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Abstract

The behavior of modern climate system simulators is controlled by numerous pa-
rameters. By matching model outputs with observed data we can perform inference on
such parameters. This is a calibration problem that usually requires the ability to eval-
uate the computer code at any given configuration of the parameters. As the climate
system simulator attempts to describe very complex physical phenomena, the task of
running the model is very computationally demanding. Thus, a statistical model is
required to approximate the model output. In this work, we use output from the MIT
2D climate model (MIT2DCM), historical records and output from a three-dimensional
climate model, to obtain estimates of the climate sensitivity, the effective thermal dif-
fusivity in the deep-ocean and the net aerosol forcing that control the MIT2DCM.
We use a Bayesian approach that allows for the use of scientifically based information
on the climate parameters to be used in the calibration process. The model tackles
the problem of dealing with multivariate computer model output and incorporates all
estimation uncertainties into the posterior distributions of the climate parameters. Ad-
ditionally we obtain estimates of the correlation structure of the unforced variability
of temperature change patterns. These results are critical for understanding uncer-
tainty in future climate change and provide an independent check that the information
contained in recent climate change is robust to statistical treatment. These results
include uncertainties in the estimation of the multivariate covariance matrices for the
first time.
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1 Introduction

An honest assessment of uncertain climate system properties is key to the support of any
scientific statement about the current state of Earth’s climate, and to the construction of
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forward-looking projections that may be used in policy decisions. The Intergovernmen-
tal Panel on Climate Change’s (IPCC) Third Assessment Report (Watson and the Core
Writing Team, 2001) summarized some of the key unanswered questions that complicate
predictions of future global climate. Four of the identified uncertainties include: (i) Climate
sensitivity, as measured by the change in surface air temperature at equilibrium under a spec-
ified external “forcing”. A climate forcing represents a perturbation to the energy budget of
the climate system that moves it away from its current equilibrium. This forcing is typically
a change in the radiative transfer component of the energy budget and is measured in Watts
per square meter for the net change in the radiative flux at the top of the atmosphere. For
further discussion see Watson and the Core Writing Team (2001); (ii) Variations in the cli-
mate due to either natural effects or anthropogenic aerosols; (iii) Magnitude and character
of natural climate variability; (iv) Spatiotemporal patterns of change in climate variables.
Each of these contributes to the uncertainty in climate system properties in various ways
as will be discussed later. We consider climate system properties as quantities that control
the surface-air temperature change at equilibrium and the rate of heat uptake by the deep-
ocean. These are quantities that cannot be derived from first principles in models but must
be diagnosed from climate simulations of the transient response to forcings. This means de-
termining the time-dependent response as the system approaches the new equilibrium under
the specified forcings.

Computer models or simulators are used to predict the evolution of the state of the
global climate system. These models discretize the earth’s atmosphere, oceans, and land
into grid boxes that have a typical size of 250 km x 250 km. They must account for
localized phenomena, referred to as sub-gridscale phenomena, like the influence of clouds,
which happen at scales orders of magnitude smaller than the grid box size. These factors
are dealt with using so called parameterizations, which simulate the large-scale effects of the
sub-gridscale processes. Most components of the climate system can be adjusted within state
of the art complex climate models by modifying individual parameters or parameterizations.
In models like the one that is considered in this paper, climate system properties can be
controlled via single parameters. In this work we consider three such parameters. A critical
parameter with extensive uncertainty is climate sensitivity, defined as the equilibrium global
mean surface temperature response to a doubling of CO, and denoted as & . Within climate
models, this parameter adjusts the cloud feedback, which controls the effect of clouds on the
radiative transfer in the energy budget. Another important uncertain process is the rate of
diffusion for heat anomalies into the deep-ocean, controlled by varying a diffusion coefficient,
called, K, . A third parameter to be considered is the net anthropogenic aerosol forcing,
written here as Fue, . Although this represents uncertainty in all unmodeled forcing factors
in the climate system, the uncertainty is dominated by that in the net aerosol forcing and
so we call it such.

The MIT2DCM provides simulations of ocean, surface, and upper atmospheric composi-
tion, heat, moisture and momentum on a latitude-height coordinate system. To account for
the missing effects of longitudinal variations, the transports of heat, moisture and momentum
include an eddy-diffusion parameterization (see Sokolov and Stone, 1998). This parameteri-
zation specifies the contribution of turbulent fluxes to the longitudinally-averaged equations
of motion for the atmosphere (see Section 13.10 in Gill, 1982). Thus the model is run on



two dimensions, which refer to altitude and latitude bands. Despite the averaging away of
longitude, the model is sufficiently complex to match longitudinally-averaged observations
of the climate and to make similar predictions to those of full 3D atmosphere-ocean general
circulation models (GCM) (Sokolov and Stone, 1998). More specifically, the output from
the MIT2DCM, considered in this paper, consists of temperatures over a grid of zonal bands
corresponding to 46 latitudes, averaging over all longitudes in the band. It has 11 vertical
layers for a grid of 506 cells for every time step. Typical output corresponds to periods of
140 years with monthly-average data (although the model time step is 30 minutes.)

Forest et al. (2000, 2001, 2002, 2006) run the MIT2DCM for many choices of the uncer-
tain parameters & , K, and F,., , selected systematically on a non-uniform grid. The grid
considered in this paper consists of 426 points and is illustrated in Figure 1. To summarize
the 426 time series in a way that is useful to understand possible global climate changes,
different statistics are used to form “diagnostics”. This will be explained in the next para-
graph. In this paper we focus on Surface temperature change (STC), as it is considered one
of the most informative summaries. This is obtained as temperature differences between the
means of [1906-1995] and the 5 decadal means in the period [1946-1995], for 4 zonal bands,
producing a 20 component vector. Although other diagnostics have been used successfully,
the STC provides the strongest restriction on the model response (i.e., the model parameter)
related to surface temperature changes. The fact that the STC is 20 dimensional vector,
requires us to focus on the assessment of the uncertainty in the covariance structure. Addi-
tional diagnostics are needed to understand the limits on a model’s deep-ocean temperature
response which is where more than 90% of the heat energy is stored (Levitus et al., 2005),
but this will not be the focus of this paper.

In correspondence to the summaries of the climate model output, it is possible to obtain
statistics based on historical observations. In this paper the surface temperature data are
obtained from Jones et al. (1999). To obtain a “diagnostic”, the observations are compared
to the climate model summaries. We can then perform the calibration of the climate model
parameters. Figure 2 illustrates the pattern of temperature change in the observational data
and in the simulations of the computer model. Intuitively, we want to find the combination
of parameters that produces an output that is as close as possible to the top left panel.

Let z be the vector of observations corresponding to the historical STC and F'(@) the
vector corresponding to STC obtained from the MIT2DCM evaluated at a given combination
of parameter values 8 = (K, ,S , Fzer ). Throughout the paper light face with lower case is
used for scalars, bold face is used for vectors and capital letters are used for matrices. The
approach followed in Forest et al. (2000) and subsequent work, is to obtain a probability
distribution for @ based on the quadratic form (z — F(0))!Y7!(2 — F(0)). The covariance
matrix ¥ has been typically estimated from a number of control runs, corresponding to
the output of a GCM. These are simulations of the climate system without changes in the
external forcings. They provide a sample of the unforced climate variability. In Figure
3 three different assumptions for ¥ are considered and we observe that inference for @ is
strongly affected by these. Sansé et al. (2008) develop a model where all the available
sources of information, i.e. historical records, MIT2DCM output and GCM model output,
have covariance matrices that are multiples of ¥. In this paper we consider more flexible
and realistic error structures. This is a problem that has an interest on its own. In fact,
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Figure 1: Configuration of the 426 different combinations of § , K, and F,er used for simulations
obtained with the MIT2DCM.
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Figure 2: Comparison of the historically observed surface temperature change (top left panel) to
MIT2DCM simulations obtained with two different parameter configurations (top right and bottom
left panels) and a sample from the HadCM2 GCM (bottom right). All four figures are in the same
scale in degrees Celsius.



the estimation of the correlation structure of temperature change patterns is a fundamental
problem for the detection and attribution of the causes of climate change (see, for example
Hasselmann, 1979, 1993, 1997; Bell, 1982, 1986; Allen and Tett, 1999).

In the context of this paper, the estimation of the climate system properties consists of
a computer model calibration problem. Following O’Hagan et al. (1999) and Kennedy and
O’Hagan (2001), we adopt a Bayesian approach to learn about the values of the climate
parameters. We build a statistical model so that information on the most likely values of
is obtained via p(f|Data).

The first difficulty that we face is that F'(-) is evaluated at a limited number of points.
Evaluating F'(-) is very time consuming, so it is impractical to consider statistical procedures
that require additional evaluations. For all the other values of 8, F(-) is an unknown function.
Since it is unknown, we regard it as a random function and use a Gaussian process to create
a statistical equivalent model. In most computer model applications such a surrogate model
is fitted to the model output. In a second stage, the statistical model is used to perform the
calibration of the computer model parameters. There is a large body of literature on the
analysis of computer models. The books by Santner et al. (2003) and Fang et al. (2006) and
the paper by Bayarri et al. (2007) contain a number of useful references. In this paper we
take a comprehensive approach, where all parameters are estimated within the estimation
procedure and so all the uncertainty produced by the estimation of the statistical model is
considered in the calibration phase.

In the next section we define a statistical model that provides the framework for the
calibration of the climate model parameters and discuss the implementation details. In
Section 3 we present the results obtained from the model and in the final section we present
conclusions and discussion.

2 Statistical model

The available data, observed and simulated, correspond to space and time locations x4, ..., x,,
z; € R?. (i.e., latitude and decade, see Figure 2) We denote the historical records as
z=(21,...,2,). MIT2DCM output at location  and parameter values t = (I, , S , Fuer ) €
R? is denoted as f(x,t). The available model runs are denoted as y;; = f(x;,t;),i =
L...,mj=1,...,0,y; = (Y1j,-- -, Ynj) and Y = [y1,...y,] € R"*?. The GCM model out-
put is denoted as w; = (wj1, ..., w;),l=1,....,k and W = [wy, ..., wi] € R"**. For STC
n = 20, since there are five decades and four zonal bands. p = 426 is the number of different
runs of the MIT2DCM. (NB: This is a reduction from the p = 499 simulations used in Forest
et al. (2006) due to the lowering of the upper bound on K, from 64 to 36 cm?/s). k = 162
corresponds to the number of replications obtained from the HadCM2 model, a GCM devel-
oped at the Hadley Centre, UK. Table 1 shows a summary of the available information and
the notation used.

We denote as ((x) the true, unobserved, STC at location @, and { = ({(x1),...,((xz,))-
We denote 8 = (61, 65, 03) as the true value of the climate system properties (I, ,S , Foer )-
Then we assume that z; = ((x;) + ;. So that observations deviate from the true value of
STC by an observational error ;. In this formulation ; encompasses both, measurement
errors and so called representativeness errors, or errors on spatial and temporal scales that
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Figure 3: Values of the quadratic form given by the difference between observed and simulated
STCs for different choices of covariance matrices. The first row corresponds to > = I. The second
row corresponds to ¥ estimated from 162 HadCM2 control runs. The third row corresponds to X
estimated from the 426 available MIT2DCM runs. The parameter values that correspond to the
minima are marked with a cross.



Variable Notation Size Dimension
Locations T,...,x, n=20 xR
Historical records Zy.-n2p n=20 z,€R
Climate parameters  ¢i,...,t, p=426 t; R
Surface diagnostics  yi,...,y, p=426 y; € R
Control runs wy,...,w, k=162 w; € R®

Table 1: Summary of the available information for the Surface Temperature Diagnostics.

are smaller than the grid cell size. We assume that (¢1,...,&,)" ~ N,(0,7%I), where N,(,-)
denotes an n-dimensional normal distribution.

The code output is proportional to the true value, but there is a model inadequacy.
In a calibration problem like the one we consider here it is very difficult to identify both
multiplicative and additive biases, in the absence of substantive prior information. So we
limit the model inadequacy to an additive term. Let F(0) = (f(x,0),..., f(x,,0)), and
d(x) be the discrepancy between the truth and the computer model value, then

C(zi) = f(z,0) +6(xi) . (1)

We assume that § = (6(x1),...,0(x,)) has mean zero. This is justified by the fact that
climate models can predict temperature changes with reasonable accuracy (see, for example
Tebaldi and Sansé, 2008). & represents variability not modeled by the MIT2DCM that we
assume has a covariance structure proportional to that in the control runs. Thus, we have
that w; ~ N,(0,X) for [ = 1,...,k and & ~ N,(0,02%). This effectively implies that we
will use the control runs as prior information for the estimation of the covariance of the
MIT2DCM inadequacy.

To model f(x,t), for any value of ¢, we assume that f(x,-) corresponds to a Gaussian
process. We model such process by specifying a mean and a stationary covariance function.
This is the statistical equivalent model that allows for fast approximations to the numerical
simulator. Gaussian processes provide the right balance between flexibility and tractability
for this purpose. We assume that E(f(x,t)) = h(x,t)’'8, where h and B are g-dimensional
vectors. They define a linear combination of effects due to locations and parameter values.
Thus f(x,t) = h(z,t)'8 + n(x, t), with E(n(x,t)) =0 and

cov(n(a:, 1) n(w;, ) = r(t.£)V,. 2)

Here ¥;; are the components of a covariance matrix ¥ and r(-,-) is a correlation function.
Thus, we are assuming separability between @ and ¢t. Furthermore, as the space of climate
parameters is not naturally geometrical, we assume separability for r as well. Thus

r(t,t') = ri(ty — t); ¢1,v1)ra(ta — th; do, vo)T3(t3 — ty; d3, v3),

L (=t (=t
N 7 7 7 7 _

This is the Mateérn correlation function (See, for example, Stein, 1999). ¢; measures the
correlation range in the same units as ;. So, large values of ¢; imply that the correlation

where

7



will be small only for points that are very far apart. v; measures the correlation smoothness,
which determines the smoothness of the random field. v; = 0.5 corresponds to the popular
exponential correlation function which produces processes that are not mean square differ-
entiable. ¥ — oo corresponds to the Gaussian correlation, which produces infinitely smooth
processes. The separability assumption is very common in the literature of statistical mod-
eling of computer output, see, for example, Paulo (2005), who discusses the choice of default
priors for the parameters in r in the Matern class.

To obtain the likelihood of the proposed model we need the joint density of z and Y.
To proceed, we condition on ¢ and 4, and calculate cov((;, k), 4,7 =1,...,n; k=1,...,p,
using equations (1) and (2). Define a matrix R € RP*? such that R;; = r(||t; — ¢,||).
Let r(0) = (r(t; — 0),...,7(t, — 0)). Let H(-) = [h(x1,"),..., h(xzy, )] € R, and let
H=[H(t,),...,H(t,)] € R""*? then the model is expressed by the following hierarchy

z ~ N, (¢ 71) t ,
< Vce(;y{;) ) ~  Napt1) (( Hl(g) )6, ( 'r(10) T(]g) ) ®\1!> (3)
0 ~ Ny(0,0°%) |

where vec(-) denotes the operation of stacking the columns of matrix into a vector and ®
denotes the Kronecker product. We recall that Y is the output from all MIT2D model
simulations and z is the set of historical records. The control simulations from the GCM
model is used in the prior for ¥ and does not appear directly in these equations. Table 2
reports a summary of the different errors considered in the model.

Error Variable Covariance
Observational € I
Model discrepancy ) 0%y
Surrogate model n R®U

Table 2: Summary of the different errors considered in the model and their different covari-
ances.

2.1 Prior distributions

Calibration problems are known to be ill posed in the sense that often times different configu-
rations of parameter values produce similar results. Fortunately in this application knowledge
about likely values of the climate parameters is available. So we can specify scientifically
sound priors for such parameters.

The prior for §; = /K, corresponds to a beta with parameters (3.5,6) distribution
stretched to have support on (0,6). The prior for f; = S is specified as a beta distribution
with parameters (2.85,14) on the support (0,15). The prior for 03 = F,., is a beta distri-
bution with parameters (4,4) stretched and shifted to have support on (—1.5,.5). With the
exception of the prior on 8, = S , we based the distributions for /K, and F,. partly on
the previous work in Forest et al. (2002) and Forest et al. (2006). The widths were chosen
to extend well outside the range suggested by likelihoods from Forest et al. (2006) while the
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shapes were designed to be rather diffuse in the interior (i.e., the cumulative density function
approximately linear.) These ranges are also supported by the locations of the state-of-the-
art 3D GCMs well within the parameter space (Sokolov et al., 2003). The likelihoods of
a model outside these regions are near zero. For the prior on S , we use the Webster and
Sokolov (2000) estimate as based on expert elicitation study of Morgan and Keith (1995).
These results were based on the understanding of climate science experts in the early 1990’s
who would have considered model results as well as changes during the 20" century and the
glacial-interglacial paleoclimate records for about the past 500,000 years.

We considered a second prior corresponding to the product of three beta distributions,
shifted and stretched as above, with parameters (2.5,2.5);(1.5,2.25) and (2.5,2.5). This
prior has mass that is substantially more spread around the support than the prior above.
As illustrated in Sansé et al. (2008) a uniform prior over the support provides very weak
information for the model to learn about the posterior distribution of 8. We shall refer to
the two priors for 8 as TP1 and TP2, respectively.

As a prior for ¥ we used a density proportional to

exp {—%tr (2—ls)} |2|—(k+n+1)/2 (4)
where S = 1/k Zle wl'w;. This corresponds to an inverse Wishart with k& degrees of freedom
and scale matrix S™!/(k — n — 1). The parameterization in Equation (4) implies that the
prior mean of ¥ is equal to the covariance estimated empirically from the control runs.

We considered three different priors for W. The first one is a non informative prior
p(¥) oc [¥|~(+D/2 indicating that we expect the inference for ¥ to be dominated by the
MIT2DCM runs. The second prior is the same as the one used for ¥, which implies that
some information from the control runs will be used directly in the estimation of W. Finally
we considered a prior as in (4) with 20,000 degrees of freedom (an arbitrary number that
is very large compared to the others). This choice of degrees of freedom implies that the
distribution is strongly concentrated around S. So this third prior mimics the traditional
approach of estimating the covariance matrix from a set of control runs. We shall refer to
these three priors for ¥ as PP1, PP2 and PP3 respectively. A summary of the priors for
0,Y and V¥ is reported in Table 3.

0 b) v
TP1=B(3.5,6)B(2.85,14)B(4,4) W (k, %) PPle |U|-( 1)/
TP2=B(2.5,2.5)B(1.5,2.25)B(2.5,2.5) PP2= IW (L, 7@5;11))
PP3= IW(20,000, 75—)

Table 3: Summary of the most relevant prior distributions. B(-,-) denotes a beta density
appropriately shifted and scaled.

For the regression parameters § we assume a flat prior p(8) o< 1. After an exploration
of the MIT2DCM runs we found a transformation that linearizes the relationship between 6
and Y. Our choice of h is then given by

h(z,t) = (1,

—— logty, t3, 21, @
o+ 1 gl2,13, 21 2)
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where x1 takes the values (—2,—1,1,2) and x5 takes the values (—2,—1,0,1,2).

The priors for the range parameters ¢; are p(¢;) o< 1/¢;,i = 1,...,3. Berger et al. (2001)
showed that posterior impropriety could result from the choice of an improper prior for the
range parameter of an isotropic Gaussian field. The results in Paulo (2005) show that the
problem is not present when separability of the correlation function is assumed. Additionally,
for comparison purposes, we used three independent inverse gamma priors with means equal,
respectively, to 3, 7 and 1, which correspond to about 50% of the length of the supports of
K, ,S and F,, . For the smoothness parameters, v;, we used three independent normal
priors centered around 3 with standard deviation 1. The rationale is that, as is commonly
assumed in computer modeling applications, we expect the correlation to be fairly smooth,
but we wanted to avoid the numerical problems associated with very large values of v.

We considered a prior for o2 given by an inverse gamma with parameters 100 and 0.01.
This implies that based on the prior means of ¥ and 02 we expect that the values of § would
be within (—1072,107%)°C, which seems reasonable given that |z;| € (0.0012,0.3165)°C.
We fixed the value of 7 at 0.005, which implies that the observational error is within
(—0.015,0.015)°C.

2.2 Implementation

We fit the model using a Markov chain Monte Carlo (MCMC) method to explore the joint
posterior distribution of all parameters (see, for example, Gamerman and Lopes, 2006).
Notice that it is important to avoid the explicit computation of the covariance matrix of
the joint distribution of (¢, vec(Y')). The dimension of such matrix is n(1+p) xn(1+p). Given
that n(1+p) = 8,540, such computations are unfeasible within an iterative method. Lengthy
computations and storage of large matrices is avoided using the properties of Kronecker

products. Let
= (o ) +=(ah) 5=

and p = KB. Then v ~ Nyayp)(p,V @ ¥). Let D be the n x (p + 1) matrix such that
vec(D) = v. Similarly, let M be such that vec(M) = p. The density of v is proportional to

1
exp {_étr (V—I(D i M)I\IJ—I(D o M))} |\I;‘_(p+1)/2|v|—n/2.

Multiplying by the appropriate priors, the full conditional densities of ¢1, ¢o, 3, V1, 15 and v3
can be evaluated using the above expression within Metropolis-Hastings steps. Notice that
it involves the solution of an n x n and a (p+1) X (p+ 1) linear systems as opposed to that
ofan(p+1) x n(p+ 1) one, needed when the full matrix V' ® ¥ is considered.

6 and ¥ can be sampled jointly by noticing that

pt+d+n+2

p(0,¥]|...) ocexp{—%tr (@_IA(B))}p(O)\\II\_z 7

where the dots denote the data and all the other parameters, d denote the degrees of freedom
in the inverse Wishart prior for ¥ and A() = (d —n —1)S + (D — M)VY(D — M)".

10



Integrating ¥ we obtain that p(8]...) o |A(8)|~®+4+1)/2p(@). This expression can be used
within a Metropolis step to sample 6. If the candidate, say 6*, is accepted, we can then
sample ¥ from an inverse Wishart with (p + d + 1) degrees of freedom and scale matrix
A(6%)7L.

In a separate step we sample ¥ from its full conditional that is proportional to

exp {—%tr (2788 Jo® + (k—n — 1)5))} ||~ (k4nt2)/2

This corresponds to an inverse Wishart, IW (%|k+1, (86'/0?+(k—n—1)S)™"). To sample the
full conditionals of ¥ and ¥ we use Bartlett’s decomposition (Muirhead, 1982, Section 3.2.4)
to obtain a sample of the Cholesky factor of U=! and ¥~!. This saves the computational
cost of decomposing and inverting the matrices at each step of the MCMC.

The full conditional of 8 is a N,(B| B, VB)' To obtain B and Vi3 we observe that, con-
ditional on all the other parameters, v = KB +e, e ~ Nyup(0,V ® ¥). Consider
Cholesky decompositions of V and ¥~'. So V = LyL! and ¥~' = LyLY, respectively,
then V@ ¥ = (Ly @ L") (L}, ® Lg'). Let u = (Lj' @ Ly)v, J = (Ly' @ LL)K and
f=(Ly' ® LY)e, then

u=JBg+f, f~ Nn(p+1)<01[)'

B is the solution of (J1.J)8 = Jiu and Vi = (J'J)~". These can be obtained using ordinary
least squares. To avoid computations with large matrices, notice that u = (Ly,' ® L},)v =
vec(LY, DLy"). Analogous calculations can be done for each column of K to obtain the
columns of J.

Samples of ¢ are obtained from an n-variate normal with mean ¢, that is the solution of
the equation

(% n q;—l) é= (% + U (H(0)'8 + 6)) ,

and covariance matrix (I/ 72 + U=~ Samples of § are also obtained from an n-variate
normal. The mean ¢ is the solution of the equation

(i_ N \1;) §=u (¢ — H(O)B)

and the covariance matrix is (X7!/0? + U~!)~!. Finally, o2 is sampled from its full condi-
tional, consisting of an inverse gamma, IG(0?|n/2 + a,, tr(X188") + b,).

3 Results

We run the MCMC for 100,000 iterations with a burn in of 10,000 iterations as coded in
FORTRAN95. For output analysis we use the package Bayesian Output Analysis Program
(BOA) (Smith, 2005) within R (R Development Core Team, 2005). As for all problems where
the posterior distribution corresponds to a large dimensional space, it is difficult to have a
global assessment of convergence. We explore the traces of several parameters as well as the
trace of the log-likelihood.
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quantile o? b1 o) b3 21 Vo V3

2.5% 8.29 x 107> 10.089 12.317 0.908 0.102 0.131 0.158
50% 1.00 x 10°% 16.145 16.219 1.142 0.126 0.156 0.199
97.5% || 1.23 x 10°% 29.821 22.456 1.482 0.150 0.178 0.246

Table 4: Summary of the posterior distributions of the covariance parameters for TP1 and
PP2.

Baseline Climate parameters Lat. | Decade

quantile Bo Br(Ky) Ba(S) Bs(Faer )| Ba Bs
2.5% 0.021 0.012 0.007 0.003 0.002 | 0.048
50% 0.034 0.021 0.009 0.012 0.005 | 0.063
97.5% 0.046 0.029 0.012 0.021 0.008 | 0.077

Table 5: Summary of the posterior distributions of the components of 8 for TP1 and PP2.

A summary of the posterior distributions of o2, ¢1, ¢o, ¢3, 1, and vs is presented in
Table 4 for the run based on TP1 and PP2. The posterior distribution of o2 is very close to
its prior distribution. A similar behavior was observed when different prior distributions were
used, revealing that the data provide little information about 0. The posterior distributions
for ¢; and ¢, concentrate on values that are substantially larger than the range of the
prior distribution. The distributions of v1,1, and v3 concentrate around values that are
much smaller than those indicated by the prior, implying that the data favor high levels of
roughness of the Gaussian field. The posterior distributions for the components of 3 are
summarized in Table 5.

To assess the validity of the Gaussian model fit to the MIT2DCM output we sampled
at random 43 points from the set of available parameter configurations used to run the
MIT2DCM. We denote those points as Y. These correspond to about 10% of the total points.
We fitted the model excluding Y. We obtained samples of the joint predictive posterior
distribution, say p(Y'|Y, z) by sampling from p(Y|...) = Nagyss(m®?, c2OW O @ £0), where
the superscript (i) denotes samples from the i-th iteration of the MCMC. To calculate m ()
and W@ we build the matrices V and K and the vector v that correspond to stacking Y
and Y. We use subindex 1 to denote the blocks within those arrays that correspond to
Y and subindex 2 for those that correspond to Y. Then m® = K3 + 1(f))_1 ®
I(vi—KYB®) and WO = V&) —y @y h-1y® A graphlcal exploratlon of the predlctive
marginals for each of the 860 components of Y produced results similar to the ones shown
in figure 4. We conclude that the predictive distributions are pretty close to the MIT2DCM
output. So the model is not introducing any predictive bias. The predictive uncertainty is
reasonably small and the variability that it introduces in the analysis is accounted for due
to the Bayesian nature of the method.

Figure 5 presents the predictive intervals for z, given the full matrix Y, under the models
that use the TP1 and all three different priors for ¥. This represents the ability for the model
to reproduce the observations. We observe that in the first three decades the predictive
intervals under PP3 are wider than those under the other priors while this reverses for the
last two decades where PP1 is wider than PP2 or PP3 results. The predictive means under
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Figure 4: Marginal posterior predictive distributions for six combinations of the climate parameters

randomly selected among the 43 used for validation. The dotted lines are used to group the five

different decades, with latitude decreasing from left to right within each decade. The extremes of

the intervals correspond to the 2.5% and 97.5% predictive quantiles. The crosses to the predictive

means and the circles to the MIT2DCM output (not used to obtain the predictive distributions).
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Figure 5: 95% posterior predictive intervals for z using TP1 and the three different priors for ¥
compared to the actual observations. The symbols at the center of the intervals correspond to the
predictive means.

PP3 for the first decade have lower values than those under PP1 and PP2, for all latitudes.
On Decades 2 and 3 all predictive means are very close. The predictive uncertainty for
the last two decades is in most cases larger than in the first three decades. Additionally,
the predictive means under each of the three priors are different and they have a tendency
to underestimate, that is more pronounced for PP1 than for the other two. A numerical
summary of the comparison in Figure 5 is provided by 1/n " (Z; — zi)?, where Z; denotes
a sample from the predictive distribution. We calculate this summary for each sample. The
results in Table 6 indicate that PP2 and PP3 produce almost equivalent errors. These are
on average smaller than those produced under PP1.

Figure 6 shows the posterior marginal distributions of the three climate parameters under

PP1 PP2 PP3
mean | 0.0149 0.0086 0.0079
median | 0.0133 0.0077 0.0075

Table 6: Summary of the posterior predictive errors.
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the two different priors for @ and the three priors for ¥. In addition to the six cases illustrated
in Figure 6 we considered the case where both ¥ and ¥ are given the prior PP3. (Recall that
in all cases ¥ has used a prior the same as PP3.) The results are almost identical to the ones
obtained under PP3 for both TP1 and TP2. We observe that the posterior corresponding
to TP1 4+ PP3 has a similar shape to the ones obtained in Forest et al. (2006). This is
not surprising, as PP3 corresponds to the second row in Figure 3, which is the basis to the
method used in Forest et al. (2006). The posterior distributions of F,., corresponding to
TP1 4+ PP1 and TP2 + PP1 assign large masses to unrealistically low values of F,., and, in
the second case a poorly defined distribution for S (see densities marked with dashed lines
in Figure 6) . Together, these indicate that a non-informative prior for ¥ is not appropriate.

Figure 7 illustrates the effect of the three priors for ¥ on the posterior distribution of
the eigenvalues of ¥ and W. We observe that the eigenvalues of ¥ show small changes
when the different priors for ¥ are considered. Furthermore, the posterior distribution of
its eigenvalues is driven by the eigenvalues of the prior mean, S. Under a non-informative
or mildly informative prior (i.e. PP1 or PP2), the posterior for ¥ has only two dominant
eigenvalues. The second row corresponds to the case where ¥ and ¥ have the same prior,
nevertheless, their posterior distributions are remarkably different. Only for an extremely
informative prior on ¥ we obtain similar posteriors for both matrices. This indicates that
there is little support in the data for the assumption that the different errors have covariance
structures equal to the control runs. Another view is that information in ¢ and Y has the
most influence on ¥, not ¥. This is not surprising given that Y is the only data depending
on @ which is ultimately driving the sampling.

4 Discussion

In this paper we have considered the problem of calibrating the properties of the climate
system using historical records and output from the MIT2DCM. Our approach uses infor-
mation from different sources, including key expert knowledge. It considers a multivariate
output on a large number of points. We build a statistical model based on a Gaussian process
that is used as a surrogate for the computer model. The estimation of the surrogate model
parameters is performed jointly with the estimation of the computer model parameters, as
opposed to the approach commonly used. As we use a Bayesian method, the uncertainty
about the calibration parameters is expressed probabilistically and estimation uncertainties
are accounted for.

As indicated in the introduction, the estimation of ¥ is an interesting problem of its
own. This is usually referred to in the climate literature as the problem of estimating the
natural climate variability. The posterior distribution of ¥ indicates that the four largest
eigenvalues of X are more separated than the values obtained from the empirical covariance
matrix based on the control runs. In particular, the largest eigenvalue is likely to be 40%
larger than the largest eigenvalue of S. An interesting question is how to use samples from
different GCMs to obtain a pooled estimate of the natural variability.

The differences between the posteriors for ¥ and ¥ indicate that our proposed model is
able to separate the variability due to the Gaussian process to that due to model discrepancy.
This is very reassuring when we consider that the covariance matrices have significantly
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Figure 7: Posterior distribution of the six largest eigenvalues of ¥ and ¥. Left column corresponds
to ¥ and right column to ¥. The rows correspond to the three different priors for ¥. The curves
have been rescaled so that all have the same height. The dots correspond to the eigenvalues of S.



TP1 + PP2 TP2 + PP2 TP1 + PP3
S \/H faer S \/H —,Faer S \/IG —,Faer
5% || 1.1 09 -1.08 | 1.9 1.3 -1.22 | 229 0.79 -0.59
50% || 2.5 2.2 -0.52 | 7.2 3.0 -061] 395 174 -0.34
95% || 5.2 39 -0.11 |139 52 -0.05| 6.10 3.66 -0.06

Forest et al. (2006) Sansé et al. (2008)

S \/H faer S \/H faer

5% 1.9 0.2 -0.69 1.75  0.82 -0.71
50% 2.8 0.73 -0.43 3.21  1.99 -0.39
95% 4.7 1.90 -0.14 5.68  3.08 -0.05

Table 7: Summary of the posterior distributions of the climate system properties and com-
parison to previous results.

different roles in the calibration algorithm. From Figure 7 it is clear that the the prior PP2
has the effect of shrinking the eigenvalues, particularly the largest one. Our results show that
such shrinkage has a strong effect on the posterior distribution of the climate parameters.
A method commonly used for the analysis of multivariate computer output is to reduce
the dimension of the problem by projecting the output on some of the components of an
orthogonal basis (see, for example, Higdon et al., 2008). A principal component analysis
based on a covariance matrix estimated empirically from the sample is a popular way to
obtain such an orthogonal basis. As illustrated by the posteriors obtained using PP1, this
must be done with caution, as it is likely that inflated estimates of the eigenvalues will have
an effect in the distribution of the calibration parameters.

For the climate sciences it is useful to consider what the surface temperature alone indi-
cates for the posterior distribution of the climate parameters. Table 7 reports the 5%, 50%,
95% quantiles of the marginal posterior distributions from the current model, the model in
Forest et al. (2006) and that in Sansé et al. (2008). In addition to already mentioned differ-
ences, Forest et al. (2006) used two more diagnostics, one for the deep ocean temperature
trend and another for upper air temperatures. We observed substantial differences between
the four models. Some are due to the priors, as already discussed, some to the fact that
additional summaries of the MIT2DCM were used. Most importantly for this paper, it is
clear that assessing the variability in the estimation of the covariance matrix of the errors
has a large impact and will require further analysis.

In this paper we have assumed that dependence on 0 is present only in the first moment
of the distributions of the variables under study. This implies that the covariance matrix
Y does not depend on 6. Since the information from the GCM runs is summarized using
anomalies, the mean of the control run is assumed to be zero and no information about 8
is obtained from those simulations. Control runs from the GCM data are obtained from a
model with specific values of the climate parameters and it would be desirable to incorporate
this fact in the statistical analysis. The control runs from alternate GCMs with different 0
values would include some such information but there are a limited number available.

We recall that the MIT2DCM represents a class of climate models for which the climate
system properties, 8, can be specified by single variables. This differs from more complex
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GCMs which contain multiple parameterizations each with a set of adjustable parameters.
In both the MIT2DCM and the GCMs, the climate system properties are diagnosed from
the response of each model to specified forcings. At some level, the equivalence between the
MIT model and the GCMs must be established. The key difference is that a single parameter
can be varied in the MIT model whereas a subset of adjustable variables in GCMs must be
first identified (as in Allen, 1999) and then sampled to estimate the correspondence with
a given 6; (e.g., Stainforth et al., 2005). As a climate modeling project to establish these
equivalences, this requires significant computing resources. As a computational statistical
calibration project, the required resources would be far larger. The approach taken in this
paper (to build a consistent emulator and parameter calibration) could be applied to a more
complex climate model provided the resources and data were available. Such an exercise
would be very useful to the climate science community.

Acknowledgments

The authors were partially supported by the National Science Foundation grant NSF-Geomath
0417753.

References

Allen, M. R. (1999) Do-it-yourself climate prediction. Nature, 401, 627.

Allen, M. R. and Tett, S. F. B. (1999) Checking for model consistency in optimal finger-
printing. Climate Dynamics, 15, 419-434.

Bayarri, M., Berger, J., Paulo, R., Sacks, J., Cafeo, J., Cavendish, J., Lin, C. and Tu, J.
(2007) A framework for validation of computer models. Technomnetrics, 49, 138-154.

Bell, T. L. (1982) Optimal weighting of data to detect climatic change: Application to the
carbon dioxide problem. J. Geophys. Res., 87, 11161-11170.

— (1986) Theory of optimal weighting of data to detect climatic change. J. Atmos. Sci., 43,
1694-1710.

Berger, J., De Oliveira, V. and Sansé, B. (2001) Objective Bayesian analysis of spatially
correlated data. Journal of the American Statistical Association, 96, 1361-1374.

Fang, K., Li, R. and Sudjianto, A. (2006) Design and modeling for computer experiments.
Chapman and Hall.

Forest, C. E., Allen, M. R., Sokolov, A. P. and Stone, P. H. (2001) Constrainting climate
model properties using optimal fingerprint detection methods. Climate Dynamics, 18,
277-295.

19



Forest, C. E., Allen, M. R., Stone, P. H. and Sokolov, A. P. (2000) Constraining uncertainties
in climate models using climate change detection methods. Geophysical Research Letters,
27, 569-572.

Forest, C. E., Stone, P. H. and Sokolov, A. P. (2006) Estimated pdfs of climate sys-
tem properties including natural and anthropogenic forcings. Geophys. Res. Let., 33,
do0i:10.1029/2005GL023977.

Forest, C. E., Stone, P. H., Sokolov, A. P. and Allen, M. R. (2002) Quantifying uncertainties
in climate system properties with the use of recent climate observations. Science, 295,
113-117.

Gamerman, D. and Lopes, H. F. (2006) Markov Chain Monte Carlo - Stochastic Simulation
for Bayesian Inference. London, UK: Chapman and Hall, second edn.

Gill, A. E. (1982) Atmosphere-Ocean Dynamics. Academic Press, San Diego, CA.

Hasselmann, K. (1979) On the signal-to-noise problem in atmospheric response studies. In
Meteorology of Tropical Oceans (ed. Shawn), 251-259. Royal Meteorological Society.

— (1993) Optimal fingerprints for the detection of time dependent climate change. J. Cli-
mate, 6, 1957-1971.

— (1997) On multifingerprint detection and attribution of anthropogenic climate change.
Clim. Dyn., 13, 601-611.

Higdon, D., Gattiker, J., Williams, B. and Rightley, M. (2008) Computer model calibration
using high dimensional output. Journal of the American Statistical Association, 103,
570-583.

Jones, P., New, M., Parker, D., Martin, S. and Rigor, I. (1999) Surface air temperature and
its changes over the past 150 years. Reviews of Geophysics, 37, 173-199.

Kennedy, M. C. and O’Hagan, A. (2001) Bayesian calibration of computer models. Journal
of the Royal Statistical Society, Series B, 63, 425-464.

Levitus, S., Antonov, J. and Boyer, T. P. (2005) Warming of the world ocean, 1955-2003.
Geophys. Res. Let., 32, d0i:10.1029/2004GL021592.

Morgan, M. G. and Keith, D. W. (1995) Subjective judgements by climate experts. Environ.
Sci. Technol., 29, 468A—476A.

Muirhead, R. J. (1982) Aspects of Multivariate Statistica Theory. New York, USA: John
Wiley and Sons.

O’Hagan, A., Kennedy, M. C. and Oakley, J. E. (1999) Uncertainty analysis and other
inference tools for complex computer codes. In Bayesian Statistics 6 (eds. J. M. Bernardo,
J. O. Berger, A. P. Dawid and A. . F. M. Smith), 503-524. Oxford University Press.

20



Paulo, R. (2005) Default priors for Gaussian processes. The Annals of Statistics, 33, 556-582.

R Development Core Team (2005) R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL:
http://www.R-project.org. ISBN 3-900051-07-0.

Sansé, B., Forest, C. and Zantedeschi, D. (2008) Inferring climate system properties using a
computer model (with discussion). Bayesian Analysis, 03, 1-62.

Santner, T., Williams, B. and Notz, W. (2003) The Design and Analysis of Computer Ex-
periments. Springer-Verlag.

Smith, B. J. (2005) BOA: Bayesian Output Analysis Program (BOA) for MCMC. URL:
http://www.public-health.uiowa.edu/boa. R package version 1.1.5-2.

Sokolov, A. P., Forest, C. E. and Stone, P. H. (2003) Comparing oceanic heat uptake in
aogem transient climate change experiments. J. Climate, 16, 1573-1582.

Sokolov, A. P. and Stone, P. H. (1998) A flexible climate model for use in integrated assess-
ments. Climate Dynamics, 14, 291-303.

Stainforth, D. A., Aina, T., Christensen, C., Collins, M., Faull, N., Frame, D. J., Kettlebor-
ough, J. A.; Knight, S., Martin, A., Murphy, J. M., Piani, C., Sexton, D., Smith, L. A.,
Spicer, R. A., Thorpe, A. J. and Allen, M. R. (2005) Uncertainty in predictions of the
climate response to rising levels of greenhouse gases. Nature, 433, 403-406.

Stein, M. (1999) Interpolation of Spatial Data. New York, USA: Springer-Verlag.

Tebaldi, C. and Sansé, B. (2008) Joint projections of temperature and precipitation change
from multiple climate models: A hierarchical Bayes approach. Journal of the Royal Sta-
tistical Society, A. To appear.

Watson, R. T. and the Core Writing Team (eds.) (2001) Third Assessment Report on Cli-
mate Change 2001: Synthesis Report of the Intergovernamental Panel on Climate Change.
Cambridge, UK: Cambridge University Press.

Webster, M. D. and Sokolov, A. P. (2000) A methodology for quantifying uncertainty in
climate projections. Climatic Change, 46, 417-446.

21



