the more challenging

mixture structure for these data and the shape of the underlying symmetric density. Re-

gardless, the ability of the DP mixture model to avoid label switching even under fairly

uninformative prior specifications is encouraging with respect to its potential for applica-

tion to mixture deconvolution problems.

4 Discussion

We have developed a Bayesian semiparametric modeling approach for mixtures of sym-

metric unimodal densities on the real line. The mixture is based on a common symmetric

density, which defines all mixture components through distinct location parameters. This

structure ensures identifiability of mixture components rendering the model an appealing

choice for mixture deconvolution problems. We have argued for the utility of a non-
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parametric prior model for the symmetric density that defines the structured mixture.

The prior probability model is based on scale uniform Dirichlet process mixtures and it

supports all unimodal symmetric (about 0) densities on the real line. Compared with

existing estimation methods for the model, a distinguishing feature of our work is that it

is based on a fully inferential probabilistic modeling framework. Moreover, the additional

assumption of unimodality for the underlying symmetric density can be an asset for cer-

tain classes of mixture deconvolution problems. Finally, as illustrated with the rainfall

precipitation data of Section 3.3, a promising feature of the semiparametric mixture model

is that it is more robust to label switching than standard parametric mixture models.

For simpler exposition of the modeling approach, we opted to focus on the two-

component mixture setting. However, it is straightforward to extend the Bayesian semi-

parametric modeling framework to mixtures of the form in (1) with more than two compo-

nents, i.e.,
∑k

j=1 πjf(y − µj), y ∈ R, for fixed k ≥ 2, with πj ≥ 0 such that
∑k

j=1 πj = 1,

and with f(·) a density on R, which is unimodal and symmetric about 0. This is be-

cause the nonparametric component of the model, i.e., the Dirichlet process mixture prior

for f(·), remains the same. Moreover, the structure of the MCMC posterior simulation

method would be similar, now requiring updates for the additional location parameters

and mixture weights. Current work studies the practical utility of the three-component

extension of (1) for mixture deconvolution problems from epidemiological research.
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Appendix: Posterior simulation method

Here, we present the MCMC posterior simulation method for the model of Section 2.1.

Again, let ψ denote the full parameter vector comprising z = (z1, ..., zn), θ = (θ1, ..., θn),

π, µ1, µ2, α, and β. To sample from the posterior of ψ, it is possible to use the standard

Gibbs sampler (e.g., Escobar and West, 1995), which samples directly from the posterior

full conditionals for the θi, or, in our case, the joint full conditional for (zi, θi). However,

the following method based on Metropolis-Hastings steps (in the spirit of the posterior

simulation algorithms for DP mixtures considered in Neal, 2000) results in an easier to

implement algorithm, which has proved to be sufficiently efficient in terms of mixing for

all the data sets we considered.

First, note that the MCMC algorithm starting values for µ1, µ2 and the θi need to be

chosen taking into account the restrictions of the uniform kernel of the DP mixture.

For each i = 1, ..., n, we update the DP mixing parameter, θi, and the mixing param-

eter for the two-component mixture, zi, as a pair with a Metropolis-Hastings step. For

each i = 1, ..., n, the joint posterior full conditional is given by

p(zi, θi | µ1, µ2, {θ` : ` 6= i}, π, α, β, data) ∝ u(yi − µzi
; θi)p(θi | {θ` : ` 6= i}, α, β)Pr(zi | π)

where

p(θi | {θ` : ` 6= i}, α, β) =
α

α + n − 1
g0(θi; β) +

1

α + n − 1

∑

` 6=i

δθ`
(θi)
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is the prior full conditional for θi arising from (7). The Metropolis-Hastings update details

are as follows.

• Let (z
(old)
i , θ

(old)
i ) be the current state of the chain. Repeat the following update R

times (R ≥ 1).

• Draw a candidate (z̃i, θ̃i) from the proposal distribution, which is given by the

product of the prior full conditionals for zi and θi. Hence, z̃i and θ̃i are drawn

independently, where z̃i = 1 with probability π, and θ̃i ∼ p(θi | {θ` : ` 6= i}, α, β).

• Set (zi, θi) = (z̃i, θ̃i) with probability p = min
{

1, u(yi − µz̃i
; θ̃i)/u(yi − µ

z
(old)
i

; θ
(old)
i )

}

,

and (zi, θi) = (z
(old)
i , θ

(old)
i ) with probability 1 − p.

Once all the θi are updated, we can compute: n∗, the number of distinct elements

of vector (θ1, ..., θn); θ∗j , j = 1, ..., n∗, the realizations of the distinct θi; the vector of

configuration indicators s = (s1, ..., sn) such that si = j if and only if θi = θ∗j ; and nj =

|{i : si = j}|, the size of the j-th distinct component. These posterior realizations are used

in the updates for α and β as well as in sampling from the posterior predictive distribution.

Moreover, given the currently imputed n∗ and vector s, we can re-sample the values for

the distinct θ∗j to improve mixing of the MCMC algorithm (Bush and MacEachern, 1996).

Specifically, for each j = 1, ..., n∗, the posterior full conditional for θ∗j is given by

p(θ∗j | µ1, µ2, z, s, β, data) ∝ g0(θ
∗
j ; β)

∏

{i:si=j}

u(yi − µzi
; θ∗j )

∝ θ
∗−(c+nj+1)
j exp(−β/θ∗j )1(θ∗j > max{i:si=j} |yi − µzi

|),

which is therefore a truncated inverse gamma distribution with shape parameter c + nj

and scale parameter β, with the constraint over the interval (max{i:si=j} |yi − µzi
|,∞).

After drawing from the full conditionals for all the θ∗j , we update the values for the θi

using their definition through the (re-sampled) θ∗j and the vector s.
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With the zi, i = 1, ..., n, updated, we obtain m` = |{i : zi = `}|, ` = 1, 2 (with

m1 + m2 = n). Then, p(π | z, data) ∝ πaπ−1(1 − π)bπ−1πm1(1 − π)m2 , and thus the

posterior full conditional for π is beta(aπ + m1, bπ + m2).

The posterior full conditional for µ1 is given by

p(µ1 | z, θ, data) ∝ p(µ1)
∏

{i:zi=1}

u(yi − µ1; θi) ∝ p(µ1)1(
⋂

{i:zi=1}(yi − θi < µ1 < yi + θi))

∝ p(µ1)1(max{i:zi=1}(yi − θi) < µ1 < min{i:zi=1}(yi + θi)).

Hence, with the N(a1, b
2
1) prior for µ1, the posterior full conditional is given by a N(a1, b

2
1)

distribution truncated over the interval

(

max
{i:zi=1}

(yi − θi), min
{i:zi=1}

(yi + θi)

)

. Similarly, the

posterior full conditional for µ2 is a N(a2, b
2
2) distribution truncated over the interval

(

max
{i:zi=2}

(yi − θi), min
{i:zi=2}

(yi + θi)

)

. Therefore, µ1 and µ2 could be updated with Gibbs

steps. A more numerically stable alternative involves the following Metropolis-Hastings

updates for each µk, k = 1, 2:

• Let µ
(old)
k be the current state of the chain.

• Draw a candidate µ̃k from a normal proposal distribution with mean µ
(old)
k and

variance that is tuned to obtain appropriate acceptance rates. (For all the data sets

we considered, acceptance rates for the µk, k = 1, 2, were between 20% and 40%.)

• Set µk = µ̃k with probability q = min
{

1, p(µ̃k)1(µ̃k ∈ Ak)/(p(µ
(old)
k )1(µ

(old)
k ∈ Ak))

}

,

where Ak =

(

max
{i:zi=k}

(yi − θi), min
{i:zi=k}

(yi + θi)

)

, and µk = µ
(old)
k with probability 1−q.

Finally, regarding the DP prior hyperparameters, we use the augmentation technique

of Escobar and West (1995) to update α. Moreover, the posterior full conditional for β

is given by p(β | θ, data) ∝ p(β)
∏n∗

j=1 g0(θ
∗
j ; β) resulting in a gamma distribution with

shape parameter cn∗ + 1 and rate parameter bβ +
∑n∗

j=1 θ∗−1
j .
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