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Abstract

In this work we revisit a recent analysis that pointed to an overall relaxation of
the Portuguese coastal upwelling system, between 1941 and 2000, and apply more
elaborate statistical techniques to assess that evidence. Our goal is to fit a model for
environmental variables that accommodates seasonal cycles, long term trends, short
term fluctuations with some degree of autocorrelation, and cross correlations between
measuring sites and variables. Reference cell coding is used to investigate similarities
in behavior among sites. We employ a Bayesian approach with a purposely developed
Markov chain Monte Carlo method to explore the posterior distribution of the param-
eters. Our results substantiate most previous findings and provide new insight on the
relationship between wind and sea surface temperature off the Portuguese coast.
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1 Introduction

The central task of climate change detection studies is to determine whether observed changes
or trends in environmental time series are “significant”, that is, highly unusual relative to
the background of natural variability, and unlikely to have occurred by chance alone (Santer
et al., 1996). Because most statistical models hinge on the assumption that the result-
ing residuals are independent and identically distributed (viz. Gaussian white noise), they
are required to incorporate the most important sources of variability in the observed data;
otherwise, this assumption is not verified and inference about the significance of trends is
compromised. Commonly, environmental processes operate on various spatial and temporal
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Figure 1: Location of weather stations and oceanic regions.

scales, producing time series that are impregnated with a number of features that make sta-
tistical modeling a challenging task. These include cycles, long-term linear and non-linear
trends, short-term memory, spatial covariance and crossed covariance.

When starting from a simple statistical model that aims to detect long-term trends (viz.
a model with intercepts, trends and uncorrelated Gaussian errors), red noise residuals are
bound to result. In face of that, one of three approaches may be followed: i) modify the
model, usually by making it more complex; ii) modify the input, by thinning the data
set (Szunyogh et al., 2008) or pre-whitening (Rodionov, 2006); iii) modify the output, by
correcting estimates based on the effective sample size (von Storch and Zwiers, 1999). At
some point in i), parsimony becomes an issue, which may occur before the residuals conform
to white noise. If the residual structure is small when compared to the modeled conterpart,
“redness” is regarded as a nuisance property of residuals, and the modeler attempts to
eliminate it by means of ii) or iii). In cases where residuals still contain relevant information,
a different approach is needed to include it in the model. Such was, for example, the
conclusion of Lemos and Pires (2004, henceforth, LP04), who used ordinary least squares
regression to analyze wind and sea surface temperature data in the west Portuguese coast
(37◦-42◦ N, 9◦-15◦ W) and found significant and readily interpretable amounts of information
in the residuals.

This paper describes a more comprehensive method, based on hierarchical Bayesian mod-
eling, which accommodates spatial, temporal and cross covariance structures, making statis-
tical inference about trends and climatological cycles more accurate. The problem described
by LP04 is revisited, so as to exemplify the method and compare results.
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2 Model

Let
Y t ≡ (V t(P ), V t(CC), V t(L), V t(S),

SST t(O1), SST t(O2), SST t(O3), SST t(C1), SST t(C2), SST t(C3))
′

denote a 10 × 1 vector containing monthly means of meridional wind speed (V) and sea
surface temperature (SST ), respectively collected at 4 weather stations of the Portuguese
Institute of Meteorology – Porto (P ), Cape Carvoeiro (CC), Lisbon (L) and Sagres (S) –
and 6 oceanic regions off Portugal – O1, O2, O3, C1, C2, C3 (Figure 1). Regional SST means
originated from raw data provided by the International Comprehensive Ocean-Atmosphere
Data Set (Worley et al., 2005). Time t is written in months, from Jan-1941 (t=1) to Dec-2000
(t=720). Then,

Y t ∼ N10 (µt,Ωt) .

In this expression, the 10 × 10 covariance matrix Ωt is a diagonal matrix that accounts for
uncorrelated measurement error; its i-th diagonal element is provided by ω(i)/nt(i), where
ω(i) and nt(i) respectively denote measurement error and the number of observations used
to construct the monthly mean Y t(i). The parameters ω(i), i = 1, . . . , 10, are unknown; we
set their prior distributions as inverse Gamma with mean 0.25 and scale parameter 1.

Regarding the 10×1 vector µt, we construct it as a sum of three components with distinct
signals: one that accounts for the seasonal cycles and trends, θt; another that encompasses
transient fluctuations thereof, λt; and a third one composed of white noise with diagonal
variance matrix Ξ. Hence,

µt ∼ N10 (θt + λt,Ξ) .

The i-th diagonal component of Ξ, ξ(i), is an unknown parameter whose prior distribution
is inverse Gamma with mean 0.025 and scale parameter 100. Following LP04, we describe
θt with form-free seasonal factors and linear trends,

θt ≡

(

1l4α
(V )
m

1l6α
(SST )
m

)

+ δm +

[(

1l4β
(V )
m

1l6β
(SST )
m

)

+ γm

]

(t − 360)/12,

where m indicates the month corresponding to time t. We also use reference cell coding
(Kleinbaum et al., 1998), so that in the above expression, Sagres and the coastal region C2

represent the “reference cells”. This implies that the reference parameters, δm(S), δm(C1),

γm(S) and γm(C1), are set to zero, for m = 1, . . . , 12. Thus, α
(V )
m is the monthly intercept

for wind, common to all weather stations; δm(P ) is the difference in intercept between Porto

and Sagres; β
(V )
m is the monthly trend for wind, common to all weather stations; γm(P ) is

the difference in trend between Porto and Sagres; and so forth for SST. Note that 1lk denotes
a k × 1 vector of ones.

Finally, we describe λt by means of an autoregressive process of order one:

λt = diag(ρ)λt−1 + εt, εt ∼ N10 (0,Σ) , (1)

The covariance matrix Σ follows, a priori, an inverse Wishart distribution with 26 degrees
of freedom and scale matrix equal to 4 times the identity matrix. Diffuse Normal priors,

3



with mean zero and variance equal to 106, are used for most non-reference parameters. An
exception is the 10 × 1 parameter vector ρ, whose components have independent Uniform
prior distributions with support (−1, 1). Hence, the value of the components of ρ is, a priori,
uniformly distributed inside the interval that corresponds to the assumption of stationarity
of the autoregressive process.

To explore the posterior distributions of the parameters in the model described above,
we employ Markov chain Monte Carlo (MCMC) methods. Gibbs sampling is applied to

parameters with conjugate priors: the full conditional distributions (FCDs) of µm, α
(V )
m ,

α
(SST )
m δm, β

(V )
m , β

(SST )
m , and γm, m = 1, . . . , 12, are Normals; the FCDs of ξ(i), and ω(i),

i = 1, . . . , 10 are inverse Gammas; the FCD of Σ is inverse Wishart. The procedure to
obtain these FCDs is standard; theoretical principles can be found e.g. in Gelman et al.
(2003) and Gamerman and Lopes (2006), and a similar application to the one described
above can be found in Lemos et al. (2007). To sample from each component of ρ at a time,
we use a Metropolis-Hastings step, where the proposal distribution is a truncated Normal
with (−1, 1) support and variance set upon a pilot run. In the case of λ, we apply the Forward
Filtering, Backward Sampling method described by West and Harrison (1997, chapter 15)
to the conditional multivariate dynamic linear model given by observation equation

µt − θt = λt + εt, εt ∼ N10 (0, Iξ)

and evolution equation (1).
For convergence diagnostics, we employ the methods developed by Heidelberger and

Welch (1983), Gelman and Rubin (1992), Geweke (1992), Raftery and Lewis (1992b), Raftery
and Lewis (1992a), and Brooks and Gelman (1998), available in the package Bayesian Output
Analysis Program (BOA) (Smith, 2005) within R (R Development Core Team, 2005). We use
the default values of BOA to define the length of the burn-in stage, thin the chain, check
stationarity and define the adequate sample size to achieve the precision required, when
sampling from the posterior distribution.

In order to assess goodness of fit, we perform a suite of tests, including visual comparisons
of time series of observations versus model estimates and associated 95% credibility intervals,
informal inspections of red noise remaining in the model residuals (Y t − µt), and a more
systematic analysis of the upper level residuals, µt − (θt + λt), based on the ideas of Kim
et al. (1998). Let Θ denote the collection of all model parameters; for each site s, the one
step ahead distribution of µt(s) is

u
[s]
t (x) = P (µt(s) ≤ x|Θ, xi(s), i = 1, . . . , t − 1) .

Following Rosenblatt (1952), u
[s]
1 (µ1(s)), . . . , u

[s]
599(µ599(s)) are independent and uniformly

distributed, provided the underlying distribution is continuous. Gneiting et al. (2005) denote
this transformation as Probability Integral Transform and give an extensive list of references
regarding its application.

We notice that, conditional on Θ, the one step ahead predictive distribution of µt(s) at
any given site is normal. So, from each iteration of the MCMC after convergence, we can
obtain a collection of random variables that should be independent and uniformly distributed.
As in Kim et al. (1998), we consider a transformation to normality given by Φ−1(u

[s]
t ), where
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Figure 2: Posterior means (dots) and 95% credibility intervals (whiskers) for: the climatological

v-wind cycle, i.e., α
(V )
m + δm (upper row); the deviation in the cycle with respect to Sagres, i.e., δm

(mid row); long term trends, i.e., β
(V )
m + γm (lower row).

Φ−1 stands for the inverse of the standard normal cumulative distribution function. We use
quantile-quantile plots, correlograms and periodograms to check that these variables are,
respectively, normally distributed and independent.

3 Results

The seasonal cycle of the meridional wind component (v-wind), at the four weather stations
analyzed, is depicted in the top panels of Figure 2. The cycle differs markedly from what
a combination of a few harmonics would produce, making the form-free approach more
adequate. Northerly, upwelling favorable winds predominate, especially between April and
September; hence, we call this semester the climatological upwelling season. When compared
to Sagres, Cape Carvoeiro displays nearly the same cycle, Porto shows a year-round shift
towards more southerly winds, and Lisbon has a less pronounced seasonality (Figure 2,
mid panels). We point out that the diurnal cycle of wind speed may be confounding this
comparison, because the time of day at which wind measurements are taken differs among
stations; see LP04 for a more detailed analysis.

The lower panels of Figure 2 present the long-term linear trends. Although the uncer-
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Table 1: Posterior means and 95% credibility intervals for v-wind trends [×10−2m s−1yr−1] and
SST trends [×10−2 ◦C yr−1] during the upwelling season (April through September).

P CC L S O1 O2 O3 C1 C2 C3

Upper Endpoint 4.25 4.33 3.24 3.72 1.11 1.18 1.41 2.53 2.73 2.46
Mean 2.27 2.23 1.80 1.38 0.11 0.30 0.44 0.94 1.34 1.15
Lower Endpoint 0.22 0.37 0.54 -1.42 -0.91 -0.68 -0.60 -0.78 -0.07 0.00

tainty associated with these estimates is considerable, some patterns can be discerned. The
first is that, during the upwelling season, the trend appears more or less constant and pos-
itive, for all stations. On average, this rate is close to 0.0236 m s−1 yr−1 (Table 1), which
corresponds to a weakening of 1.4 m s−1 in the 60 year period under study. The second
noticeable feature is that, unlike other months, March presents a negative trend. Thus,
toward the end of the century, northerly winds became on average stronger during March
and weaker between April and September. December also presents a trend towards more
southerly flow.

Figure 3 presents results for SST. In the reference region, C2, the average annual SST is
16.4◦C, and the difference between winter and summer months is close to 4.1◦C. The seasonal
cycle in the other two coastal regions is deviated by roughly 1◦C, a finding that reflects the
difference in latitude. Offshore regions also display the latitudinal effect, but their cycle is
substantially different: if we compare C2 with O2, for example, we see that offshore waters
can be warmer by more than 2◦C , in late summer. This is clearly the effect of upwelling,
which keeps coastal waters cooler than their offshore conterparts nearly year-round. Unlike
wind, the seasonal cycles are fairly regular, so the form-free SST cycles seem amenable to
be replaced with more parsimonious combinations of a few harmonics and an annual mean.

Similarly to v-wind, SST trend estimates display wide posterior 95% credibility intervals,
especially along the coastline, where sampling is poorer. Nonetheless, coastal and offshore
regions present distinct patterns: in the former, strong positive trends are frequent and
negative trends are rare; in the latter, positive but weak trends emerge mostly in the first
half of the year and negative trends are more common. Because posterior intervals for
trends overlap substantially, we could perform the analysis with a single year-round trend,
as LP04 did, or compute seasonal averages without great loss of information. Table 1 shows
mean SST trends during the upwelling season. Even with a 6 months average, uncertainty
regarding the magnitude of coastal warming is still considerable: taking C2 as example,
SST change from 1941 to 2000 ranges between -0.07◦C and 1.64◦C, with 95% confidence.
The only region where the 95% posterior interval is within <+ is C3. In any case, we may
state that overall, SST tended to increase along the Portuguese coast, rendering coastal-
offshore gradients smaller. Simultaneously, the alongshore wind component weakened, from
a starting point that was clearly upwelling favorable. ¿From these two observations, we may
infer that the western Iberian upwelling regime relaxed towards the end of the 20th century.
This conclusion is in agreement with previous findings, using both environmental (Lemos
and Sansó, 2006; Álvarez et al., 2008) and biological (Lima et al., 2007a,b; Álvarez-Salgado
et al., 2008) data.

It is worth noting that, along this coastline, typical summertime upwelling pulses last less
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Figure 3: Posterior means (dots) and 95% credibility intervals (whiskers) for: the climatological

temperature cycle, i.e., α
(SST )
m + δm (upper row); the deviation in the cycle with respect to C2, i.e.,

δm (mid row); long term trends, i.e., β
(SST )
m + γm (lower row).
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than one month (generally, about one week), and that two upwelling events may be parted
by strong southerly wind conditions. Also, upwelling develops along a coastal strip that
is sometimes narrower that the width of the coastal regions defined in this work. Hence,
the present model operates on temporal and spatial scales that do not resolve individual
upwelling events, but rather their net effect on monthly and regional means. As Figures 2
and 3 demonstrate, the signature of upwelling is still evident at these scales.

Finding similar climatologies and trends for the v-wind component (Figure 2) was a
sensible result, given the spatial proximity of the weather stations under study and knowing
that surface air flow along the Portuguese coast is mostly meridional. In line with this, it
is also not surprising to find, as LP04 did, that high frequency deviations from the linear
trends display some degree of spatial coherence. Namely, LP04 showed that these deviations
– in their approach, residuals – are positively correlated among stations, and that nearby
stations display stronger correlations than those farther apart. In the present work, we
accommodate for this structure in the model, by using the matrix Σ. Because we are
using the same data set as LP04, we opt not to provide the above information in the prior
distribution of Σ. Rather, we assign few degrees of freedom to the prior and thus let the
observations predominate in the posterior distribution of Σ. To facilitate comparisons with
LP04, we derive the correlation matrix from Σ and depict its posterior mean in a level plot.
As Figure 4 shows, the correlation structure between weather stations mimics the features
described by LP04.

The above discussion also applies to SST. In this part of the NE Atlantic, ffshore surface
currents are mostly meridional, while upwelling/downwelling events induce similar degrees of
cooling/warming along the coastline. Therefore, along-shelf SST covariances (i.e., offshore-
offshore and coastal-coastal covariances) should be positive and stronger than their cross-
shelf counterparts. Mesoscale ocean processes, on the other hand, should weaken covariances
as distance increases. Figure 4 displays these features, thus confirming and extending the
results of LP04.

One final noticeable feature presented in the correlation matrix, not analysed by LP04,
is a block of positive correlations between wind and coastal SST fluctuations. This means
that, when northerly winds (coded as negative v-wind values) are stronger than average,
then coastal SST tends to drop below average, and vice versa. Because the association with
offshore SST is weaker, we may interpret this as another sign of upwelling/downwelling on
the analyzed time series.

As expected, transient v-wind fluctuations display weaker memory than SST. Sagres is
the odd station, with strong lag-1 autocorrelation (Figure 5, left panel). As discussed in
LP04, this may be a real feature or an artifact due to temporary instrument miscalibration.
Regarding SST anomalies, the 95% posterior intervals concentrate probability between 0.4
and 0.5, and it is not possible to tell whether memory differs markedly between coastal
and offshore regions. Finally, the central and right panels in Figure 5 depict the posterior
distributions of the variance parameters ξ and ω. These distributions differ substantially
among stations and regions, meaning that the model was able to learn from the data.

Residual analyses conformed well with the assumption that deviations between Y t and
µt, as well as between µt and θt + λt, are consistent with white noise. We defer the in-
terested reader to www.ams.ucsc.edu/∼bruno/windSST/, where residual autocorrelograms,
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Figure 4: Posterior mean correlation matrix derived from the covariance matrix Σ.
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cross-correlograms and normal quantile-quantile plots are available. MCMC convergence
diagnostics can also be found there.

4 Final remarks

In this paper we present a statistical approach for the decomposition of environmental time-
series into a number of parameters of interest, with the valuable asset that reliable measures
of the estimation uncertainty are provided. The list of parameters consists of: a) stationary,
form free seasonal cycles (α); b) long-term linear trends (β); c) terms for the comparison of
cycles and trends among stations and regions (respectively, δ and γ); d) auto-correlation and
cross-covariance parameters (respectively, ρ and Σ); e) error variances (ω and ξ). We use
well established methods for the assessment of parameter convergence and goodness-of-fit
analyses.

In an attempt to compare the approach with a more standard one, we revisit the problem
described by LP04. Using their work as exploratory data analysis, we inflate the dimension-
ality of the model (item d in the list above), so as to provide more insight on the nature of
the analyzed variables. Unlike LP04, we do not use a suite of hypothesis tests to reduce the
dimensionality of the problem where possible; rather, we prefer to keep all model parameters
and discuss their usefulness in capturing variability in the time series. With a Reversible
Jump MCMC technique (see e.g. Hopcroft et al., 2007), we could have investigated the
performance of nested models, at the cost of rendering the discussion more elaborate.

Overall, mean estimates of trends, seasonal cycles, auto-correlations and cross correlations
are in good agreement between this paper and LP04. The correlation found between transient
fluctuations of the v-wind component and coastal SST (around 0.30) provides further credit
to the hypothesis that, even at the coarse spatial and temporal scales described, the link
between the two variables is still strong enough to reflect upwelling. Hence, we substantiate
the hypothesis forwarded by LP04, that a relaxation of upwelling off the west Iberian coast
occured between 1941 and 2000.

On the other hand, the two papers differ markedly in how they treat uncertainty. Because
parameter estimation is performed in a single modeling step, the present analysis allows an
exchange of information between all types of parameters. In contrast, LP04 assumed that
residuals from the “trend plus intercept” model consisted of white noise, so as to estimate
confidence intervals for the trends and cycles, and later estimated residual auto-correlations
and cross-covariances conditional on the mean intercepts and trends (i.e., assuming no uncer-
tainty existed in these parameters). The procedure of LP04 thus violated two assumptions,
with the resulting effect that confidence intervals were unduely narrow. The consequence
for climate change detection is important: for instance, regarding SST trends, LP04 found
evidence of significant offshore warming, while in the present paper and Lemos and Sansó
(2006), it is not possible to ascertain whether this warming is spurious or not.
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