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ABSTRACT
In the rank join problem we are given a relational join R1 1 R2

and a function that assigns numeric scores to the join tuples, and the
goal is to return the tuples with the highest score. This problem lies
at the core of processing top-k SQL queries, and recent studies have
introduced specialized operators that solve the rank join problem
by accessing only a subset of the input tuples. A desirable prop-
erty for such operators is robustness, i.e., their performance should
remain stable across different input characteristics. However, a re-
cent theoretical study has shown that existing rank join operators
are not robust even though they have been shown to perform well
in practice. The same study proposed the PBRJRR

FR operator that was
proved to be robust, but its performance was not tested empirically
and in fact it was hinted that its complexity can be high. Thus, the
following important question is raised: Is it possible to design a
rank join operator that is both robust and efficient?

In this paper we provide an answer to this challenging question.
We perform an empirical study of PBRJRR

FR and show that its per-
formance is not good in practice. Using the insights gained by the
study, we develop the novel FRPA operator that addresses the ef-
ficiency bottlenecks of PBRJRR

FR. We prove that FRPA is robust in
general and more specifically that it never performs more I/O than
PBRJRR

FR. FRPA is the first operator that possesses these properties
and is thus of interest in the theoretical study of rank join operators.
We further identify cases where the overhead of FRPA becomes
significant, and propose the a-FRPA operator that automatically
adapts its overhead to the characteristics of the input. An extensive
experimental study validates the effectiveness of the new operators
and demonstrates that they offer significant performance improve-
ments (up to an order of magnitude) over the state-of-the-art.

1. INTRODUCTION
Consider a database similar to yelp.com that records infor-

mation on restaurants, hotels, bars, etc. for different cities around
the world. Imagine a query that returns pairs of cinemas and restau-
rants that are located in Paris, ranked by a combination of the restau-
rant’s rating and price, and the proximity of the movie theater to a
specific location. Now, imagine the same query but assume that its
results are returned unranked.

The previous example illustrates the concept of a rank join and
its importance in the interactive exploration of query results. Loosely
speaking, in the rank join problem we are given a relational join
R1 1 R2 and a function S that assigns numerical scores to the join
results, and the goal is to retrieve the K results with the highest
scores. The rank join problem forms the basis for the evaluation of
ranking SQL queries (also referred to as top-k queries) in relational
DBMSs. The following is a sample ranking query that builds on
our previous example:

SELECT h.name, b.name, t.name
FROM Hotels h, Bars b, Theaters t
WHERE h.city = b.city AND b.city = t.city AND h.city = ’Paris’
RANK BY 0.4*h.rating+0.1*b.rating+0.5*dist(t,currentLocation)

The importance of rank join evaluation has led to the develop-
ment of a host of specialized rank join operators [3, 1, 7, 9, 8,
5]. These operators assume that the scoring function S is mono-
tonic and also that they can access input tuples in order of their
potential to generate high scoring results. Under these conditions,
the operators can generate the top join results by accessing only a
prefix of each input, and may thus be far more efficient than the
naive method that generates and scores the complete results of the
join. Moreover, as recent studies [5, 6] have shown, a physical plan
for a ranking join query can be formed by pipelining several rank
join operators. Returning to the previous example, one example
pipeline would evaluate first the rank join over Hotels 1 Bars and
then feed the results to the rank join (Hotels 1 Bars) 1 Theaters.

Clearly, the I/O cost of a rank join operator corresponds to the
amount of input that it accesses before termination. A well known
result is that no rank join operator is I/O optimal [3], and therefore
the performance of a rank join operator is typically characterized
through the notion of instance-optimality. In a nutshell, a rank join
operator is instance-optimal if its I/O cost for any input is within
a constant factor of the cost of any other rank join operator on the
same input. This property has been shown to hold for existing rank
join operators under specific assumptions [1, 7, 5], but a recent
theoretical study [9] proved the following interesting result: None
of the existing operators is instance-optimal under assumptions that
match closely the execution environment of a database system. To
this end, the study introduced the new PBRJRR

FR operator that was
shown to be instance-optimal under these assumptions, and, to the
best of our knowledge, it is the only deterministic rank join operator
to have this property.

The development of PBRJRR
FR raises interesting prospects for the

implementation or ranking query engines. Essentially, by compos-
ing physical plans using the instance-optimal PBRJRR

FR operator, it
may be possible to provide strong guarantees for the cost of rank-
ing query evaluation. However, the property of instance-optimality
covers solely I/O cost and does not reveal anything about compu-
tational efficiency. Given that there exist no published results on
the empirical performance of PBRJRR

FR, the following important is-
sue is raised: Does the overall performance of PBRJRR

FR match its
instance-optimality on I/O, and is it better than existing efficient al-
gorithms (e.g., HRJN∗ [5]) that are not instance-optimal within the
same class of inputs as PBRJRR

FR? If the answer to the previous ques-
tions is indeed negative, then it is natural to inquire whether we can
design a rank join operator that is both computationally efficient
and instance-optimal in terms of I/O cost. The existence of such an
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operator will have clear implications for the design of efficient and
robust ranking query processors.

Our Contributions. Motivated by the previous observations, in
this paper we investigate the existence of rank join operators that
are computationally efficient and robust (i.e., instance-optimal) in
terms of I/O cost. We begin with an empirical study of the PBRJRR

FR

operator against the well known HRJN∗ operator and demonstrate
that the computational overhead of the former essentially cancels
its instance-optimality and leads to bad performance overall. The
results help us identify two main sources of inefficiency: the com-
putation of bounds on the scores of unseen join results, and useless
I/O which results from a blind round-robin access to the two in-
puts. This is the first study of the PBRJRR

FR operator and the results
are thus of general interest.

Using the intuition obtained by the study, we embark on the
design of a rank join operator that is both efficient overall and
instance-optimal in terms of I/O. To this end, we develop tech-
niques that directly address the bottlenecks of PBRJRR

FR. We first
introduce the FR∗ scheme that allows the efficient computation of
score bounds on unseen join results. We subsequently couple FR∗

with a strategy that prioritizes the I/O requests of the rank join op-
erator based on the potential of each input to generate results with
high scores. We combine these two techniques in the novel FRPA
rank join operator. We show analytically that FRPA is instance-
optimal, and more specifically that it provably outperforms PBRJRR

FR

in terms of I/O cost. To the best of our knowledge, this is the first
rank join operator to hold these properties. Moreover, the optimiza-
tions that we introduce in the FR∗ scheme ensure that the compu-
tational overhead of FRPA is low for a large class of inputs.

To address the cases where the overhead of FRPA becomes pro-
hibitively expensive, we introduce the adaptive a-FRPA rank join
operator. a-FRPA employs a novel adaptive scheme to regulate the
overhead of computing score bounds on unseen join results. An
interesting property of the new operator is that it works precisely
like FRPA on the inputs where the latter is efficient, and it grad-
ually morphs its behavior towards the HRJN∗ operator which has
been shown to perform well in practice. Thus, the key advantage
of a-FRPA is that it can adaptively explore the trade-off between
instance-optimality and practical efficiency.

Finally, we present an extensive experimental study that evalu-
ates the performance of the new operators under different operating
parameters. The results demonstrate that FRPA and a-FRPA out-
perform the state-of-the-art operators by a significant margin (in
some cases, by an order of magnitude) in terms of computational
efficiency and I/O cost. Moreover, we observe that the adaptive
a-FRPA operator provides a “best-of-both-worlds” hybrid, hav-
ing low computation overhead and an I/O cost that is either equal
or very close to the instance-optimal cost of the FRPA operator.
Overall, our study validates the effectiveness of the proposed tech-
niques and demonstrates their numerous advantages over existing
rank join operators.

2. PRELIMINARIES
In this section, we formally define the rank join problem and

review the state of the art in rank join operators.

2.1 Rank Join: Problem Statement
We consider the natural join of two relations R1 and R2, where

each tuple τi ∈ Ri is composed of attribute values and base scores.
The base scores are denoted as a vector b(τi) ∈ [0, 1]ei for some
ei ≥ 0, and signify the importance of the tuple according to criteria
specified by the query. The score vector of a join result τ = τ1 1

τ2 is defined as the concatenation of b(τ1) and b(τ2). Base scores
are aggregated using a scoring function S that computes the score
of τ as S(b(τ)). We may also use S(τ) as shorthand for the score
of τ . Following common practice, we assume that S is monotonic,
i.e., S(x1, . . . , xe) ≤ S(y1, . . . , ye) if xi ≤ yi for all i.

Given a tuple τ1 ∈ R1, we define S(τ1) to be the value of S
using the base scores of τ1 and substituting 1 for the missing scores.
The monotonic property guarantees that S(τ1) ≥ S(τ) for any join
tuple τ = τ1 1 τ2, since each base score of τ2 is at most 1. We
call S(τ1) the score bound of τ1, since it is an upper bound on the
scores of join results derived from τ1. We define the score bound
S(τ2) in a similar fashion for a tuple τ2 ∈ R2.

The objective of the rank join problem that we consider in this
paper is to find K tuples with the highest scores from the natural
join R1 1 R2. Formally:

DEFINITION 2.1. An instance I of the rank join is a 4-tuple
(R1, R2,S, K) such that: (a) relations R1 and R2 are accessed
sequentially in decreasing order of S; (b) S is a monotonic scoring
function; and (c), 0 < K ≤ |R1 1 R2|.

This definition requires that at least K join results exist, which
guarantees that it is possible to fulfill a request for the top K re-
sults. We do not place any restrictions on the input relations except
that each Ri is accessed sequentially and in decreasing order of S.
Formally, we use Ri[p] to denote the p-th tuple in Ri and assume
that S(Ri[p]) ≥ S(Ri[q]) for q ≥ p. We note that this particu-
lar access model is a common assumption in works that study the
evaluation of rank joins in database systems [5, 8], as it enables
the development of efficient rank join operators (which we discuss
later). When the inputs are base tables, this type of access is typ-
ically provided through index structures. For instance, going back
to the example ranking query of the previous section, the ordered
access to relation Bars can be provided by an index on Bars.rating.

A solution to a problem instance I is an ordered relation O com-
prising the top K results of R1 1 R2 ordered by S. There may
be more than one possible solution O for a particular instance I if
there are tied scores in the output, but the sequence of scores in O
is completely determined by I . We henceforth use Sterm to denote
the least score in any solution O.

We note that it is possible to define an n-ary version of the rank
join problem that involves the natural join of n relations R1, . . . , Rn.
We focus here on the binary case because existing database systems
implement binary physical join operators. Some of our techniques
extend readily to the n-ary case, but a full investigation is beyond
the scope of this paper.

2.2 Rank Join Operators
A rank join operator is a deterministic algorithm that solves the

aforementioned rank join problem. We are interested in the eval-
uation of rank joins in a database system, so we assume that a
rank join operator works incrementally and supports a getNext()
method which returns the next result in its output. (This is typi-
cally referred to as the iterator interface [4].) Thus, a solution O is
obtained by invoking getNext() K times.

Given a rank join operator and a problem instance I , we de-
fine its left and right depths as the number of input tuples from
R1 and R2, respectively, that the operator accesses in order to
satisfy the K getNext requests. Clearly, the input depths deter-
mine the amount of I/O performed by the algorithm and thus cru-
cially affect the cost of rank join evaluation. In what follows,
we use depth(A, I, i) to denote the depth of algorithm A on re-
lation Ri of some problem instance I , and sumDepths(A, I) =
depth(A, I, 1) + depth(A, I, 2) for the sum of depths.
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Function PBRJ.getNext()
Output: Next tuple of R1 1 R2 ordered by S.
Data: Input buffers HR1 and HR2 initialized to empty; sorted output

buffer O initialized to empty; bound t initialized to∞.
while |O| = 0 ∨ S(O.top()) < t do1

i← P.chooseInput() ;2
if i = 0 then break;3
ρi ← next tuple of Ri;4
R← ρi 1 HRj for j 6= i ;5
Add each member of R to O ;6
Add ρi to HRi ;7
t← B.updateBound(ρi) ;8

if |O| > 0 then return O.pop() else return endOfOutput;9

Figure 1: PBRJ template. The operator is instantiated with a
pulling strategy P and a bounding scheme B.

The study of rank join operators employs the notion of instance-
optimality to characterize the cost of an algorithm with respect to
the sumDepths metric. Formally, an algorithm A is
instance-optimal within a class of algorithms A and class of in-
stances I if there exist constants c0 and c1 such that
cost(A, I) ≤ c0 min{cost(B, I) | B ∈ A}+ c1 for any instance
I ∈ I. Constant c0 is called the optimality ratio of A. In a nutshell,
instance-optimality implies that the operator cannot perform much
more I/O than any other operator on any rank join instance. We
often refer to this property as robustness and accordingly refer to
an instance-optimal operator as robust.

The PBRJ template. We adopt the formalism of the Pull Bound
Rank Join template [9] (or, PBRJ for short) to describe rank join
operators. The pseudo-code for PBRJ is shown in Figure 1. PBRJ
is an algorithm template that is instantiated with two determin-
istic components, namely, a pulling strategy P , and a bounding
scheme B. On each loop iteration (lines 2–8), the pulling strategy
P chooses a relation Ri to read, and the new tuple ρi is stored in
an input buffer HRi (typically a hash table). New join results are
generated by joining ρi with the tuples in the other input buffer and
they are pushed to an ordered output buffer O. After each tuple
is processed, it is given to the bounding scheme B via the method
updateBound . The return value forms the bound t of the algorithm
and has the following semantics: for any join tuple τ = τ1 1 τ2

such that τ1 ∈ R1−HR1∨ τ2 ∈ R2−HR2, it holds that S(τ) ≤ t.
In other words, t provides a bound on the score of unseen join re-
sults. A call to getNext returns the top tuple in O provided its
score is not smaller than the threshold t, since this indicates that
the buffered results cannot be improved by reading more tuples.

PBRJ provides a convenient method to analyze the performance
of deterministic rank join operators. More formally, the following
“equivalence” result holds [9]: Given a rank join operator A, there
exists an instantiation FA of PBRJ such that, for any instance I ,
it holds that depth(A, I, i) = depth(FA, I, i) for i ∈ {1, 2}. In
this paper we derive theoretical results for specific instantiations of
PBRJ, which extend to the set of deterministic rank join operators
by virtue of this equivalence.

3. LIMITATIONS OF STATE OF THE ART
In this paper we investigate the following question: Is it possi-

ble to design a rank join operator that is both robust, i.e., instance-
optimal, and efficient in practice? To provide some background, we
first review the state of the art in rank join operators, and then pro-
vide a brief overview of an experimental study that we conducted

to evaluate the only known operator to be robust. These results pro-
vide the motivation behind our work and also valuable insights that
we use in the development of our novel rank join operators.

3.1 State of the Art
In what follows, we briefly review previous studies on rank join

evaluation, focusing on the ones that have the same target domain
as our work, i.e., rank joins with an equi-join condition and sev-
eral score attributes per input. It is important to note that rank join
evaluation is related to the problem of ranked list aggregation, and
indeed previous studies adapt several ideas from the seminal work
of Fagin et al [3].

The HRJN∗ operator of Ilyas et al. [5] is an instantiation of the
PBRJ template with the corner bounding scheme and the threshold-
adaptive pulling strategy. The corner bound maintains a per-input
threshold thr i = S(ρi), where ρi is the last accessed tuple from
the same input, and returns max(thr1, thr2) as the bound value. In
turn, the threshold-adaptive strategy pulls from the input with the
highest value for thr i. HRJN∗ has been shown to perform well in
practice, but a recent study [9] proved that it is not instance-optimal
for the variant of the rank join problem that we consider.

The PBRJRR
FR [9] rank join operator instantiates the PBRJ tem-

plate with the FR bounding scheme and a round-robin pulling strat-
egy. (We examine this operator in more detail below.) The original
study showed PBRJRR

FR to be instance-optimal within the class of al-
gorithms and instances that we consider in this paper. To the best of
our knowledge, this is the only known operator to have this prop-
erty. However, the original study did not provide an empirical eval-
uation of PBRJRR

FR, and hence it is not known whether it performs
efficiently in practice.

The recent work of Agrawal and Widom [1] introduced a rank
join operator in the context of uncertain databases. The main nov-
elty of their algorithm is that it operates with limited memory, but
the assumption is that it is able to rescan the inputs at different
offsets. This makes it unsuitable as an intermediate operator in
pipelined physical plans. Our work targets the scenario where the
inputs can be accessed only in a single-pass fashion, which matches
the model of physical execution plans for ranking queries [6, 10]

Finally, we note that a recent study introduced the LARA-J al-
gorithm [7] which uses ideas similar to the earlier J∗ [8] opera-
tor. Both operators, however, are defined for problem instances
where each relation has a single score attribute. We target the more
general variant of several score attributes per input, which arises
frequently in the pipelined evaluation of several rank join opera-
tors [6].

3.2 PBRJRR

FR: Is it Efficient?
As indicated in the previous discussion, PBRJRR

FR [9] is the only
rank join operator known to be instance-optimal in the general set-
ting that we consider. Given that there exist no published results
on the empirical performance of PBRJRR

FR, we conducted an exper-
imental study to evaluate its efficiency. Here we review the results
from one representative experiment that lead to some interesting
observations. The details of the experimental methodology and a
detailed review of the results appear in Section 6.

We first review the PBRJRR
FR operator. The operator instantiates

the PBRJ template with the following bounding scheme and pulling
strategy respectively:

Feasible Region Bound (FR) The FR bound maintains a cover CRi

for each input Ri that captures precisely the base scores of
tuples in Ri − HRi. An example cover is shown in Fig-
ure 4(a). Using this information, FR is able to compute a
tight bound for the score of an unseen result tuple τ . We
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elaborate on the details of these covers and the bound com-
putation in Section 4.1.

Round Robin Pulling Strategy (RR) The RR pulling strategy sim-
ply alternates between the two inputs.

As mentioned above, the FR bound is tight, which means that it
is indeed possible for the unseen tuples in R1 − HR1 and R2 −
HR2 to generate a join result whose score is equal to the bound.
This tightness property is key in proving that PBRJRR

FR is instance-
optimal within the class of deterministic rank join operators with
an optimality ratio of 2.

We now discuss the results of our study. To provide some context
for comparison, we pitted PBRJRR

FR against the HRJN∗ operator of
Ilyas et al. [5]. HRJN∗ makes for an interesting competitor because
it was shown to have good performance in practice, yet a recent
study proved that it is not instance-optimal. We note that this is
the first empirical comparison between the two algorithms, and the
results are thus of general interest beyond the scope of our work.

Figure 2(a) shows the performance of the two algorithms in terms
of the sumDepths metric. PBRJRR

FR outperforms PBRJ∗c by a sig-
nificant margin of 15K tuples, which agrees with the theoretical re-
sults of [9]. Another interesting observation is that HRJN∗ is able
to stop considerably earlier on the left input compared to PBRJRR

FR.
Essentially, the HRJN∗ operator uses an adaptive pulling strategy
that allows it to focus its accesses on the input with most potential.
On the other hand, PBRJRR

FR follows a blind round-robin pulling pat-
tern that may lead to useless I/Os from a specific input.

Figure 2(b) depicts the overall execution time of the two opera-
tors for the same experiment. The chart also shows the breakdown
in terms of three components: time spent doing I/O, computation
of the bound on unseen join results, and other computations. The
overall execution time indicates that, in spite of the significant sav-
ings in I/O, PBRJRR

FR actually performs worse. The breakdown re-
veals that the computation of the FR bound dominates in terms of
cost and essentially outweighs the savings in I/O.

We observed similar trends using several other problem instances.
To summarize, the state-of-the-art rank join operators seem to oc-
cupy two “corners” in the two-dimensional plane that measures ef-
ficiency and robustness: either they are robust but not efficient, or
they are efficient but not robust. The techniques that we develop in
subsequent sections are motivated by this observation and aim to
populate the corner point of efficiency and robustness.

4. THE FRPA RANK JOIN OPERATOR
Motivated by the observations in the previous section, we em-

bark on the design of a rank join operator that is both robust and
efficient. Our initial approach is to address the inefficiencies of
the PBRJRR

FR operator. To this end, we first develop the Fast Feasi-
ble Region bound (denoted as FR∗), which guarantees the tightness
property of the FR bound but it is more efficient to maintain. We
couple the new bound with a novel pulling strategy termed Poten-
tial Adaptive (denoted as PA) that prioritizes its selections based
on a potential metric for each input. These two components give
rise to the novel FRPA operator, which has several attractive prop-
erties: (a) it provably outperforms PBRJRR

FR in terms of I/O cost, (b)
it is robust, and (c) the experimental results suggest that it outper-
forms both HRJN∗ and PBRJRR

FR by a wide margin for a large class
of inputs.

Before detailing the design of the new operator, we introduce
some necessary notation and terminology. Given e-dimensional
points x = (x1, . . . , xe) and y = (y1, . . . , ye), we define the bi-
nary relations �, ≺, and≺≺ as follows: x � y if xi ≤ yi for all i;
x ≺ y if x � y and x 6= y; and, x ≺≺ y if xi < yi for all i. We
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Figure 2: A comparison of PBRJ∗c and PBRJRR
FR on a problem

instance (R1, R2,S, K) such that K = 100 and each input has
3 base scores (e1 = e2 = 3). The scores in the two relations are
distributed according to a Zipfian distribution with skew 0.5
and using a score cut of .75. (The methodology for generating
scores is described in Section 6.1.) Part (a) shows the input
depths of the algorithms, and part (b) shows the total execution
time and its breakdown in terms of three components: I/O time,
time spent in calling the bounding scheme, and time spent in
other tasks.

say that a set of points C is a cover for a set, X if for every x ∈ X
there exists c ∈ C such that x � c. A skyline [2] is a special case
of a minimal cover where the covering points come from X . More
specifically, the skyline of X , denoted as SL(X), is the set C ⊆ X
such that C covers X and for all (c, c′) ∈ C × C it holds that
c 6� c′. Finally, we use x[i 7→ α] to denote the point that results by
substituting the i-th coordinate of x with α.

4.1 Overview of the FR Bound
We begin with a short overview of the FR bound used by the

PBRJRR
FR operator [9]. Our presentation focuses on the components

that are relevant to the development of our techniques. We refer the
reader to the original study for the complete details.

The pseudo-code for the FR bound is shown in Figure 3. The
main component is the FR ::UpdateBound function that is in-
voked with every newly accessed tuple ρi and returns the updated
bound value. We first discuss the global variables used by the
function, namely CRi, Gi, and gi. Each CRi stores a cover of
b[Ri − HRi] and thus delineates a region that contains the base
scores of unseen tuples. (See also Figure 4(a).) Variable gi is the
most recently seen score bound from Ri, and Gi comprises all ob-
served tuples from Ri with a score bound of gi. This effectively di-
vides Ri into contiguous groups of tuples with equal score bounds.
Thus Gi acts as a buffer for the accessed tuples from the current
group and gi indicates their score.

The cover CRi is updated with the score vectors in Gi when a
new group is detected (line 2 in function UpdateBound). The
idea is the following. Let τi be an unseen tuple and τ ′i be a tuple
in Gi. Given that gi has changed and that Ri is accessed in de-
creasing order of S, it holds that S(τi) ≤ S(ρi) < S(τ ′i). The
monotonicity of S implies that b(τi) cannot dominate b(τ ′i), and
thus it follows that the corresponding region can be removed from
CRi. This update is performed using function UpdateCR. We do
not go into the details in the interest of space, but we illustrate this
update in Figure 4(b).

Once the global data structures are updated, UpdateBound
computes and returns the updated value of the bound (line 7). The
computation is done by function ResultBound. Let τ ≡ τ1 1

τ2 be a result tuple that the rank join operator has not discov-
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Function FR::UpdateBound(ρi)
Input: Tuple ρi read from input i, i ∈ {1, 2}.
Output: The updated value of the feasible region bound.
Data: Covers CR1 and CR2 for b[R1 −HR1] and b[R2 −HR2]

respectively initialized to {(1, 1, . . . , 1)}; current groups G1

and G2 initialized to empty; current bounds g1 and g2

initialized to∞
if S(ρi) < gi then1

CRi ← FR::UpdateCR(CRi,b[Gi]) ;2
gi ← S(ρi) ;3
Gi ← {ρi};4

else5
Gi ← Gi ∪ {ρi};6

return FR::ResultBound()7

Function FR::UpdateCR(C, Y )
Input: Current cover C; Set of new score vectors Y
Output: Updated cover
if Y = ∅ then return C ; // Base case for recursion1
y ← some element of Y ;2
S ← FR::UpdateCR(C, Y − {y}) ; // Recursive Call3
S− ← {s ∈ S | y � s} ; // Removed points4
S+ ←

Se
i=1{s−[i 7→ y[i]] | s− ∈ S−} ; // New points5

return (S − S−) ∪ (S+ ∩ (0, 1]e);6

Function FR::ResultBound()
Output: The maximum score of a join result τ1 1 τ2 such that

τ1 ∈ R1 −HR1 ∨ τ2 ∈ R2 −HR2.
// Case (i): τ1 ∈ HR1 ∧ τ2 ∈ R2 −HR2

tcover2 ← max{S(b[τ1]c2) | τ1 ∈ HR1 ∧ c2 ∈ CR2} ;1
torder
2 ← g2 ;2

t2 ← min{tcover2 , torder
2 };3

// Case (ii): τ1 ∈ R1 −HR1 ∧ τ2 ∈ HR2

tcover1 ← max{S(c1b[τ2]) | c1 ∈ CR1 ∧ τ2 ∈ HR2} ;4
torder
1 ← g1 ;5

t1 ← min{tcover1 , torder
1 };6

// Case (iii): τ1 ∈ R1 −HR1 ∧ τ2 ∈ R2 −HR2

tcoverboth ← max{S(c1c2) | c1 ∈ CR1 ∧ c2 ∈ CR2} ;7
torder
both ← min{g1, g2} ;8

tboth ← min{tcoverboth , torder
both };9

// Final bound
return max{t1, t2, tboth}10

Figure 3: The FR bound.

ered yet, i.e., τ1 ∈ R1 − HR1 ∨ τ2 ∈ R2 − HR2. Function
ResultBound returns a bound on S(τ), computed as the maxi-
mum of three bounds t1, t2, and tboth. Each individual bound cor-
responds to the different possibilities for τ1 and τ2. Let us consider
first t2, which represents the case τ1 ∈ HR1 ∧ τ2 ∈ R2 − HR2,
i.e., the join tuple is formed by an unseen tuple of R2 and a seen
tuple of R1. Clearly, S(τ2) provides a correct upper bound, and
consequently so does g2 ≥ S(τ2). This is termed the order bound
and is denoted as torder

2 . A second bound is derived using the cover
CR2. The semantics of the cover imply that b(τ2) is dominated
by at least one point c2 in CR2, and consequently S(τ1 1 τ2) ≤
S(base(τ1)c2). By taking the maximum score value over all pos-
sible choices of τ1 and c2, we obtain a correct bound tcover2 (line 1
in Function ResultBound) termed the cover bound. The final
bound t2 is derived as the minimum of the two correct bounds.

The two remaining bounds t1 and tboth are defined similarly.
More concretely, t1 corresponds to the case where only τ1 comes
from the unseen part of R1 and τ2 ∈ HR2. The third case is where
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Figure 4: Part (a) shows an example cover CRi assuming two-
dimensional score vectors. The cover consists of a set of points.
The gray region dominated by the cover points contains the
base scores of tuples in Ri − HRi. Part (b) shows an update of
the cover using a score vector y corresponding to a tuple in Gi.
The vector identifies a region, namely the vectors that domi-
nate y, that must be removed from the feasible region. Any
cover points that exist in that region are projected along the
boundaries of the removed region.

both τ1 and τ2 are unseen, i.e., τ1 ∈ R1 − HR1 ∧ τ2 − HR2.
The threshold value of the feasible region bound is computed as
the maximum over the three possible choices, since each choice
represents a different case for the result tuple τ ≡ τ1 1 τ2.

Efficiency of the FR Bound. At this point, it is interesting to dis-
cuss the computational efficiency of the FR bound. It is straightfor-
ward to show that FR ::UpdateBound is in PTIME under data
complexity, but the exponent of the polynomial and the hidden
constants contribute to a high overhead. One major source of in-
efficiency is the combinatorial complexity of computing the cover
bounds. More concretely, each cover bound requires the computa-
tion of a cross product, whose size grows as the rank join operator
accesses more tuples. Moreover, each invocation of resultBound
requires the computation of three such cross products.

4.2 The FRPA Operator
The FRPA operator is an instantiation of the PBRJ template

(Figure 1) using the new FR∗ bounding scheme and the new PA
pulling strategy. (Thus, following the notation established in [9]
we can denote the new rank join operator as PBRJPA

FR∗ .) In what
follows, we describe these two components and then analyze the
performance of FRPA.

4.2.1 The FR∗ Bound
The FR∗ bound represents an optimized version of the FR bound.

This implies that it too is a tight bounding scheme, which is crucial
for the optimality properties of FRPA.

Reducing the complexity of cover bounds. The first observation
behind FR∗ is that it is possible to speed-up the computation of
cover bounds by taking into account the monotonicity of the scor-
ing function S. More concretely, let us consider the computation
of tcover1 (line 4 of function FR::ResultBound). Consider a point
c ∈ CR1 such that c 6∈ SL(CR1). The monotonicity of S guaran-
tees that max{S(cb[τ2]) | τ2 ∈ HR2} ≤ max{S(c′b[τ2]) | c′ ∈
SL(CR1), τ2 ∈ HR2}. In other words, the value of tcover1 can be
computed using solely the points in SL(CR1). Using a similar rea-
soning, we can prove the same result for the skyline SL(b[HR2]).
This gives rise to the following refined definition of tcover1 :

tcover1 = max{S(c1s2) | c1 ∈ SL(CR1), s2 ∈ SL(b[HR2])}
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ρi a skyline point for HRi?
Yes No

S(ρi) = gi tcoverī –
S(ρi) < gi all but

torder
ī

all but
torder
ī and

tcoverī

Table 1: Decision matrix on which bounds need to be recom-
puted when resultBound is invoked after the access of a tu-
ple ρi. The symbol ī denotes the opposite input, i.e., ī = 1 if
i = 2 and vice versa.

Similarly, we can redefine the other two cover bounds as follows:

tcover2 = max{S(s1c2) | s1 ∈ SL(b[HR1]), c2 ∈ SL(CR2)}
tcoverboth = max{S(c1c2) | c1 ∈ SL(CR1), c2 ∈ SL(CR2)}

The revised expressions have clearly lower complexity, assuming
of course that the skylines can be maintained efficiently. (We show
later that this is indeed possible.) Another interesting property is
that the skyline SL(b[HRi]) is likely to “freeze” relatively early,
since Ri is accessed in decreasing order of S and this in turn im-
plies that the dominating points are accessed first. The early freeze
limits the complexity of computing the cover bounds even if HRi

continues to grow in size.

Avoiding redundant computation. The second observation is that
some of the computation performed by FR::ResultBound may
be cached for subsequent invocations of the function. By identify-
ing such opportunities we can reduce significantly the overhead of
the bounding scheme.

We illustrate this point with an example. Suppose that FR ::
UpdateBound is invoked with a tuple ρ1 ∈ R1 such that S(ρ1) =
g1, i.e., the current group G1 is not reset. An immediate observa-
tion is that CR1 is not modified and the same holds for g1. Also,
since the pull happened on input R1, neither of CR2, HR2, nor
g2 change. These observations allow us to assert that, out of the
six bounds computed in ResultBound, only tcover2 may change
in value and thus affect the returned bound. Furthermore, a closer
examination shows that tcover2 may change in value only if b(ρ1)
causes a change of SL(b[HR1]). Hence, we can assert the fol-
lowing general consequence: If S(ρi) = gi then the value of
FR::ResultBound can change only if ρi is in SL(HRi).

Let us now consider the converse case where S(ρ1) < g1. This
causes an update on CR1, which consequently affects tcover1 and
tcoverboth . Also, torder

1 and torder
both are affected, since g1 changes in

value. However, we observe that torder
2 remains unchanged, and in

addition tcover2 remains unmodified if ρ1 is not a new skyline point.
Hence, we may still be able to avoid some (potentially significant)
computation by tracking the skyline of HR1.

Definition of the FR∗ Bound. The FR∗ bound incorporates the
previous optimizations in the computation of the feasible region
bound. Figure 5 shows the pseudo-code. FR∗ maintains a set SHRi

that stores the skyline of base[HRi] and is updated with every new
tuple ρi. The complexity of this update is linear to |SHRi|, and in
practice we expect it to be low due to the early freeze property. FR∗

also ensures that each cover CRi forms a skyline, by modifying
slightly function UpdateCR. The trick is to skyline the set S+ ∩
(0, 1]e, which holds the new points of the cover, prior to performing
the union in line 6 of UpdateCR. This slight modification ensures
that FR∗::UpdateCR always returns a skyline of points.

Function ResultBound is modified to use the refined cover
bound definitions and also to selectively recompute the different

Function FR∗.UpdateBound(ρi)
Input: Tuple ρi read from input i, i ∈ {1, 2}.
Output: The updated value of the feasible region bound.
Data: Sets CRi initialized to empty; current groups Gi initialized to

empty; current bounds gi initialized to∞; Sets SHRi.
SHRi ← SL(SHRi ∪ {ρi}) ;1
if S(ρi) < gi then2

CRi ← FR∗.UpdateCRCRi,b[Gi] ;3
gi ← S(ρi) ;4
Gi ← {ρi};5

else6
Gi ← Gi ∪ {ρi};7

return FR∗.ResultBound8

Function FR∗.UpdateCR(C, Y )
Input: Current cover C; Set of new score vectors Y
Output: Updated cover
// Same as FR.UpdateCR except that the return

statement is the following
return (S − S−) ∪ SL(S+ ∩ (0, 1]e);6

Function FR∗.ResultBound()
Output: The maximum score of a join result τ1 1 τ2 such that

τ1 ∈ R1 −HR1 ∨ τ2 ∈ R2 −HR2.
// Same as FR.ResultBound except: (i) cover

bounds employ SHRi instead of HRi, and (ii)
only the bounds shown in Table 1 are
recomputed

Figure 5: The FR∗ bound.

bound components. The computation of the bound components is
guided by the decision matrix shown in Table 1. The return value of
t is derived using the recomputed components and the cached val-
ues for the remaining components. Our experimental results show
that this approach yields significant savings in execution time. In
several cases we avoid recomputing some (or even all) of the cover
bounds, which, as mentioned earlier, have combinatorial complex-
ity.

As a concluding remark, we state the following theorem which is
crucial for the correctness of FR∗ bound and the optimality results
that we state later.

THEOREM 4.1. Let I be a rank join instance and consider the
execution of PBRJ on I using the FR∗ bound. Then, after each
accessed tuple ρi, FR∗::UpdateBound(ρi) returns a tight upper
bound for S(τ) where τ = τ1 1 τ2 and τ1 ∈ R1 − HR1 ∨ τ2 ∈
R2 −HR2.

4.2.2 The PA Pulling Strategy
The motivation behind the PA strategy comes from the experi-

mental results shown in Figure 2(a). We observe that the “blind”
round-robin strategy accesses both inputs equally, although there is
evidence from the adaptive strategy of HRJN∗ that the left input is
less important for computing a solution. Thus, the goal is to de-
sign an adaptive strategy that works with the FR∗ bound and yields
strong guarantees on the performance of the rank join operator.

At a high level, PA computes a metric for each input Ri that
quantifies the potential of Ri − HRi to generate a high scoring
result. Then, it selects to pull from the input with the highest po-
tential. More concretely, we define the potential metric pot i =
max{ti, tboth} that measures the maximum score of a result tuple
using a tuple in Ri −HRi. The PA pulling strategy is then defined
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as follows: Choose the input that has the maximal potential, break-
ing ties in favor of the input with the least depth or by using the
input with the least index.

Intuitively, PA can be viewed as a generalization of the HRJN∗

pulling strategy to the feasible-region bound. However, PA utilizes
different metrics to measure the potential of each input, and thus
we expect the two strategies to make different choices. Moreover,
in what follows we prove strong optimality properties for its perfor-
mance, whereas no such results are known for the HRJN∗ strategy.

4.3 Analysis of FRPA
In this section, we analyze the performance of the proposed FRPA

operator in terms of the sumDepths metric and overall complexity.
Recall that the adaptive strategy of FRPA aims to avoid the use-

less pulls of PBRJRR
FR. Thus, we expect intuitively that the new

operator will be instance-optimal given that PBRJRR
FR is instance-

optimal. Indeed, we are able to show that FRPA is instance-optimal
with a ratio of 2 within the same class of inputs and algorithms
as PBRJRR

FR. We are able, however, to also prove a much stronger
result: FRPA can never access more tuples than PBRJRR

FR on any
of the two inputs. This implies that the new operator dominates
PBRJRR

FR in terms of I/O efficiency. These theoretical guarantees
provide compelling evidence in favor of FRPA. The results are of
general interest as well, since, to the best of our knowledge, FRPA
is the first rank join operator with an adaptive pulling strategy that
is instance-optimal within the same class as PBRJRR

FR.
The following theorems formalize our results.

THEOREM 4.2. Let I = (R1, R2,S, K) be a rank join in-
stance. Then depth(I, FRPA, i) ≤ depth(I, PBRJRR

FR, i) for 1 ≤
i ≤ 2.

PROOF. By contradiction. Assume that there exists an input k
such that depth(I, PBRJ∗, k) > depth(I, PBRJRR

FR, k). Let k̄ be
the opposing input. For each i, we define ri = depth(I, PBRJRR

FR, i),
and pi as the depth of FRPA on input Ri right before it pulls tuple
rk + 1 on input k. Hence, pk = rk. Let t be the bound of FRPA
before the next pull which is computed as max{tk, tk̄, tboth}, and
let tRR = max{tRR

k , tRR

k̄ , tRR
both} be the bound at the termination of

PBRJRR
FR.

Claim: pk > pk̄.
Clearly, it cannot hold that pk = pk̄, otherwise FRPA would

have halted as it has the same depths with the RR strategy. Suppose
that pk < pk̄. This implies that rk < pk̄. The RR strategy guaran-
tees that rk ≥ rk̄ − 1, which implies that pk̄ ≥ rk̄. At this point,
FRPA has pk = rk and pk̄ ≥ rk̄, which implies that it has discov-
ered a solution. Moreover, t ≤ tRR by the definition of the bound,
which implies that FRPA would have halted and thus contradicts
our initial assumption.

Claim: pk̄ < rk̄.
Assume that pk̄ ≥ rk̄, which means that FRPA has accessed a

superset of the tuples accessed by PBRJRR
FR and has thus generated

the top-K results. It is straightforward to show that t ≤ tRR based
on the definitions of the FR and the FR∗ bounds, and so it follows
that t ≤ Sterm from the termination of PBRJRR

FR. Thus, FRPA
should terminate before pulling Rk[pk + 1], which contradicts our
assumption.

Claim: tk ≤ Sterm.
Let CRRR

k and HRRR

k̄ be the cover of Rk and the seen portion of
Rk̄ when PBRJRR

FR terminates. Clearly, CRk = CRRR
k , and HRk ⊂

HRRR
k .

By definition, tk = min{torder
k , tcoverk }. Let tRR

k be the corre-
sponding value when PBRJRR

FR terminates. Clearly, the order bound

is the same for both tk and tRR
k since rk = pk. For the cover bound,

tcoverk cannot exceed the cover bound for RR since CRk = CRRR
k

and HRk̄ ⊂ HRRR

k̄ . This implies that tk ≤ tRR
k . The termination of

PBRJRR
FR implies that tRR

k ≤ Sterm and the claim follows.

Claim: potk > pot k̄.
Since the adaptive strategy pulls from Rk next, it holds that

potk ≥ pot k̄. If potk = pot k̄, then the aFR strategy would pull
from k̄ since pk > pk̄. Hence, the claim follows.

We are now ready to complete the proof. By definition, potk =
max{tk, tboth} and pot k̄ = {tk̄, tboth}. Moreover, potk ≥ Sterm

otherwise the algorithm would not pull. We distinguish the follow-
ing cases:
potk = tk. It follows that potk = Sterm and pot k̄ < Sterm.
The latter implies that no top results exist that use HRRR

k̄ − HRk̄.
Hence, at this point FRPA has already computed the same solution
as PBRJRR

FR, and the algorithm should not pull further than pk.
potk = tboth. Given that potk > pot k̄, it has to be that tboth >
max{tboth, tk̄} which is a contradiction.

THEOREM 4.3. FRPA is instance-optimal within the same class
of algorithms and inputs as PBRJRR

FR with the same optimality ra-
tio, assuming that the cost of an algorithm is measured with the
sumDepths metric.

PROOF. Let A and I be the classes of algorithms and inputs
respectively for which PBRJRR

FR is instance-optimal. Let I ∈ I be
a problem instance and let A ∈ A be the optimal algorithm for
I , i.e., the algorithm that minimizes sumDepths(A, I). Instance-
optimality implies that sumDepths(PBRJRR

FR, I) ≤ 2·sumDepths(A, I)+
c for a constant c that is independent of I and A. It follows from
Theorem 4.2 that sumDepths(FRPA, I) ≤ sumDepths(PBRJRR

FR, I),
and hence sumDepths(FRPA, I) ≤ 2 · sumDepths(A, I) + c.
Since I was chosen arbitrarily, we can conclude that FRPA is instance-
optimal with a ratio of 2.

We examine next the computational complexity of the new rank
join operator. Our analysis focuses on the FR∗ bound, since the
complexity of the adaptive pulling strategy is constant.

It is possible to show that FR∗ is in PTIME under data com-
plexity, similarly to FR. The analysis, however, indicates that FR∗

inherits the same worst case. More concretely, the complexity of
FR∗ involves an exponential dependency to the maximum number
of score attributes in the two inputs, which essentially stems from
the maximum theoretical size of the covers CR1 and CR2. Even
though this theoretical maximum is loose, we have observed em-
pirically that the sizes of the covers can grow very quickly with the
number of score attributes. As a concrete example, for one spe-
cific experiment we observed that |CR1|+ |CR2| grew by an order
of magnitude when the number of score attributes increased by 1.
This growth has a negative effect on the overall execution time of
the operator and in certain cases cancels the benefits of reduced
pulling.

5. THE ADAPTIVE a-FRPA OPERATOR
As mentioned in the concluding remarks of the previous section,

the increased complexity of the FR∗ bound can affect negatively the
performance of the rank join operator. It is interesting to ponder the
development of a tight bounding scheme with low computational
complexity, but the hardness results presented in [9] make this pos-
sibility rather unlikely. Hence, we adopt a different approach and
introduce a heuristic that attempts to control the complexity of the
FR∗ bound at the potential expense of tightness.
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More concretely, we develop a new bounding scheme, termed the
Adaptive Feasible Region bound and denoted as aFR, that main-
tains covers CR1 and CR2 of bounded size. The new bounding
scheme is compatible with the adaptive pulling strategy of the pre-
vious section and thus gives rise to the a-FRPA operator. The ba-
sic idea behind aFR is to associate each CRi to a resolution that
controls its size. The resolution is initially high and is decreased
accordingly as the cover grows in size. The tradeoff is that the
resulting CRi may not enclose tightly the space of unseen tuple
scores, which in turn makes the aFR bound loose.

The adaptation achieved by the a-FRPA operator has the follow-
ing interesting property: in the extreme case where both covers are
small, a-FRPA behaves exactly like FRPA, while in the other ex-
treme case where both covers grow very large, it behaves like the
HRJN∗ operator. Thus, a-FRPA represents an interesting hybrid
that can adapt its behavior gradually from a provably robust opera-
tor to an empirically efficient operator, depending on the character-
istics of the input.

5.1 The aFR Bound

5.1.1 Design Overview
Before presenting the details of the aFR bound, we discuss two

alternative bounding schemes that address the same problem – con-
straining the size of CRi. Our goal is to present the shortcomings
of these straightforward solutions and also to develop the intuition
behind the aFR bound.

One solution is to simply stop updating CRi in FR∗::UpdateCR
if |CRi| exceeds a threshold. The obvious shortcoming is that the
feasible region “freezes” past some point, and thus fails to capture
accurately the score vectors in b[Ri −HRi] as HRi grows.

An alternative solution is to maintain the cover over a grid that
quantizes the space of score vectors. More concretely, each dimen-
sion is quantized in a fixed number of intervals and all cover com-
putations inside FR∗::UpdateCR occur at the corners of the grid.
The resolution of the grid limits the total number of possible score
vectors and thus constrains |CRi|. However, this mechanism re-
quires a very coarse grid resolution in order to guarantee that |CRi|
always remains below a specific size. For instance, to limit |CRi|
below 500 for 3 score attributes, each dimension must be quantized
to 8 intervals. A coarse resolution provides a loose approximation
of the actual feasible region, which in turn affects the usefulness of
cover bounds. Moreover, this coarse resolution is used even if the
precise CRi would be small in size.

The proposed aFR bound essentially combines the aforemen-
tioned solutions in an attempt to overcome their shortcomings. It
employs a grid to quantize the space of score vectors and thus get
a handle on the complexity of CRi but the resolution of the grid
is not fixed–instead, it is adapted dynamically so that the size of
CRi is always bounded by some system-defined threshold. Thus,
CRi continues to evolve as HRi is updated, and there is an effort
to keep CRi as “detailed” as possible given the size threshold and
the characteristics of the input.

5.1.2 The Grid Tree Structure
The maintenance of an adaptive cover is done with the grid tree

data structure that we discuss in the following paragraphs. Our
presentation assumes that the grid tree is used to maintain a cover
for some set X of points that reside in the unit hyper-cube of e
dimensions. In the context of a-FRPA, X will represent the score
vectors b[Ri −HRi] and e the number of base scores in Ri.

A grid tree is a quad-tree over the unit hyper-rectangle1 compris-
1Each node in the quad-tree has a fan-out of 2e.

Procedure aFR::updateGridCR(s, u, L)
Input: Score vector s that is quantized to the grid. Node u of the

quad-tree index. On the first call, u should be the root of the
quad-tree. The depth L of the quad-tree index.

if p 6≺≺ b[u] then return ;1
if u.level < L then // u is an internal node2

if u is unmarked then return ;3
foreach child v of u in dominance order do4

aFR::UpdateGridCR(s, v, L);5

else if u.level = L then // u is a grid cell6
if u is unmarked then return ;7
unmark u;8
foreach v : v ≺ u ∧ v 6≺≺ u do9

decrease v.covered ;10
if v.covered = 0 then mark v;11

Figure 7: Maintenance of a grid cover.

ing L0 levels, where L0 is a parameter of the structure. We use uroot

to denote the root node of the tree and assume that it resides at level
0. The quad-tree organization allows us to view the nodes at each
level l as a uniform grid 2l × · · · × 2l. We call l the resolution of
this particular grid. Thus, the grid tree represents several grids with
resolution 0, . . . , L0− 1. At each point in time only one resolution
is active and is denoted as L, 0 ≤ L < L0. Initially, L = L0 − 1.

A node u at level L is either marked or unmarked. A marked u
contributes a cover point in CRi whose coordinates are denoted as
b(u) and are equal to the upper-right corner of u. An internal node
at level l < L is implicitly marked if it has a descendant at level L
that is marked. We use coverPoints(uroot, l) to denote the set of
cover points inferred by the marked nodes at level l. We denote the
level of a node u as u.level .

We say that a node u is covered if it is dominated by at least one
marked cell. The grid tree always satisfies the following invariant
for the nodes at level L:

Grid Tree Invariant If a node u is marked then u cannot be cov-
ered.

This invariant ensures that no point c ∈ coverPoints(uroot, L)
dominates any other point c′ in the same set. Thus, the cover is a
skyline of points, which is beneficial for the computation of cover
bounds as explained in Section 4.2.1.

To check for the covered property, each node stores an integer
counter u.covered which indicates inductively whether u is domi-
nated by a marked cell. More specifically, for a fixed coverPoints(uroot, L),
we define Vu = {v | ≺ v∧ u 6≺≺ v∧ (v is marked ∨ v.covered >
0)} as the set of dominating neighbor cells that are either marked
or have a positive covered counter. The counter is initialized as
u.covered = |Vu|. It is straightforward to show that u is covered
if and only if u.covered > 0. As we show next, it is possible
to maintain u.covered efficiently when the set of marked cells is
modified.

The grid tree can be initialized by marking certain nodes at level
L and ensuring that the invariant is satisfied. Subsequently, func-
tion UpdateGridCR(shown in Figure 7) can be invoked to up-
date the set of marked nodes according to a score vector s such
that 6 ∃x ∈ X : s � x. In the context of a rank join operator,
s = b(τ) for a tuple τ ∈ Gi, and thus UpdateGridCR has a
similar role as FR∗ ::UpdateCR. Note that s is always quantized
on the grid and thus coincides with the coordinates of a grid cell.
The function uses the quad-tree structure to efficiently identify the
marked nodes at level L that strictly dominate s. These nodes are
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Figure 6: An example of grid tree update. The grid tree is built for an input that has 2 scores (ei = 2). Part (a) shows the original
tree where the only marked cell corresponds to the cover point (1, 1) and assuming that the resolution is L = 3. Parts (b–d) show the
state of the grid tree after it is updated with three score vectors. Each part shows the updated marked nodes and the implied cover
points, as well as the change from the previous marked nodes. In all figures, the gray region depicts the feasible region for the scores
of unseen tuples.

unmarked so that the feasible region shrinks based on the seman-
tics of s, and this in turn causes the covered counter of dominated
cells to be decreased. If v.covered becomes 0 for a dominated cell
v then v is marked since it now defines the frontier of the feasible
region. In effect, this process has the effect of “sliding” the induced
cover points, as shown in Figure 6. The complexity of processing
an update is linear to the number of marked cells that dominate the
input score vector s, which is controlled by the current resolution
L ≤ L0. Overall, this results in an efficient update mechanism
with controlled space and time complexity, but the feasible region
implied by coverPoints(uroot, L) is not guaranteed to be tight.

We now prove some important properties on the correctness of
the update mechanism. We begin with the property that the algo-
rithm yields a correct cover. We develop this result in three steps.

CLAIM 5.1. Assume that initially u.covered > 0 for a cell u.
After the call to UpdateGridCR(s, uroot, L), it holds that either
u.covered > 0 or u is marked.

PROOF. Let Vu be again the set of dominating neighbor cells
that contribute to u.covered . Let Vs ⊆ Vu be the subset that is
marked and strictly dominates s. It follows that u.covered ≥ |Vs|.
The algorithm decreases u.covered for each v ∈ Vs, and hence
u.covered ≥ 0 after the end of the call. Moreover, if u.covered =
0 after the last v ∈ Vs is processed then u becomes marked and
remains so until the end of the call. This is because the algorithm
processes cells in dominance order, and thus it cannot visit u at
line 8.

THEOREM 5.1. Let X be a set of score vectors and assume that
coverPoints(uroot, L) provides a cover for X . Let s be a score
vector such that 6 ∃x ∈ X : s � x. Then, after the completion
of UpdateGridCR(s, uroot, L), coverPoints(uroot, L) remains a
cover for X .

PROOF. Let C′ denote the set coverPoints(uroot, L) before the
update call, and C denote the set after the call respectively.

The proof works by contradiction. Assume that there exists a
vector x ∈ X that is not covered by any point in C. Since C′ is a
correct cover, then there was at least one vector c ∈ C′ such that
x � c. Since x is not covered, this implies that c was unmarked by
the update call, which implies that s ≺≺ c from line 1. It follows
from the assumptions of the theorem that x ≺≺ c. Also, because
s is quantized on the grid, it follows that there exists at least one
dominated neighbor c′ of c such that x � c′.

Since c was originally marked, it implies that c′ is covered, i.e.,
c′.covered > 0. From the previous claim it follows that c′.covered >
0 or c′ is marked after the call, which implies that s is dominated by

at least one marked cell and this contradicts our original assump-
tion.

The second property states that the grid tree invariant continues
to hold.

LEMMA 5.1. The grid tree invariant continues to hold on uroot

after the completion of UpdateGridCR(s, uroot, L).

PROOF. The claim follows directly from the definition of the
algorithm, as a cell v can become marked only when v.covered =
0.

As mentioned earlier, the invariant ensures that coverPoints(uroot, L)
always forms a skyline, and is thus minimal for the computation of
cover bounds.

5.1.3 Definition of the aFR Bound
We are now ready to provide the definition of the aFR bound.

As hinted earlier, aFR uses a separate grid tree for each input Ri to
maintain an adaptive cover of b(Ri − HRi). The main idea is to
start with a grid tree of high resolution and then to gradually reduce
it in order to maintain |CRi| below a given threshold.

The functions comprising the bounding scheme are shown in
Figure 8. The main aFR::UpdateBound function follows closely
the logic and data structures of FR∗::UpdateBound. The differ-
ence lies in function aFR::UpdateCR that maintains the adaptive
cover. Initially, the cover is maintained as in FR∗ :: UpdateCR
which allows CRi to enclose tightly the feasible region of b(Ri −
HRi). If |CRi| exceeds a predefined threshold maxCRSize , then
the cover points are transferred to a grid tree uroot

i which provides
an adaptive cover of b[Ri − HRi] from that point onward. If the
adaptive cover also exceeds the size threshold, then the resolution
of the grid tree is reduced and the grid tree is reinitialized. We note
that FR∗ employs a separate copy of this mechanism for each input,
which makes it possible to maintain a precise cover for one input
while using an adaptive cover on the other.

At the limit, the resolution of the grid-tree can be reduced down
to the minimum value 0. In this case, coverPoints(uroot

i , 0) con-
tains just the point (1, . . . , 1) and thus the aFR bound becomes the
same as the corner bound of the HRJN∗ algorithm. Thus, an inter-
esting property of the aFR bound is that it can adapt its computation
from the tight feasible region bound to the loose and straightfor-
ward corner bound.

The definition of the bound employs two more functions, namely
aFR::InitializeGridCR and aFR::ResultBound. The for-
mer traverses the grid tree after a set of points is marked and en-
sures that the grid tree invariant is enforced. The second function

9



Function aFR::UpdateBound(ρi)
Input: Newly accessed tuple ρi

Output: A bound on the score of unseen join results
Data: Variables Gi, gi, CRi, and SHRi defined the same as for

FR∗::UpdateBound ; A positive integer maxCRSize.
// Same as FR∗::UpdateBound in Figure 5 except

for the following lines
CRi ← aFR::UpdateCR(CRi,b[Gi],maxCRSize);3
return aFR::ResultBound()8

Function aFR::UpdateCR(Ci, Y,maxCRSize)
Input: A cover Ci for the unseen portion of Ri; A set of score vectors

Y ; A positive integer maxCRSize.
Output: An updated cover for Ri that contains at most maxCRSize

points.
Data: Current resolution Li for the grid cover, initialized to∞. A

grid tree uroot
i of maximum resolution L0.

if Li =∞ then1
C ← FR∗::UpdateCR(Ci, Y) ;2
if |C| > maxCRSize then3

Li ← L0;4
Mark the nodes at level Li corresponding to C;5
aFR::InitializeGridCR(uroot

i , Li);6
C ← coverPoints(uroot

i , Li) ;7

else8
foreach s ∈ Y do aFR::UpdateGridCR(s, uroot

i , Li);9
C ← coverPoints(uroot

i , Li);10

while |C| > maxCRSize do11
Mark the nodes at level Li − 1 of uroot

i that contain a marked12
node at level Li;
aFR::InitializeGridCR(uroot

i , Li − 1);13
Li ← Li − 1 ;14
C ← coverPoints(uroot

i , Li);15

return C16

Procedure aFR::InitializeGridCR(u, L)
Input: Node u of the grid tree. On the first call, u should be the root

of the grid tree. Resolution L of the grid tree.
if u.level = L then1

u.covered ← |{v | u ≺ v ∧ u 6≺≺2
v ∧ (v is marked ∨ v.covered > 0)}|;
if u is marked and v.covered > 0 then unmark u;3

else4
foreach child v of u in dominance order do5

aFR::InitializeGridCR(v, L);6

Function aFR::ResultBound()
Output: The value of the aFR bound based on HR{1,2}and CR{1,2}
// Same as FR∗::ResultBound

Figure 8: The aFR bound.

Parameter Possible Values (Default in bold)
e: Number of score attributes 1,2, 3, 4

c: Score cut .25, .5, .75, 1
z: Skew of score distribution 0, .5, 1

K: Number of results 1,10, 100, 1000

Table 2: Parameters used in the experimental study. Default
values are shown in bold.

computes the final value of the bound and its definition is the same
as FR∗ :: ResultBound. The difference, of course, is that the
contents of CRi may come from the marked nodes in the grid tree
structure.

5.2 The a-FRPA Operator
The a-FRPA operator is the instantiation of the PBRJ template

using the aFR bounding scheme and the PA pulling strategy. (Thus,
it can be denoted as PBRJPA

aFR in the notation of [9].) We note that it
is straightforward to adapt the PA strategy to the new aFR bound by
simply defining each potential metric poti in terms of the bounds
computed in aFR::resultBound .

Based on the definition of the aFR bound, it is clear that a-FRPA
behaves exactly the same as FRPA as long as each CRi is small in
size. Under these conditions, FRPA inherits the same nice theo-
retical properties and is thus robust. Once the size threshold is ex-
ceeded, aFR is not guaranteed to be tight and hence FRPA may not
be robust. However, a-FRPA is able to compute its bound much
faster given that it employs a fast cover update mechanism and the
size of each CRi is always constrained.

As mentioned above, a-FRPA behaves exactly like the instance-
optimal FRPA operator if neither of the two covers are reduced to a
grid-tree. Another interesting observation is that a-FRPA behaves
precisely like the HRJN∗ operator if the resolution of both adap-
tive covers is reduced to 0. Thus, a-FRPA can adapt its behavior
from a provably robust operator to an empirically efficient operator
depending on the characteristics of the input.

6. EXPERIMENTAL STUDY

6.1 Methodology
We describe the data sets, queries, techniques, and evaluation

metrics that we use in our experimental study. The parameters of
our methodology are summarized in Table 2.

Data. The experimental study employs the well known TPC-H data
set. We generate several random instances using Vivek Narasayya’s
data generator2 with a scale factor of 1. We selected this particular
generator because it injects skew in the distribution of values and
joins.

We further extend the relations in the TPC-H schema with sev-
eral score attributes and assign to them random values for each
tuple. The generation of score values is controlled by three pa-
rameters termed e, z, and c. Parameter e controls the number of
score attributes per relation. For a specific e, we generate the score
vector of each tuple by drawing its score values independently at
random from a Zipfian distribution of skew z. The only constraint
is that we do not generate any score vectors that dominate the point
(c, c, . . . , c) specified by the third parameter. Thus, the generated
score vectors lie in the hyper-cube of e dimensions except that a
hyper-rectangle of volume ce is removed from the upper-right cor-

2ftp://ftp.research.microsoft.com/users/
viveknar/tpcdskew
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ner. Figure 9 illustrates this idea for e = 2. As shown, the result-
ing score vectors match the intuition for real-life data sets: Certain
score vectors may attain the maximum score of 1 for some coor-
dinates, but there is a trade-off between the score attributes that
precludes the ideal point (1, 1, ..., 1) from appearing.

We note that the size of the data set is not a parameter of our
study. This happens because a rank join operator accesses only a
prefix of each relation, and thus its performance is affected primar-
ily by the number of top results (parameter K) and the distribution
of scores (parameters e, z, and c).

Rank Joins. Our experiments employ instances of the rank join
problem on the aforementioned data. We set R1 and R2 to the
Lineitem and Orders relations respectively, because they are the
largest tables and thus have enough variability to create interesting
problem instances. The S function simply sums up the score at-
tributes from the two inputs. (Recall that each input has e score
attributes as described previously.) The number K of results is a
parameter that we vary depending on the experiment.

Techniques. The evaluation study compares four different rank
join operators: the FRPA and a-FRPA operators that we introduce
in this paper, and the existing state-of-the-art operators PBRJRR

FR [9]
and HRJN∗ [5]. As we saw earlier, PBRJRR

FR is the only known
operator to be robust, and HRJN∗ has been shown to perform well
in practice even though it is not robust.

The above operators access each input in sorted order of S by
scanning a clustered index of the respective relation. (We build
a separate index for each value of e.) This setting represents a
best-case scenario for the cost of I/O and gives an advantage to the
competitor algorithms as we explain later. In practice we expect
that access to each Ri will be costlier, e.g., it may come through an
unclustered index, or it may be streamed over the network similar
to the middleware setting described by Fagin et al. [3]

The operators are implemented in C++ and compiled with g++
and -O2 optimization flag. We use the following experimental plat-
form: Ubuntu Linux version 8.04, Intel Quad-Core 2.5GHz, 4GB
of RAM, and a single 500GB 7200RPM (SATA) disk.

Evaluation Metrics. We quantify the performance of the above op-
erators using the sumDepths metric and wall clock execution time.
Both metrics are measured at the completion of the K-th getNext
call to the respective rank join operator. The sumDepths met-
ric measures the total number of tuple pulls and thus provides a
system-independent metric for I/O. The wall clock execution time
is measured with a cold cache for each operator and it indicates the
efficiency of the operator on our experimental platform.

To attain some statistical robustness and to guard against outliers
in the generation of score values, we repeat each experiment using
five different random data instances. All five instances conform to
the same experimental parameters but employ a different seed for
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Figure 10: Performance of a-FRPA for different values of
maxCRSize . L0 is kept fixed at 64.
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Figure 11: Performance of a-FRPA for different values of L0.
Parameter maxCRSize is kept fixed at 500.

the generation of score values. For each experiment, we report the
average of each metric over the corresponding five instances.

6.2 Results

6.2.1 Performance of Adaptive Feasible Region Bound
This set of experiments evaluates the performance of a-FRPA

that employs the novel adaptive feasible region bound. The first
goal is to assess the sensitivity of the operator to its parameters,
namely the initial resolution L0 and the size threshold maxCRSize .
We also compare the operator against FRPA, in order to examine
the performance implications of the loose adaptive bound. We set
e = 3 in the experiments that follow, since we want to stress test
the ability of a-FRPA to maintain an adaptive cover for each input.

Figure 10 shows the performance of a-FRPA as we vary the pa-
rameter maxCRSize . The initial resolution is kept fixed at L0 =
64. As expected, the sumDepths metric decreases as the thresh-
old increases, since this allows a-FRPA to maintain a tighter cover
for each input. The execution time graph, however, reveals that
the overhead of maintaining the detailed cover outweighs the ben-
efits of reduced I/O, thus increasing execution time. These results
suggest that smaller thresholds are likely to be more effective.

We also observe that a-FRPA tracks closely the instance-optimal
depth of FRPA as long as the threshold value is sufficiently large (in
this experiment, greater than 500). The increased depth, however,
is countered with the far more efficient computation of the adaptive
cover bound. As a result, the total execution time of a-FRPA is far
lower compared to FRPA. As an example, for maxCRSize = 500,
a-FRPA improves on the execution time of FRPA by 48%, even
though it performs 23% more pulls on both inputs.

Figure 11 shows the performance of a-FRPA as we vary the ini-
tial resolution L0. The size threshold is kept fixed at 500. The
sumDepths metric is rather insensitive to L0, since the final reso-
lution of the adaptive cover bound is determined by the size thresh-
old which is fixed at 500. This behavior implies that a lower initial
resolution is likely to be more efficient, as there is less adaptation
to the final resolution. This intuition is verified by the measured
execution times.
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freezes a CRi once its size reaches a specific threshold. Param-
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Figure 13: Performance of a-FRPA against the operator that
uses a fixed-resolution grid to maintain each CRi. Parameter
maxCRSize is kept fixed at 500.

Compared to FRPA, we observe a similar trend as the previous
experiment. More concretely, a-FRPA has a higher sumDepths
metric, but the efficiency of the aFR bound offsets the additional
I/O cost and results in a lower total execution time.

In the final set of experiments, we compare the performance
of a-FRPA against the naive solutions mentioned in Section 5,
namely, maintaining a precise CRi up to a specific size, and us-
ing a grid of a fixed resolution. We refer to these two methods as
BoundedCRSize and FixedGrid respectively.

Figure 12 shows the performance of a-FRPA and BoundedCRSize
on the test workload. The results indicate that the adaptive opera-
tor performs significantly better in terms of both metrics. Recall
that the BoundedCRSize method freezes each CRi once its size
reaches the specific threshold. Past that point, BoundedCRSize
uses a fixed feasible region that does not track the actual shape of
the data. In the test workload this freeze happens relatively early,
which means that BoundedCRSize ends up using a crude approx-
imation of the feasible region for the most part of its execution. In
turn, this results in increased access depths and execution time. The
adaptive a-FRPA operator does not freeze CRi but instead reduces
the size of CRi by switching to a lower grid resolution. This al-
lows the operator to keep updating the feasible region as more data
is read.

Figure 13 shows the performance of a-FRPA and FixedGrid
on the test workload. The results for sumDepths indicate that
FixedGrid fares better in terms of I/O. This happens because FixedGrid
does not place any constraints on the size of each CRi, and is
thus able to maintain a more accurate feasible region compared
to a-FRPA. However, the uncontrolled size of each CRi results
in higher overall execution time, since it now becomes far more
expensive to compute the cover bounds.

We conducted more experiments with different values for L0 and
maxCRSize and obtained similar results. Overall, the experiments
demonstrate that a-FRPA provides an effective hybrid between the
instance-optimal I/O of FRPA and low computation time, and it
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Figure 14: Effect of score cut c on performance of rank join
operators. (K = 10, z = .5, e = 2.)

also outperforms the fixed-strategy heuristics. Based on the mea-
surements, we henceforth instantiate a-FRPA using maxCRSize =
500 and L0 = 64. We note that these were not the optimal settings
for the specific experiments, but we want to avoid over-fitting the
operator to the parameters of the empirical study.

6.2.2 Comparative Evaluation
The next experiments compare the FRPA and a-FRPA opera-

tors introduced in this study against the state-of-the-art operators
HRJN∗ and PBRJRR

FR. The evaluation is done relative to the param-
eters shown in Table 2.

Effect of score cut (c). Figure 14 shows the performance of the
four rank join operators as a function of the score cut c. (See Fig-
ure 9 for an explanation of the parameter.) We begin our discussion
with the results for the sumDepths metric. Compared to HRJN∗,
the new operators incur similar I/O for c = 1, but the difference
increases with lower values of c and reaches one order of magni-
tude for c = 0.5. The inefficiency of HRJN∗ is due to its bound-
ing scheme, which makes the often unrealistic assumption that the
ideal score vector (1, 1, . . . , 1) is present in the two inputs. This
assumption causes the bound to drop at a slower rate, which in turn
makes HRJN∗ “reach” deeper in each input. The new operators,
on the other hand, employ the feasible region bound, which adapts
its computation automatically to the scores actually present in the
input. This adaptation yields a tighter bound, which in turn allows
FRPA and a-FRPA to terminate much earlier.

The two new operators also outperform the existing PBRJRR
FR op-

erator in all experiments. PBRJRR
FR uses the same bound as FRPA

and a-FRPA, but its round-robin pulling strategy leads to more I/O
compared to the adaptive strategy of the new operators. The dif-
ference is significant and ranges from 7K to 100K tuples. These
results validate the effectiveness of the new strategy in avoiding the
“useless” pulls of PBRJRR

FR. We note that a-FRPA has exactly the
same I/O performance as FRPA in this experiment, since the cover
of each input remains below the threshold of 500 points.

The examination of the execution times in Figure 14 yields sim-
ilar observations. HRJN∗ incurs the highest execution time due to
its I/O overhead, followed by PBRJRR

FR which has a high computa-
tional overhead for the FR bound. The new operators are the most
efficient, since they incur less I/O and they have a low computa-
tional overhead. As a concrete example, for c = .75, FRPA is 53%
more efficient compared to PBRJRR

FR and more than 3× more ef-
ficient compared to HRJN∗. (a-FRPA behaves the same as FRPA
and thus has the same efficiency.) We note that the difference in ex-
ecution time would be amplified if the tuple accesses were costlier–
recall that we employ clustered indices which represent a best-case
scenario for the cost of I/O.

Effect of number of base scores per input (e). Figure 15 shows
the performance of the four rank join operators as a function of
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Figure 15: Effect of parameter e on performance of rank join
operators (K = 10, c = .5, z = .5).
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Figure 16: Effect of K on the performance of rank join opera-
tors (z = .5, e = 2, c = .5).

e. The results for sumDepths demonstrate that the new operators
improve on both HRJN∗ and PBRJRR

FR by a significant margin for
1 ≤ e ≤ 3. For instance, the improvement is one order of magni-
tude and 75% respectively when e = 1. The inefficiency of HRJN∗

is due again to its corner bounding scheme, which assumes that
the maximum score vector (1, 1, . . . , 1) is present in both inputs.
PBRJRR

FR is able to track the input scores more accurately through
the feasible region bound, but its round-robin pulling strategy leads
to more I/O than necessary. The new operators address both short-
comings: they employ the feasible region bound to track scores ac-
curately, and they use adaptive pulling to avoid useless pulls. The
same trend appears in the total execution time of the operators.

The results for e = 4 reveal a different picture. We note that
PBRJRR

FR and FRPA are omitted from the graph because they re-
quired more than 10 hours to complete. Essentially, the covers CRi

explode in size and their maintenance becomes prohibitively ex-
pensive. a-FRPA is able to handle this explosion through its adap-
tive bound, whose space complexity is constrained by the maxCRSize
parameter (500). In this case, however, the 4-dimensional cover
does not translate in savings in terms of the sumDepths metric,
which in turn makes the total execution time of a-FRPA similar to
that of HRJN∗. This trend suggests that the latter is the operator
of choice when both inputs have a high number of score attributes
(although the frequency of this setting in practice is not clear).

Effect of number of results (K). Figure 16 shows the perfor-
mance of the four operators as we vary K, the number of retrieved
results. The results indicate that FRPA and a-FRPA yield substan-
tial improvements both in terms of I/O and total execution time,
thus validating the trends that we observed in the previous exper-
iments. As a concrete data point, a-FRPA improves the I/O of
HRJN∗ and PBRJRR

FR by 3.5× and 64% respectively, and execution
time by 3× and 66% respectively. The FRPA operator offers simi-
lar improvements.

Effect of score skew (z). Our experiments with the skew z of the
score distribution showed qualitatively the same results as for the
default setting z = 0.5. We omit them in the interest of space.
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Figure 17: Performance of pipelined plans for different in-
stances of the rank join problem.

2

6.2.3 Evaluation of Pipelined Plans
The final experiments evaluate the performance of the different

operators when they are pipelined in a single physical plan. More
concretely, we consider three ranking queries over the following
natural joins: L 1 O, L 1 O 1 C, and L 1 O 1 C 1 P (table
symbols correspond to the initial letter of Lineitem, Orders, Cus-
tomers, and Part respectively). Each relation has exactly one score
attribute (e = 1) whose values are generated using the same pro-
cess as the previous experiments with z = 0.5, and c = 0.5. The
ranking function S aggregates base scores across all relations. For
each rank join problem, we create a physical plan that pipelines sev-
eral binary rank join operators of the same type. The K results are
obtained by invoking the top operator’s getNext method an equal
number of times.

Figure 17 shows the performance of physical plans using each
operator for the three ranking queries that we consider. We fix K =
10. The results demonstrate that a-FRPA remains far more efficient
than HRJN∗ when used in a pipelined plan, both in terms of I/O and
total execution time. As an example, the new operator improves
I/O by 5× and execution time by 6.7× respectively for the 3-way
rank join. The reason is similar as in the previous experiments:
Effective tracking of the input scores through the feasible regions
of each input, which in turn allows the operator to terminate early.
Moreover, the grid tree mechanism allows a-FRPA to track each
feasible region efficiently.

We note that we performed more experiments varying other pa-
rameters of interest. Our results remained qualitatively the same,
and are omitted in the interest of space.

7. CONCLUSIONS
In this paper, we have taken a new look at rank join operators

by considering both I/O and execution time. Our empirical study
of existing state-of-the-art operators shows that they are not effec-
tive when evaluated under both metrics. This led to the creation of
the FRPA operator which is provably robust and far more efficient
than the currently known robust operator. We also introduced the
a-FRPA operator that can adapt its behavior automatically between
the robust FRPA operator and the empirically efficient HRJN∗ op-
erator depending on the input. Our experimental results validated
the effectiveness of the new operators and demonstrated that they
can offer significant performance improvements (up to an order
magnitude) when compared against the state of the art.
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[2] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline
operator. In Proceedings of the 17th International

13



Conference on Data Engineering, pages 421–430,
Washington, DC, USA, 2001. IEEE Computer Society.

[3] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In PODS, pages 102–113, 2001.

[4] G. Graefe. Query evaluation techniques for large databases.
ACM Comput. Surv., 25(2):73–169, 1993.

[5] F. Ilyas, G. Aref, and K. Elmagarmid. Supporting top-k join
queries in relational databases. In VLDB Journal,
13(3):207–221, 2004.

[6] C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song. RankSQL:
query algebra and optimization for relational top-k queries.
In ACM SIGMOD, pages 131–142, 2005.

[7] N. Mamoulis, M. L. Yiu, K. H. Cheng, and D. W. Cheung.
Efficient top-k aggregation of ranked inputs. ACM
Transactions on Database Systems, 32(3):19, 2007.

[8] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. S. Vitter.
Supporting incremental join queries on ranked inputs. In
VLDB, pages 281–290, 2001.

[9] K. Schnaitter and N. Polyzotis. Evaluating rank joins with
optimal cost. In PODS, pages 43–52, 2008.

[10] K. Schnaitter, J. Spiegel, and N. Polyzotis. Depth estimation
for ranking query optimization. In VLDB, pages 902–913,
2007.

14


