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Abstract

The rotation rate of the solar radiative zone is an importantdiagnostic for angular-momentum
transport in the tachocline and below. In this paper we studythe contribution of viscous and mag-
netic stresses to the global angular-momentum balance. By considering a simple linearized toy
model, we discuss the effects of field geometry and applied boundary conditions on the predicted
rotation profile and rotation rate of the radiative interior. We compare these analytical predictions
with fully nonlinear simulations of the dynamics of the radiative interior, as well as with observa-
tions. We discuss the implications of these results as constraints on models of the solar interior.

1. Introduction

Helioseismic inference of the rotation profile of the solar interior has revealed two spatially-
distinct regions: an outer differentially-rotating shellsurrounding an inner uniformly rotating core
(Christensen-Dalsgaard & Schou, 1988; Kosovichev, 1988; Brown et al. 1989; Dziembowskiet
al. 1989). The transition between the two regions, the solar tachocline, is located precisely at the
base of the solar convection zone. It is surprisingly sharp with an average width no larger than
a few percent of the solar radius (Charbonneauet al. 1999, Elliott & Gough, 1999). Our under-
standing of this peculiar rotation profile has steadily marched on in the past three decades, bene-
fiting greatly from the high-performance computing revolution. Today, the field is ripe for more
quantitative comparisons between models and observations, and has begun focusing on specific
reference points, such as the overall pole-to-equator difference in the rotation rate, the inclination
of the isorotation contours, the thickness of the tachocline and finally, the subject of this paper, the
rotation rate of the radiative interior.

If one assumes that the solar interior is in a dynamically quasi-steady state, then the rota-
tion rate of the radiative zoneΩrz can be thought of as a weighted average of the rotation profile
observed near the base of the convection zone:

Ωcz(θ) ≃ Ωeq(1− a2cos2θ − a4cos4θ) , (1)
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whereΩeq/2π = 463nHz,a2 = 0.17 anda4 = 0.08 (Schouet al. 1998; Gough 2007). Hence we can
formally write

Ωrz =
∫ π/2

0
W(θ)Ωcz(θ)sinθdθ , (2)

where the weight functionW(θ) depends uniquely on the nature of angular-momentum transport
in the tachocline. Observations provide us with relativelyprecise measurements ofΩrz (Schouet
al. 1998), with

Ωrz/2π = 430nHz→ Ωrz ≃ 0.93Ωeq . (3)

Can this information be used to constrain theoretical models of the solar interior?

If angular-momentum transport in the radiative zone and thetachocline were purely viscous,
the rotation rate of the deeper regions (r → 0) would be the same as that of the mean specific
angular momentum of the convection zone (Gilman, Morrow & DeLuca, 1989), or in other words
Wvisc(θ) = sin2θ so that

Ωvisc =

(

1−
a2

5
−

3a4

35

)

Ωeq≃ 0.959Ωeq . (4)

Of course, purely viscous transport cannot account for the observed uniform rotation. Spiegel &
Zahn (1992) proposed the first tachocline model, in which angular momentum is primarily trans-
ported by anisotropic turbulence. Since the stratificationof the radiative zone strongly inhibits
radial fluid motions, they modelled the effects of this turbulence as a dominantly horizontal dif-
fusion process, and found that the interior would indeed relax to uniform rotation beneath the
tachocline with an angular velocity

ΩSZ =

(

1−
3a2

7
−

5a4

21

)

Ωeq≃ 0.908Ωeq . (5)

Gough & McIntyre (1998, GM98 hereafter) later argued against this model on the ground that
two-dimensional turbulence does not act to diffuse angularmomentum horizontally (e.g. Tobias,
Diamond & Hughes 2007). Moreover, the predicted valueΩSZ is sufficiently far from the observed
value to be ruled out by the observations.

In the past decade, magnetized models have become more widely accepted as the simplest
explanation for the observed uniform rotation of the radiative zone (Rüdiger & Kitchatinov 1997;
GM98; see Garaud, 2007 for a review). A large-scale primordial magnetic field, strictlyconfined
beneath the convection zone can indeed robustly maintain a state of uniform rotation through Fer-
raro’s law of isorotation (Ferraro, 1937). The confinement of the primordial field is thought to
result from interactions with large-scale meridional flowsoriginating from the convection zone, as
originally proposed by GM98, and first shown numerically by Garaud & Garaud (2008) (GG08
hereafter).
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However, little attention has been given so far to the predicted rotation rate of the radia-
tive zone in these models. The linear simulations of Rüdiger& Kitchatinov (1997), which as-
sume a given confined poloidal field structure, suggest thatΩrz ≃ 0.97Ωeq, a value which is much
larger than observations. The nonlinear simulations of GG08 on the other hand suggest that
Ωrz ≃ 0.87Ωeq, a value which is far too low. Can we understand these numerically determined
values in terms of simple force-balance arguments? We show in this paper that it is indeed pos-
sible. Moreover, much can be learned from this exercise in terms of relating models to the real
Sun.

We begin in §2 by describing a linearized toy model of the radiative zone in which the poloidal
component of the field is fixed (Rüdiger & Kitchatinov 1997; MacGregor & Charbonneau 1999).
As in the work of MacGregor & Charbonneau (1999), we study twodifferent field geometries:
an open dipole (§3) and a confined dipole (§4). In both cases westudy the effect of boundary
conditions on the predicted rotation profile and rotation rate of the radiative interior. We discuss
the implications of our findings by comparing these toy-model predictions with fully nonlinear
simulations of the dynamics of the radiative interior in §5,and conclude in §6.

2. A toy model of angular momentum transport in the solar radiative zone

Let us consider the simplest possible setup in which to studythe interaction between large-
scale fields and flows in a spherical shell: the homogeneous magnetized spherical Couette flow.
We thus consider a spherical shell containing a homogeneousincompressible conducting fluid; the
outer radius of the shell isro while the inner radius isr i. The uniform density of the fluid isρ,
its viscosityν and magnetic diffusivityη. We model the medium outside the spherical shell as a
solid, and allow this solid to have various conducting properties. The inner core, for radiir < r i, is
assumed to be permeated by currents which maintain a poloidal dipolar magnetic field.

This setup has been extensively studied in the geophysical literature as a model of the Earth’s
interior and is also used as a basis for studying spherical Couette flow dynamo experiments (e.g.
Dormy, Cardin & Jault 1998; Hollerbach, 2000; Dormy, Jault &Soward 2002; Hollerbach, Canet
& Fournier, 2007). It has also been used in the solar context by Rüdiger & Kitchatinov (1997)
and MacGregor & Charbonneau (1999). As in these latter papers, we neglect the meridional flows
entirely. The validity of this approximation is discussed in §5. The flow considered is therefore
defined in the spherical coordinate system (r,θ,φ) as

u = (0,0, r sinθΩ(r,θ)) . (6)

As a result of this assumption, the fluid within the sphericalshell does not influence the imposed
poloidal field.
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We introduce the flux functionA(r,θ) such that

Bp = ∇×
(

A
r sinθ

êφ

)

. (7)

The toroidal component of the magnetic fieldBφ is generated by theΩ-effect induced by the az-
imuthal flow. For simplicity of notation, we introduce the new variableS(r,θ) such that

S= r sinθBφ , (8)

so that the total magnetic field can be written as

B =
1

r sinθ

(

1
r
∂A
∂θ

,−
∂A
∂r

,S

)

. (9)

The dynamics of this reduced system are entirely described by the azimuthal component of
the momentum equation as well as the azimuthal component of the induction equation. These are
expressed in the spherical coordinate system as (cf. Rüdiger & Kitchatinov 1997):

η

[

∂

∂θ

(

1
r sinθ

∂S
∂θ

)

+
r

sinθ

∂2S
∂r2

]

= r

(

∂Ω

∂θ

∂A
∂r

−
∂Ω

∂r
∂A
∂θ

)

, (10)

ρν

[

1

sin3θ

∂

∂θ

(

sin3θ
∂Ω

∂θ

)

+
1
r2

∂

∂r

(

r4∂Ω

∂r

)]

=

1

4πr2sin3θ

(

∂A
∂r

∂S
∂θ

−
∂A
∂θ

∂S
∂r

)

. (11)

Note that if both diffusion terms are neglected, then the equations reduce to

∇Ω×∇A∝ Bp ·∇Ω = 0 , (12)

∇S×∇A∝ Bp ·∇S= 0 . (13)

The respective solutions of these equations are simple:Ω and S must be constant on poloidal
magnetic field lines (which are lines of constantA). Equation (12) is an expression of Ferraro’s
isorotation theorem, while (13) expresses the fact that in this steady-state axisymmetric system the
azimuthal component of the Lorentz force must be zero.

The boundary conditions are selected as follows. We consider that the inner boundary is
rotating uniformly with

Ω(r i,θ) = Ωin , (14)

while the outer boundary is rotating differentially as

Ω(ro,θ) = Ωcz(θ) . (15)
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The angular velocityΩin is selected, as in Garaud (2002) and GG08, in such a way as to guarantee
that the total torque applied to the system is zero. Hence, werequire that

∫ π/2

0

(

ρνr2 sin2θ
∂Ω

∂r
+ r sinθ

BrBφ

4π

)

sinθdθ = 0 . (16)

Note that in this steady-state calculation, equation (16) only needs to be applied at one particular
radiusr to be valid everywhere. We now calculateΩin for a variety of poloidal field configurations
and boundary conditions on the azimuthal magnetic field.

3. Solution for an open field configuration

In order to represent an open field configuration, we select

A(r,θ) =
B0

2
r3

i
sin2θ

r
. (17)

The normalizing constant is chosen so that this flux functionrepresents the poloidal magnetic field
Bp which is the exact axisymmetric solution of the equation∇2Bp = 0 in the whole space, matches
to a point dipole atr = 0 and decays asr →∞, and finally, which has amplitudeB0 on the polar
axis at radiusr = r i.

Dormy, Cardin & Jault (1998) and Dormy, Jault & Soward (2002)presented the first analytical
studies of the linear dynamics of magnetized spherical Couette flows. The following analysis is
analogous to their approach in the limit where meridional flows are neglected, but investigates the
case of a differentially rotating outer boundary. Following their results we expect the presence of
two boundary layers near the inner and outer boundaries respectively, as well as an internal shear
layer along the “last connected field line”, as shown in Figure 1. This particular field line (C)
separates the equatorial region (E) from the polar region (P).

In the equatorial region (E), every field line (F ) originating from the inner core in the Northern
hemisphere re-enters the core at a symmetric latitude in theSouthern hemisphere. In the limit
of negligible diffusion, the angular velocity must be constant along (F ) implying that the entire
equatorial region must rotate with angular velocityΩin. The functionSmust also be constant along
(F ), but in addition is antisymmetric with respect to the equator. The only possibility is therefore
S= 0 everywhere in (E).

In the polar region (P), field lines originating from a co-latitudeθi on the inner core extend
out to co-latitudeθo on the outer boundary (see Figure 1), where

sin2θi

r i
=

sin2θo

ro
. (18)
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Fig. 1.— Unconfined field geometry, showing the polar region (P) and the equatorial region (E)
separated by the last connected field line (C).

The field lineC emerges from the inner core at co-latitudeθC, with

sinθC =

(

r i

ro

)1/2

. (19)

We now consider the solutions of the problem under various types of boundary conditions for
the magnetic field.

3.1. Vanishing toroidal field on the boundaries

We first consider the case whereS= r sinθBφ is required to be zero both at the inner and the
outer boundary:

S(r i,θ) = S(ro,θ) = 0 (20)

These can be thought of as “insulating” boundary conditions.

3.1.1. Analytical solutions

To study the boundary layer nearro we introduce the scaled variable

ξ =
ro − r
δo f (θ)

, (21)

where the typical boundary layer thicknessδo and its form functionf (θ) both remain to be deter-
mined. We assume (and later verify) that for low diffusivitiesδo is very small compared with the
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global scales in the system (r i, ro). Substituting this new variable in the governing equations (10)
and (11), using the chain rule

∂

∂r
→ −

1
δo f (θ)

∂

∂ξ
and

∂

∂θ
→ ∂

∂θ
− ξ

f ′(θ)
f (θ)

∂

∂ξ
(22)

and keeping only the lowest order terms inδo yields

∂2S
∂ξ2

= B0
r3

i δo f (θ)
ηro

sin2θcosθ
∂Ω

∂ξ
,

∂2
Ω

∂ξ2
=

B0

4πρν

r3
i δo f (θ)

r5
o

cosθ

sin2θ

∂S
∂ξ

. (23)

Combining the two equations yields

∂3S
∂ξ3

=
∂S
∂ξ

and
∂3

Ω

∂ξ3
=

∂Ω

∂ξ
, (24)

provided we define

δ2
o =

4πρνη

B2
0

r6
o

r6
i

and f (θ) =
1

cosθ
. (25)

The solutions to this set of equations which remain bounded as ξ → +∞ are

So(ξ,θ) = s(0)
o (θ) + s(1)

o (θ)e−ξ ,

Ωo(ξ,θ) = ω(0)
o (θ) +ω(1)

o (θ)e−ξ , (26)

where the index “o” denotes that this solution is only valid in the outer boundary layer. The
integrating functionss(1)

o (θ) andω(1)
o (θ) are related to one another by the equation

s(1)
o (θ) = −

(

4πρν

η

)1/2

r2
o sin2θω(1)

o (θ) . (27)

A very similar calculation can be done nearr i introducing the scaled variable

ζ =
r − r i

δi f (θ)
, (28)

with

δ2
i =

4πρνη

B2
0

, (29)

yielding similar governing equations (see (24)) and therefore the solutions

Si(ζ ,θ) = s(0)
i (θ) + s(1)

i (θ)e−ζ ,

Ωi(ζ ,θ) = ω
(0)
i (θ) +ω

(1)
i (θ)e−ζ , (30)
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where the index “i” denotes that this set of solutions is onlyvalid in the inner boundary layer. The
integrating functions are related to one another by

s(1)
i (θ) =

(

4πρν

η

)1/2

r2
i sin2θω(1)

i (θ) . (31)

In the case of the boundary conditions selected here, the solution in the bulk of the fluid is
well-approximated by neglecting any effect of dissipation. This result was formally shown by
Dormy, Cardin & Jault (1998). There,SandΩ are constant along magnetic field lines as discussed
earlier, so we can write the bulk solution as

Sb(r,θ) = sb (A(r,θ)) andΩb(r,θ) = ωb (A(r,θ)) . (32)

As ξ andζ respectively tend to+∞, the boundary solutions must approach the bulk solution
smoothly. Hence,

s(0)
i (θ) = sb (A(r i,θ)) ands(0)

o (θ) = sb (A(ro,θ)) ,

ω(0)
i (θ) = ωb (A(r i,θ)) andω(0)

o (θ) = ωb (A(ro,θ)) . (33)

Since the co-latitudesθi andθo satisfy by definitionA(r i,θi) = A(ro,θo), the above relationships can
be summarized as

s(0)
i (θi) = s(0)

o (θo) andω
(0)
i (θi) = ω(0)

o (θo) . (34)

Finally, we apply the boundary conditions to determine the unknown integration functions
uniquely. Requiring (14) and (15) implies that

ω(0)
i (θ) +ω(1)

i (θ) = Ωin ,

ω(0)
o (θ) +ω(1)

o (θ) = Ωcz(θ) . (35)

RequiringS= 0 on both boundaries implies

s(0)
i (θ) + s(1)

i (θ) = 0 ,

s(0)
o (θ) + s(1)

o (θ) = 0 . (36)

The set of eight equations contained in (27), (31), (34), (34) and (36) can be solved uniquely
for the eight integration functions. Of particular interest for the following calculation is the expres-
sion forω(1)

i :

ω(1)
i (θi) = −

r3
o

r3
o − r3

i

(Ωcz(θo) −Ωin) , (37)
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whereθi andθo are related by equation (18).

We now seek to expressΩin as a weighted integral overΩcz(θ). Applying (16) on the inner
boundary, and using (28) and (37) yields

∫ π/2

0
sin3θ

∂Ωi

∂r
dθ = −

∫ θC

0

sin3θi

δi f (θi)
ω(1)

i (θi)dθi = 0 , (38)

since, in the equatorial region on the inner core (θi > θC), ∂Ω/∂r = 0. Changing variables fromθi

to θo, and using the actual expression forf (θ) transforms this equation to

∫ π/2

0
cosθo sin3θo [Ωcz(θo) −Ωin] dθo = 0 , (39)

which implies that

Ωin = Ωeq

(

1−
a2

3
−

a4

6

)

. (40)

Using the helioseismically determined values fora2 anda4 yields

Ωin = 0.93Ωeq . (41)

In the asymptotic limit where this expression is valid (e.g.δi/r i ≪ 1) note thatΩin is independent
of the aspect ratior i/ro of the setup, and can be shown to hold for non-homogeneous fluids as well.
In fact, it only depends on the imposed differential rotation.

3.1.2. Numerical solutions

We obtained numerical solutions to the set of linearized equations (10) and (11) with bound-
ary conditions (14), (15) and (20) using a numerical algorithm adapted from the one developed by
Garaud (2001). This algorithm involves the expansion of thegoverning equations upon a truncated
set of Chebishev functions inµ = cosθ, and seeks the solution of the remaining set of ODEs by
Newton-Raphson relaxation. The linear nature of the equations (in the variablesSandΩ consid-
ered) guarantees the immediate convergence of the solutions.

The analytical results presented above are asymptoticallyindependent of the individual values
selected forB0, η andρν, and depend instead only on their combination through the Hartman num-
berH, which is the ratio of the geometric mean of the two diffusiontimes (viscous and magnetic)
to the Alfvén time. From here on, we define the Hartman number of the simulation as

H =
B0r i√
4πρνη

. (42)
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Fig. 2.— Unconfined field solution forH = 4700 and forS= 0 on both boundaries. In our attempt
to relate these simulations to the solar radiative zone, theouter solid circle marks for reference the
outer edge of the Sun (r = R⊙), and the dotted line marks the radiative–convective interface. Here,
ro = 0.7R⊙ andr i = 0.35R⊙.

Figure 2 shows the numerical solution for a fairly large value of the Hartman number,H =
4700. As expected, the equatorial region is indeed rotatingwith the same angular velocity as the
core, andS is zero there. In the polar regions, bothΩ andSare constant along poloidal magnetic
field lines, except near the inner and outer boundaries, and in the vicinity of the field line (C). The
rotation rate of the inner core is found to beΩin = 0.937Ωeq in this simulation. This numerical
solution confirms our analytical results. Moreover, asH → +∞, we find thatΩin → 0.98Ωeq (see
Figure 7).

3.2. Conducting boundary conditions

We now turn to the case of “conducting boundary conditions” for the toroidal field, which
are the same conditions as those used in the numerical simulations of the radiative zone dynamics
performed by GG08. The material outside of the fluid shell is assumed to be infinite in extent and
to have the same diffusivity as the fluid inside the shell. Thetoroidal field satisfies the equation

∇2Bφ −
Bφ

r2 sin2θ
= 0 , (43)

for r > ro andr < r i, with Bφ → 0 asr → 0 andr → +∞. The solution to this equation is smoothly
matched onto the solution within the spherical shell atr = r i andr = ro (see GG08, for detail).

As first shown by Hollerbach (2000) the characteristics of the solution are now different from



– 11 –

the case of insulating boundary conditions, an effect whichis studied in detail by Soward & Dormy
(2009). Remarkably, the bulk of the fluid is not in Ferraro isorotation. To understand the difference
on a qualitative basis, note that the magnetic field is merelydiffusing out of the boundaries and that
the continuous generation of toroidal field by the fluid motions within the shell is only compensated
by this dissipation. In other words, nothing but dissipation limits the growth of the amplitude of the
field. As a result, the amplitude ofS is proportional to 1/η, so that the approximationBp ·∇Ω = 0
in the bulk of the fluid is no longer valid (the diffusion term is O(1) compared with the advection
term). Note thatBp ·∇S= 0 still holds.

Since the bulk equations are notably more difficult to solve analytically in this case (see
Soward & Dormy 2009 for detail), we only provide a sample numerical solution in Figure 3. The
parameters for this simulation are exactly the same as for the case shown in the previous section
– only the magnetic field boundary conditions differ. The twocharacteristic features mentioned
above are clearly illustrated in Figure 3: (1) the amplitudeof the S field is orders of magnitude
larger than before, althoughS is still constant on poloidal magnetic field lines; (2) the angular ve-
locity profile deviates from Ferraro isorotation. A strong sub-rotating layer appears just interior to
the field line (C), and the angular velocity of the inner coreΩin = 0.863Ωeq is much slower than in
the previous calculation (§3.1). Finally, note that the core velocity found in this case does depend
on the aspect ratio of the system. The variation ofΩin with H is shown in Figure 7.

Fig. 3.— Same as Figure 2 but for conducting boundary conditions (using (∇2B)φ = 0 for r > ro

andr < r i). Note how the angular velocity profile is not in a state of Ferraro rotation; also note the
difference in the amplitude ofS.
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4. Solution for a confined field

In order to represent a confined magnetic field, we select the flux functionA(r,θ) as in the
work of Rüdiger & Kitchatinov (1997) to be

A(r,θ) = B0
r2

2

(

1−
r
ro

)q

sin2θ , (44)

whereq is the confinement parameter, which we assume is greater or equal to one. Note that when
q = 1, Br = 0 at ro while Bθ is non zero. On the other hand, forq > 1, Bθ also vanishes atr = ro.
Also note that the constantB0 now defines the amplitude of the magnetic field atr = 0 (i.e. not on
the polar axis atr = r i).

We begin by considering the case of insulating boundary conditions, whereBφ = 0 at r i and
ro. Figure 4 presents a numerical solution for large Hartman number, forq = 1. It clearly shows
that the bulk of the fluid is rotating uniformly with the same angular velocity as the inner core, and
that the azimuthal magnetic field is zero in the same region. This bulk solution is expected on the
same symmetry grounds as the ones invoked in the equatorial region of the unconfined field case.
It matches smoothly onto the applied boundary conditions atr = ro through a boundary layer which
is very thin everywhere except near the polar axis.

Fig. 4.— Numerical solution in the confined field case forq = 1 andH = 1340, using insulating
boundary conditions. Here,r i = 0.1 andro = 0.7. The angular velocity is constant in the bulk of the
“radiative zone”, withΩin = 0.972Ωeq.

Following the method used in the case of the unconfined field configuration, we begin by
rescaling the radial variable nearro with

ξ =
ro − r
δo f (θ)

, (45)
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where the typical layer widthδo and the form functionf (θ) remain to be determined. As before,
we substitute this new variable forr in equations (10) and (11) and keep the lowest order terms in
δo only, so that

ηrq−2
o

B0δ
q+1
o

ξ1−q∂2S
∂ξ2

= f q+1(θ)sin2θ

[

qsinθ

2
∂Ω

∂θ
+

(

qsinθ

2
f ′(θ)
f (θ)

+ cosθ

)

ξ
∂Ω

∂ξ

]

,

4πρνrq+2
o

B0δ
q+1
o

ξ1−q∂2
Ω

∂ξ2
=

f q+1(θ)

sin2θ

[

qsinθ

2
∂S
∂θ

+
(

qsinθ

2
f ′(θ)
f (θ)

+ cosθ

)

ξ
∂S
∂ξ

]

. (46)

If we select

δ2q+2
o =

16πρνηr2q
o

q2B2
0

and f (θ) =
1

sin2/qθ
, (47)

then the variables fully separate, and the boundary layer equations become

ξ1−q ∂2

∂ξ2

(

ξ1−q∂2S
∂ξ2

)

= (1−µ2)1−1/q ∂

∂µ

[

(1−µ2)−1−1/q ∂S
∂µ

]

,

ξ1−q ∂2

∂ξ2

(

ξ1−q∂2
Ω

∂ξ2

)

= (1−µ2)−1−1/q ∂

∂µ

[

(1−µ2)1−1/q∂Ω

∂µ

]

, (48)

with the introduction of the variableµ = cosθ.

We validate our boundary layer approximation by comparing,in Figure 5, the predicted latitu-
dinal structure of the boundary layer forq= 1 with numerical solutions. The agreement is excellent,
and similar comparisons for other values ofq are also in excellent agreement with (47).

Even whenq= 1, solving (48) analytically is not entirely trivial1. Luckily, estimating the value
of the interior angular velocity does not require knowledgeof the full boundary layer solution. We
can obtain a first-order accurate approximation of the derivative∂Ω/∂r across the boundary layer
with

∂Ω

∂r

∣

∣

∣

∣

(ro,θ)

≃ Ωcz(θ) −Ωin

δo f (θ)
, (49)

for large Hartman number. Applying (16) atro and using the approximation (49), we find that the
angular velocity of the interior is determined by

∫ 1

0
(1−µ2)1+1/q [Ωcz(µ) −Ωin] dµ = 0 , (50)

which implies

Ωin = Ωeq

(

1−
a2

5+ 2/q
−

3a4

(7+ 2/q)(5+ 2/q)

)

. (51)

1An approximate solution can be found forq = 1.
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Fig. 5.— Close up of the angular velocity profile near the outer boundary layer forq = 1 and
H = 1340 (see Figure 4). Superimposed on this numerical solution we show the predicted boundary
layer thicknessδo f (θ) divided by three for the same parameter values – the two are in excellent
agreement.

Note that asq→∞ (when the field is more and more confined), the solution recovers the purely
viscous case as expected. For the helioseismically determined values ofa2 anda4 we get

Ωin ≃ 0.972Ωeq for q = 1 ,

Ωin ≃ 0.966Ωeq for q = 2 , (52)

and so forth. To verify our analysis, we compare the asymptotic values ofΩin calculated in equation
(51) with the numerical solutions for different values ofq in Fig. 6. The agreement, for high
values of the Hartman number, is again excellent. Finally, it can be shown that by contrast with
the unconfined field case, changing boundary conditions for the toroidal field does not yield a
different asymptotic answer forΩin. This can be attributed to the fact that the bulk solution, and
the geometry of the boundary layer, are the same regardless of the boundary conditions.

5. Discussion

In the two previous sections, we studied the axially symmetric, linearized dynamics of ho-
mogeneous magnetized spherical Couette flows for various geometries of the imposed poloidal
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Fig. 6.— Calculated core velocity as a function of Hartman number. This figure compares numeri-
cal simulations and analytical predictions forΩin/Ωeq for two values of the confinement parameter
q, for insulating boundary conditions. The diamonds show numerical results forq = 1, and the plus
symbols forq = 2. The dotted line marks the analytical asymptotic limit for q = 1 and the dashed
line for q = 2 (see equation (eq:ominconf2)). In the low Hartman numberlimit on the other hand,
all curves converge to the valueΩvisc/Ωeq (solid line).

field and for various types of magnetic boundary conditions.We now discuss how these simplified
models may help us make sense of the dynamics of the solar radiative zone and the tachocline.

5.1. Comparison with the numerical simulations of GG08

Recently, GG08 presented a set of numerical simulations of the solar radiative zone and the
tachocline based on the Gough & McIntyre model (GM98). By contrast with the toy model studied
above, GG08 attempt to model the dynamics of the radiative interior as accurately as possible and
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solve the following system of equations

ρũ ·∇ũ+ 2ρΩ0× ũ = −∇p̃− ρ̃∇Φ + j ×B + fν∇·Π ,

∇· (ρũ) = 0 ,

ρTũ ·∇s= ∇· ( fkk∇T̃) ,

p̃
p

=
ρ̃

ρ
+

T̃

T
,

∇× (ũ×B) = ∇× ( fηη∇×B) ,

∇·B = 0 , (53)

for the velocity field in the rotating framẽu = (ũr , ũθ, r sinθΩ̃), for the magnetic fieldB = (Br ,Bθ,Bφ)
and for the density (̃ρ), temperature (̃T) and pressure (̃p) perturbations. In these equations,Ω0 is
equal toΩvisc (see equation (4)), the background stratification forρ̄ (the density),T̄ (the temper-
ature),s̄ (the entropy),̄Φ (the gravitational potential) and̄p (the pressure) are given by Model S
of Christensen-Dalsgaardet al. (1996), and the diffusion coefficients̄ν (for the viscosity),̄η (for
the magnetic diffusivity) and̄k (for the thermal conductivity) are calculated according toGough
(2007) (see also GG08). Large factorsfν , fη and fk multiply these respective diffusivities to help
numerical convergence. The boundary conditions used on theinner core are:

• impermeable and no-slip, with̃Ω = Ωin −Ω0 and whereΩin is deduced from (16),

• electrically conducting for the electric/magnetic field (e.g. the magnetic field satisfies∇2B =
0 in the inner core, matches on to a point dipole atr = 0, and matches continuously to the
solution in the spherical shell atr = r i),

• thermally conducting for the temperature field (e.g.T̃ satisfies∇2T̃ = 0 in the inner core,
and smoothly matches on to the solution in the shell atr = r i).

The boundary conditions used on the outer boundary are:

• the velocity field matches smoothly onto an imposed velocityfield

ucz =
(

ucz
r ,ucz

θ , rosinθ(Ωcz −Ω0)
)

,

• electrically conducting for the electric/magnetic field (e.g. the magnetic field satisfies∇2B =
0 for r > ro, vanishes asr →∞ and smoothly matches onto the shell solution at the boundary,

• thermally conducting for the temperature field (e.g.T̃ satisfies∇2T̃ = 0 for r > ro, and
smoothly matches on to the solution in the shell atro.
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The numerical solutions of these equations and boundary conditions, as computed by GG08,
exhibit many of the dynamical properties of the tachocline first discussed by GM98. In order to
prevent the propagation of the convection zone shear into the interior (as illustrated in Figures
2 and 3), confining the primordial field to the radiative zone appears to be necessary. GM98
argued that large-scale meridional flows downwelling from the convection zone would naturally
interact nonlinearly with the underlying field and confine itbeneath the bulk of the tachocline. The
convection zone flows are by the same mechanism prevented from penetrating more deeply into
the radiative zone, thereby satisfying a variety of observational constraints on chemical mixing
near the base of the convection zone (e.g. Elliott & Gough 1999). The tachocline would thus be
a well-ventilated region, spatially separated from the magnetically-dominated interior by a very
thin advection-diffusion layer. All of these features are qualitatively well-accounted for in the
simulations of GG08.

However, the angular velocity of the bulk of the radiative interior in the simulations of GG08
is much lower than the observed value:Ωin ≃ 0.87Ωeq in the limit of large Hartman number.
Surprisingly, the same value is found for a fairly wide rangeof assumed convection zone flow
amplitudes and profilesucz

r (θ). Given that simulations robustly insist on selecting thisparticular
interior angular velocity, can we understand it in terms of the simple dynamics studied in the toy
model? Surprisingly, it appears that we can.

To see this quantitatively, Figure 7 compares the core angular velocity predictions for the
stratified, nonlinear calculations of GG08 with our toy-model calculations for an open dipole in a
similar experimental setup (i.e. the same aspect ratio and with conducting boundary conditions).
The agreement between the two sets of simulations as a function of Hartman number is quite
remarkable, in spite of the over-simplified nature of the toymodel.

We did in factexpectthe agreement to be very good for high values of the diffusivities (low
values ofH). Indeed, since the background is strongly stratified, onlyvery slow meridional flows
can penetrate into the radiative interior (see Garaud & Brummell 2008). The magnetic Reynolds
number of these flows is therefore also low, and they fail to have any influence on the poloidal
field. The magnetic field then naturally relaxes to its fundamental eigenmode, which is the open
dipole. These combined factors together imply that the linearized problem studied in §3 should
be (and is indeed found to be) a good approximation to the overall angular momentum balance of
the system. It correctly predicts the asymptotic limitH → 0, as well as the somewhat surprising
bifurcation aroundH = 1. It is also interesting to note that radial variations inρ, ν andη do not
appear to affect the predictions for the interior angular velocity much. This can be formally shown
in the case of insulating boundary conditions but not in the case of conducting boundary condi-
tions. Nevertheless, it appears that the agreement approximately holds for conducting boundary
conditions as well.
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Fig. 7.— Calculated angular velocity of the core as a function of Hartman number. This fig-
ure compares the linear solutions in the toy-model (lines) and fully nonlinear numerical solutions
(symbols) for two different types of boundary conditions. The conducting boundary conditions,
shown in the dotted line and diamond symbols, were also used by GG08. In the limit of large
Hartman number, the interior rotation rateΩin tends to about 0.87Ωeq. In the second case, shown
with the dashed line and triangles, we changed the lower boundary to be insulating. The asymp-
totic limit in both toy model and in the full numerical simulations then appears to be closer to the
observations, withΩin → 0.93Ωeq.

The good agreement between the predicted core angular velocities in the toy model and in
GG08’s simulations, for low values of the diffusivities (high values ofH), is much more surpris-
ing. The lowest-diffusivities simulations presented by GG08, which correspond to the right-most
symbols in Figure 7 (see also Figure 8), have a magnetic field geometry which deviates signifi-
cantly from the purely dipolar open-field configuration studied in §3. Moreover, the same simula-
tions clearly show the existence of a region where angular-momentum transport is operated by the
meridional flows rather than by the magnetic field, as predicted by GM98. Both phenomena are a
natural consequence of the increasingly nonlinear nature of the interaction between the primordial
field and the assumed convection zone flows as the diffusivities are lowered (equivalently, asH is
increased); both should by and large invalidate the applicability of the toy model. Nevertheless,
even then we find that the open-dipole toy model adequately predicts the core angular velocity of
the fully nonlinear numerical simulations, for the parameter values considered.
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Whether this statement would continue to hold for even lowervalues of the diffusivities (even
higher values ofH) is a priori unlikely2. As the importance of angular-momentum transport by
the meridional flows increases in relation to viscous transport, we expect significant deviations
away from the toy model predictions to occur. Indeed, while GG08 failed to achieve low enough
diffusion parameters in their simulations to test this hypothesis, they also presented another set of
simulations for artificially high convection zone flow amplitudes (see their Figure 11), in which the
calculated core velocities do deviate significantly away from the toy-model predictions. Moreover,
one could also expect that as the magnetic field becomes even more confined to the interior, the
open-dipole configuration will lose relevance in favor of the closed-dipole configuration. Since
we have shown that the closed-dipole predictions are closerto Ωin ∼ 0.97Ωeq, we may expect the
predicted core velocity in the full simulations to increasetowards this value as the diffusivities are
decreased3.

5.2. Sensitivity to boundary conditions

The core velocity found in the linearized model is sensitively dependent on the assumed mag-
netic field boundary conditions. This was shown in §3, where changing the boundary conditions
from insulating to conducting had a profound impact on the nature of the solution. In fact, it can
also be shown that the same happens by changing from conducting conditions to having even just
one boundary condition whereBφ = 0 (see below). But far more importantly, this sensitive depen-
dence on boundary conditions isalso found in the numerical solutions of the full set of equations
(53).

We ran a separate set of simulations for both the linearized toy model and for the full nonlinear
model, where the outer boundary is again conducting but the inner core is now insulating (in
the sense thatBφ = 0 at r = r i). The predictions for the core angular velocity as a function of
the Hartman number are shown in Figure 7. We found that in the large-Hartman number limit,
the “asymptotic” value ofΩin in the full nonlinear model is much closer to the observed value,
0.93Ωeq, as also predicted by the toy model. Figure 8 compares the numerical results of the full
simulations with the different sets of boundary conditionswith one-another. While the streamlines
and the poloidal field lines (as well as the temperature and density profiles, not shown) appear to
be relatively unaffected by the new boundary condition atr i, the angular velocity and toroidal field
profiles are notably different. Following the trends of the toy model, the amplitude of the toroidal
field is significantly lower and the rotation profile is much closer to Ferraro isorotation when at

2although cannot be ruled out.

3unless angular-momentum transport by the flows acts just in the opposite way, see footnote 2.
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least one of the boundary conditions is not conducting.

Fig. 8.— Comparison between the numerical solutions of (53)with two different sets of boundary
conditions on the toroidal field.Top: Conducting boundary conditions everywhere.Bottom:The
top boundary is conducting while the bottom boundary is insulating. All other simulation parame-
ters are exactly the same for the two runs:B0 = 7T, fν = 8×108, fκ = 8×107 and fη = 8×109. The
strip beneath each quadrant zooms into the region near the outer boundary, forr ∈ [0.65,0.7]R⊙.
The numbers represent latitude. In the streamlines panel, solid lines denote clockwise flows and
dotted lines anti-clockwise flows.

The implications of these findings are quite important. Short of simulating the entire solar
interior including the turbulent convection zone and its effect on magnetic fields, one needs to make
assumptions on the nature of the radiative–convective interface. It appears that models in which
the fluid shell is contained in a conducting solid of infinite extent are somewhat pathological in
nature, as they allow an unphysically high magnetic field amplitude to build up thus breaking away
from Ferraro isorotation (Soward & Dormy 2009). Meanwhile,insulating boundary conditions
seem to be ana priori equally poor physical representation of both the inner coreand of the
radiative–convective interface. In reality, one may either expect other physical phenomena to limit
the toroidal field amplitude within the radiative zone (e.g.magnetic instabilities), or at the very
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least note that the Sun is not infinite in extent, so thatBφ = 0 in the vacuum outside ofR⊙. So, as
strange as it may seem, having at least one insulating boundary may actually be more physically
realistic than the boundary conditions originally used by GG08.

5.3. Implications for models and observations of the solar interior

Aside from the demonstrably odd case of the conducting boundary conditions described in
the previous section, all simple analytical models of the radiative zone presented so far predict
an angular velocityΩin close to the observations: in all cases (see Table 1), 0.908Ωeq ≤ Ωin ≤
0.972Ωeq. Crucially, all of the estimates presented in Table 1 are independent ofρ, ν, η, B0 and
of the aspect ratioro/r i, in the asymptotic limit of large Hartman number. In addition, Garaud
(2002) also studied the hydrodynamic case of spherical Couette flow between one differentially
and one uniformly rotating sphere, and showed that when the gap width is of the order of the
observed thickness of the tachocline, the predicted angular velocity of the interior is also, perhaps
coincidentally, close to the observed value ofΩrz = 0.93Ωeq.

Table 1 has a somewhat ironic property: the models which are apriori the most unphysical,
or the poorest representation of the solar interior are the ones which actually seem to fare the best
in terms of predictingΩin close to the observed value. Indeed, recall that the open-dipole case has
a non-uniformly rotating radiative zone, while the hydrodynamic spherical Couette flow (Garaud,
2002) assumes the fluid to be confined between two impermeablespherical shells.

There are several lessons to be learned from this work. As mentioned in §1, all predictions
for Ωin necessarily involve a weighted integral overΩcz(θ). Moreover, the spherical geometry of
the problem implies that the weight function is typically biased towards the equatorial regions
– in other words,Ωin is more sensitive toa2 than toa4. As a result, we see that the spread in
predictions forΩin is relatively small, and one should neither be surprised to see many different
models predicting similar values, nor that some should lie coincidentally close to the observed one.

Nevertheless, it is equally interesting to see thatΩin in the closed-dipole model, which is per-
haps the “closest” (in relative terms) to what one may expectfrom the tachocline dynamics,is sig-
nificantly different from the observations. This implies one of two things: either meridional flows
(or perhaps anisotropic turbulent stresses) are a non-negligible contribution to angular-momentum
transport in the tachocline or (if they are negligible) the true angular velocity profile near the base
of the convection zone deviates significantly away from the one used here (see equation (1)). He-
lioseismology may be able to help distinguish between thesetwo alternatives.
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6. Conclusion

We have studied, analytically and numerically, the predicted angular velocity profile of the
solar radiative zone under various model assumptions. Our overall conclusions have implications
for future modeling, and implications for future observations.

In terms of modeling, we have illustrated how crucial the selection of magnetic boundary
conditions can be to the calculated solution, an effect which has only recently been fully appreci-
ated (see the detailed study by Soward & Dormy, 2009). Assuming, as previous models have done
(Garaud, 2002; Brun & Zahn 2006; GG08), that the radiative zone is contained within a homoge-
neous conducting medium of infinite extent allows unphysically large toroidal field amplitude to
build up. This case is a somewhat pathological limit, since if the toroidal field is somehow forced
to be zero at a finite radius (e.g. the solar photosphere), or if other mechanisms act to limit its
amplitude, then the problem does not arise. Nevertheless, how tobestrepresent the presence of the
solar convection zone remains to be determined.

In terms of observations, our various calculations have quantified the sensitivity of the angular
velocity of the interior to the model assumptions: aside from a few exceptional cases which can be
ruled out (see above) the predicted angular velocity lies roughly in the interval [0.91Ωeq,0.97Ωeq].
Angular-momentum balance between viscous stresses and magnetic stresses for a closed-dipole
suggests thatΩin ≃ 0.97Ωeq. If helioseismic observations can rule out this value entirely, then
we can conclude from this study that the tachocline is the seat of additional mixing, either in the
form of large-scale meridional flows (Gough & McIntyre, 1998), or in the form of small-scale
turbulence. Although chemical evidence for additional mixing in the tachocline has already been
put forward (Gough & McIntyre, 1998; Elliott & Gough, 1999, Rüdiger & Pipin, 2001), our work
provides the first dynamical evidence to this effect.
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Table 1: Summary of analytical model predictions

Model type Ωrz/Ωeq Ωrz/Ωeq
a

Viscous modelb 1− a2
5 − 3a4

35 0.959
Anisotropic viscosityc 1− 3a2

7 − 5a4
21 0.908

Open dipole fieldd 1− a2
3 − a4

6 0.930
Confined dipole fielde 1− a2

5+2/q − 3a4
(5+2/q)(7+2/q) 0.959 - 0.972

aUsinga2 = 0.17 anda4 = 0.08, Schouet al. (1998)
bGilman, Morrow & DeLuca (1989)
cSpiegel & Zahn (1992)
dsee §3.1
esee §4
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