
Hardware Accelerated HyperLIC

Robert Hero and Alex Pang
rghero@cse.ucsc.edu and pang@cse.ucsc.edu

Computer Science Department

July 2007
Technical Report No. UCSC-SOE-08-21

School of Engineering, University of California, Santa Cruz, CA 95064

This paper presents hardware acceleration techniques for both
the LIC and HyperLIC algorithms using off-the shelf graphics hard-
ware. The methods used in this paper take the burden of calculation
from the CPU and place it on the graphics card through the use of
programmable fragment shaders and texture maps. Frame rates in-
creased almost 2 orders of magnitude over the corresponding soft-
ware implementations of Fast LIC and HyperLIC algorithms. The
methods presented here can also be extended to 3D with similar
performance gains.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques;

Keywords: hyperstreamlines, LIC, hardware acceleration, frag-
ment shader, pixel shader, symmetric tensors,

1 INTRODUCTION

Visualization of vector and tensor fields is a challenging task. Re-
cently, a significant improvement in dense 2D flow visualization
was realized using image based flow visualization (IBFV) [12].
This work was further extended to handle 3D flow fields and also
took advantage of hardware acceleration [11]. On the other hand,
tensor visualization remains a challenging task both in terms of
showing myriad of relationships and features in a tensor field, as
well as generating the visualizations reasonably fast to allow user
interaction.

There are some basic approaches for visualizing tensor fields
including the use of hyperstreamlines [3], glyphs [8, 6], volume
rendering [7], and more recently with HyperLIC [16], as well as
topological analysis [4, 17]. The glyph based approach shows the
multifacet nature of tensor fields, but does not provide a continuous
depiction. Hyperstreamlines provide a continuous representation of
the underlying field, but cannot effectively show the relationships
of the different eigenvector fields without too much clutter. Both
volume rendering and HyperLIC approach shows a continuous rep-
resentation but only for a few special parameters of the tensor field
e.g. anisotropy. Topological analysis is a promising approach but is
still relatively in its infancy and therefore not quite ready for opti-
mization.

In this paper, we investigate how dense visualization such as
LIC and HyperLIC can benefit from hardware acceleration. LIC
[?] is an extensively researched technique for flow visualization
which numerous software optimizations and enhancements e.g.
[10, 9, 13]. Even with more advanced versions of LIC such as
FastLIC [10], images are generated on the order of seconds for

2D images. The methods we present here are based on the tradi-
tional LIC algorithm, but implemented to take advantage of modern
GPUs.

Two of the methods presented are identical to the software ver-
sions, but are adapted to run completely on the graphics hardware.
The other methods presented are based on the LIC algorithm, and
run completely on the graphics hardware as well. By storing the
tensor field data on the graphics card, we were able to use the pro-
grammable shaders to perform the LIC calculations. Compared to
the traditional LIC algorithm, the hardware accelerated method per-
formed two orders of magnitude better than the software version.
Hardware accelerated LIC achieved over 33 frames per second for
512 x 512 images. The hardware accelerated HyperLIC algorithm
generated frame rates of 22 fps on an nVidia GeForceFX 5950 for
512 x 512 pixel images. These methods can be extended to 3D cases
with almost no change to the 2D implementation, and with substan-
tial performance gains over their corresponding software versions
as well. The focus of this paper will be on the 2D methods, how-
ever a discussion of the 3D implementation will be presented.

2 RELATED WORK

The HyperLIC method [16] combined the idea of hyperstreamlines
[3] and LIC [2] to visualize symmetric tensor fields. The basic LIC
algorithm is well know and is given by the equation

I(x, y) =

∫
+L/2

−L/2

k(i)N(Pi)di

where L is the integration length, N(P ) is the noise texture at lo-
cation P , Pi is a location along the streamline centered at x, y, k(i)
is the filter kernel, and I(x, y) is the pixel in the output image at
x, y. This integral is simply the streamline generated by the vector
field in 2D from point at x, y. By convolving this streamline with
a noise image, an image showing the structure of the vector field is
generated. The output image is generated pixel by pixel with this
convolution.

The 2D HyperLIC algorithm takes the formula used in the LIC
algorithm and applies it to a 2D symmetric tensor field. The Hyper-
LIC algorithm uses a modified formula of

I(x, y) =

∫
+L/2

−L/2

∫ L/2

−L/2

k(i, j)N(Pij)didj

to generate the resulting image. The outer integral represents the
convolution along the major eigenvector and the inner integral is
along the minor eigenvector. The area spanned by this convolu-
tion of the major and minor eigenvectors highlights the anisotropy
of the tensor. The performance of the 2D HyperLIC algorithm is
improved by using a two pass method. Rather than computing the



double integral for each pixel in the target image, the algorithm can
first generate a LIC image using the major eigenvector, then use
the resulting image as the input noise image for another pass with
the LIC algorithm using the minor eigenvector field. This approach
generates a useful image for the visualization of anisotropy in sym-
metric tensor fields, but takes twice the amount of time to generate
images compared to standard LIC.

HyperLIC is by no means the only technique that uses textures to
visualize tensor fields. Other notable methods include transforming
the tensor field into a positive definite metric tensor and then using
LIC to independently render each eigenvector field, and then blend-
ing them together [5]. Two variations of volume rendering tensors
have also been proposed. In [1], tensors are represented as 3D
gaussians where they are volume rendered using texture mapping
hardware. On the other hand, in [14], symmetric positive definite
tensors are represented by flat, transparent, planar glyphs which are
then volume rendered through a technique called splatting.

Since the publication of the original LIC algorithm, there have
been numerous papers describing how to enhance and speed up the
algorithm. There have also been efforts in using hardware tech-
niques to accelerate the LIC algorithms. In [15], a hardware accel-
erated method for generating LIC images is presented. By storing
LIC images generated by each step along the integral in the accu-
mulation buffer and using blending operations to update a vector
field texture they were able to achieve frame rates of approximately
3 fps. The difficulty with this method is that it requires constant
swapping of texture memory on the graphics card which can hinder
performance. Rather than using a multipass technique to achieve
the integration along the streamline, we program the GPU to calcu-
late the streamline for each pixel during the rendering. For tensor
fields, we use a two pass rendering just as the 2D HyperLIC method
uses two passes of the LIC algorithm to generate images.

Similar efforts in hardware acceleration of IBFV [12] have also
been proposed. Examples include [11, 15]. These methods use
graphics hardware to deform rendering primitives in the direction
of the flow. Multipass rendering is used to achieve the final image,
which is an accumulation of texture images.

The methods presented in this paper differ from previous hard-
ware accelerated approaches as the calculations for each pixel in the
output image are calculated on the graphics card. In contrast, other
approaches have focused on using fewer calculations and blending
the results with other intermediate images. We also present meth-
ods that blur the image along the streamlines local to each output
pixel in an attempt to reduce the number of calculations needed to
generate the streamlines. The image is blurred through several ren-
dering passes. Each pass uses the previously generated image as the
noise image, where the first pass uses a randomly generated white
noise image.

3 METHODS

3.1 Hardware LIC

Adapting the LIC algorithm to run solely on a modern GPU requires
the ability to program the GPU and to transfer the needed data to the
GPU efficiently. Fragment shaders provide the ability to program
the GPU and texture maps are used to quickly send the important
data to the graphics card. Most modern graphics cards support these
features.

The Hardware LIC algorithm is the same on the graphics card
as it is in software. The main difficultly in adapting LIC to run on
the GPU is how to transfer the data to the GPU in a way that it can
efficiently access the vector field. Each pixel in the output image
will need to calculate the streamline that originates from that posi-
tion. The information is contained in the vector field and thus the
entire vector field must be transferred to the GPU. A two dimen-

sional vector field consists of an NxN grid of two scalar values that
represent each vector component. The total size of each vector field
used in this paper is 512x512x2x4 = 2 megabytes. The vector field
is converted into an NxN texture map where the two components
of the vector are stored in two of the color channels of the texture
map. In this case, we used the red and green channels and left the
blue and alpha channels free for other information. In Figures 3(b)
and 4(b), we used those extra color channels to make color images.
A colormap was stored in the texture memory and the extra color
channels stored an offset into the colormap. For the LIC images
the index was simply the magnitude of the vector centered at each
pixel, while the HyperLIC images used the ratio between the major
and minor eigenvectors. This ratio highlights regions of isotropy as
green and anisotropy as cyan.

Texture maps are traditionally clamped to values between 0.0
and 1.0. There are two issues with this limitation, the first being
that the vectors used ranged from -1.0 to 1.0. The solution to this
was to store each value in the texture as

texturevalue = vectorvalue/2.0 + 0.5

Then in the fragment program one line of code reversed this trans-
formation. The other limitation of the texture map was in the case
of vectors outside the range of -1.0 to 1.0. This is not typically a
problem, but if it is, the solution is to use two color channels per
value. The first channel stores a value just as before, and the sec-
ond channel stores a scaling factor. Again adding one line in the
fragment shader can then invert this value back to its correct value.
The actual vector value is calculated by

realvalue = texturevalue ∗ 1.0/scalefactor

Another potential problem is the precision of the texture map val-
ues. Texture maps in OpenGL is typically limited to 8 bit precision
per color channel. Precision has not been a large issue in our hard-
ware LIC implementation. If it was, it can be solved by using Di-
rectX, or vendor specific OpenGL extensions that allow more bits
per channel.

Once the vector field has been copied to the GPU as a texture
map, each pixel is able to access the vector field at any given loca-
tion through a texture lookup operation. The output pixel value is
calculated from the summation

L/2∑
i=−L/2

N(Pi)k(i)

where

Pi = P (i − 1) + V (P (i − 1))∆t

and V (P ) is the vector defined at point P . Each pixel will perform
2L + 1 texture lookups, where L is the number of integration steps
in each direction. For each step there is one lookup into the vector
field texture and one lookup into the noise texture. The additional
texture lookup is for the noise image at the center of the streamline.

3.2 Hardware HyperLIC

The Hardware HyperLIC algorithm is again the same algorithm as
the software version. The algorithm performs the first pass of the
algorithm in the same manner as in the Hardware LIC, then uses
that image as the noise image and performs a second pass. During
the first pass the noise image is randomly generated white noise.
This image is convolved with the major eigenvector field of the ten-
sor data. The output of this pass is then switched with the noise
image and the vector field used is changed to be the minor eigen-
vector field. The second pass performs the LIC algorithm with the



Figure 1: Overview of Hardware Accelerated HyperLIC

updated data to generate the output image. The ordering of vec-
tor fields does not matter and can be reversed without noticeably
changing the final image.

However, the operation of rendering an image to the framebuffer,
transferring data out of the framebuffer, and then back to texture
memory is expensive. This transfer reduces the performance signif-
icantly, as there is no reason to transfer an image out of the graphics
card, only to place it right back on the card. Therefore, the render-
to-texture feature of the GPU was utilized to render the first pass
directly to texture memory, and then switching the texture address
in the fragment shader between the just calculated LIC texture and
the noise texture. Using render-to-texture allows for a minimal use
of the CPU in the calculation of the HyperLIC image. In fact, the
only use of the CPU is to switch which texture maps are being used.
Three textures need to be changed in between each pass- the one to
render to, the noise texture, and the vector field itself, as it needs to
use the minor eigenvector instead of the major eigenvector used in
the first pass. All of these textures are stored on the graphics card
at the beginning of the rendering to eliminate any performance loss
caused by transferring data between the CPU and the GPU.

3.3 Neighboring pixel based LIC and HyperLIC

3.3.1 One Neighbor

The main cost of the LIC algorithm is from the calculation of
streamlines. Using the idea of a multipass rendering and diffusion,
we seek to eliminate the costly streamline calculation from the ren-
dering. The idea is to calculate for each pixel in the output image,
which neighboring pixels the streamline passes through. With these
neighbors we blur the image along the streamline for each output
pixel and repeat the process several times. This results in much less
computation per pixel than the LIC algorithm, but at the cost of
several intermediate renderings.

A streamline generated at any pixel will cross through two neigh-
boring pixels. The location of these two pixels is calculated in the
preprocessing step. A side effect is that time-varying vector fields
will not benefit from this approach, since the neighbors will change
after each time step. For the HyperLIC version, we just include
the neighbor information for both the major and minor eigenvec-
tors, resulting in four neighboring pixels. The number of neighbors
that need to be calculated is reduced in half, as the two neighbors
for each streamline are always separated by 180 degrees. The loca-
tion of these neighboring pixels are loaded into a texture map and
passed to the GPU instead of the actual vector field data. Next, for
each pixel, the fragment shader retrieves the neighbor information
with one texture lookup for both the LIC and HyperLIC versions.
Only one lookup is needed as both the major and minor eigenvec-
tor neighbors can be stored in one texel. The shader performs three
more texture lookups, five for the HyperLIC version, into the noise
image and averages the values to get the resulting output value. Us-
ing render-to-texture, this method can achieve real-time frame rates.

There are some serious limitations though. Since we only look at
one neighbor, streamlines will have an angle of 0, 45, or 90 degrees
as in Figure 5(b). This angular aliasing of the vectors results in poor
images that ignore many fine detail in the vector/tensor field. We
tried two possible solutions to this problem.

3.3.2 Weighted Neighbor

The first solution still only used the eight neighbors immediately
around a given pixel. Rather than calculating which two of the eight
neighboring pixels a streamline crosses, a weight is assigned to all
eight of the neighbors. The weight is an indication of how close
the streamline comes to crossing through a particular neighboring
pixel. The idea being that if a streamline crossed directly through
the center of a pixel, that pixel would be assigned a weight of 1.0,
and the pixels next to that one would be assigned 0.0.

Weights are calculated by applying a function to the dot product
of the streamline and the vector formed by the origin of the stream-
line and the center of each neighboring pixel. The function used is
best chosen to be gaussian with a small standard deviation. Larger
gaussians result in the image becoming very blurry. However if the
standard deviation is too small there are two issues that can occur.
The first problem is that no weights are assigned to any neighbor-
ing pixels. This occurs when the stream line passes in between the
center of two pixels. The other issue is that the weighted neigh-
bor looks much like the approach based on one neighbor. A good
choice is a gaussian with a width of slightly more than

√
2. This

results in most of the weight being assigned to no more than two
neighboring pixels.

This method produced much better results than the one neigh-
bor LIC and HyperLIC methods as shown in Figure 5 and 6. Since
we are no longer limited to only one neighbor on each side of the
streamline, we get smoother results for streamlines that curve, and
less abrupt changes in direction. The downside is that most regions
will appear more isotropic than they would if rendered using tradi-
tional HyperLIC.

This method is more costly than the single neighbor based LIC.
Since each neighbor pixel has a weight associated with it, there are
many more lookups into the noise texture map. For each pixel, two
lookups into a texture storing the neighbor weights are needed to
get the weights of the eight neighbors, along with nine lookups into
the noise texture. The amount of texture lookups needed for this
method greatly reduces the performance. Once the fragment shader
has performed all the lookups for one pass it is a simple calculation
to get the resulting output pixel value. This process is repeated just
as in the one neighbor approach, to blur the images and show the
streamlines in more detail.

3.3.3 Two Neighbor

The other approach to solve the aliasing issue with the one neighbor
LIC method was to look at the next two neighbors in each direction
along the streamline. This expands the neighborhood from nine
pixels to twenty five pixels. The idea was to keep the amount of
texture lookups low, and to reduce the aliasing.

The number of neighbors used with this approach required a
small change to the neighbor lookup texture map. Now there was
far more information needed than could be encoded in four color
channels, so a three dimensional texture map was used. This in-
creased the amount of data that could be used significantly. The
idea is the same as the one neighbor approach. The neighbor infor-
mation is looked up in the texture map, and then used as indices to
lookup the values in the noise texture map. The only difference is
the number of lookups. The fragment shader has to do a total of
seven texture lookups for each output pixel in the LIC version and
eighteen for the HyperLIC version. The amount of texture lookups



for the HyperLIC version is quite high, even when compared with
the weighted neighbor approach, but compared to the number of
lookups needed for weighted neighbor with a 5x5 neighborhood,
it is much lower. Most of those lookups for the two neighbor ap-
proach are into the noise texture. The number of texture lookups in
the HyperLIC version reduces performance substantially compared
to the LIC version.

This method created slightly smoother streamlines, but the gain
was small when comparing to the one neighbor based approach.
The performance of this method is mainly influenced by the num-
ber of texture lookups. Since there are so many texture operations,
the algorithm is only marginally faster than the hardware LIC and
HyperLIC methods, with much lower image quality.

3.4 Extension to 3D

All of these methods can be extended to support a 3D tensor or
vector space with only a few changes. The 3D version of the LIC
and HyperLIC algorithm is similar to the software algorithm. The
3D versions of the neighbor lookup based methods only require
more neighbors to be stored. The need to store more data on the
graphics card is the limiting factor in these methods.

3.4.1 3D LIC

Extension to 3D LIC is the easiest method to implement. The only
change in the LIC algorithm is to change the input data to be a 3D
texture. Once this is done the calculations along the streamline are
done in the same manner as the 2D case. This should result in a
3D volume, but the graphics cards are designed to only render to
a 2D plane. The resulting 3D LIC volume must be calculated one
slice at time and then composited into a 3D volume after all slices
are completed. Once the 3D volume is created it can be used with a
volume rendering technique that best suits the data to be visualized.

3.4.2 3D HyperLIC

HyperLIC requires a lot more information than the LIC algorithm.
Instead of one vector field that must be loaded into memory at any
time, 3D HyperLIC requires three different eigenvectors to generate
the final volume. A 5123 tensor field would require far more mem-
ory than is available on an off-the-shelf graphics card. One way to
reduce the amount of memory needed at one time is to use the mul-
tipass approach. Only one eigenvector field is loaded at a time and
an intermediate volume is generated using the 3D LIC method. This
intermediate volume is then used as the noise volume for the next
eigenvector field. Again the rendering capabilities of the graphics
card will force the creation of individual slices of the 3D volume
that will be composited after the completion of each slab.

3.4.3 Neighbor based methods

The 2D neighbor based methods are fairly simple to extend to 3D.
The main change is the amount of neighbors that must be pre-
calculated. In particular, the weighted neighbor method would re-
quire 27 lookups into the noise texture map for each pass. This is
far worse than the 3D LIC method and would require more mem-
ory than storing the 3D tensor space in its entirety. The one and
two neighbor methods in 3D would only require additional neigh-
bor information for the third eigenvector field when approximating
the HyperLIC method.

4 IMPLEMENTATION ISSUES

4.1 Precision

There are several issues with implementing the HyperLIC algo-
rithm completely on hardware. The first concern is with transferring
the tensor field to the GPU. When encoding the tensor information
in a texture map there is an associated loss of precision. Typical
texture maps are 32 bits per texel. Using a texture map of this depth
resolution, a 2D tensor can be stored in one texel of the texture map
with some loss of precision. Another property of texture maps is
that when used to store floating point textures, the values of each
color channel are clamped between zero and one. For tensors that
vary outside of that range, this can be a problem that can be over-
come by the use of an additional color channel. For each value in
the tensor, two color channels are used. This means that a 2D tensor
will require 2 texels of storage. The first channel stores the value V
of the tensor and the second channel stores a scaling value S. The
full tensor value is created in the fragment shader by V/S. This
approach increases range of potential values for a texture map, but
is no substitute for a texture map with a more bits per texel. Most
graphics cards available now have that capability, which can be ac-
cessed through vendor specific OpenGL extensions, or through Di-
rectX. Both the X800 card from ATI and the GeForce6800 card
from nVidia support 64 and 128bit texels.

4.2 Non-Power-of-Two Textures

Texture dimension is another issue that must be addressed. Because
texture dimensions need to be a power-of-two, both the resulting
image from the hardware HyperLIC and the input vector field must
have dimensions that are power-of-two as far as the graphics card
is concerned. A non-power-of-two vector field can be used, by
padding the input texture map with any value, so that the field is
2N in size. For the resulting image, the undesired pixels can be ig-
nored, with the only side effect being a small loss of performance,
and more texture memory being used.

4.3 Memory usage

Memory limitation is not a concern for most 2D applications, but
for 3D, it becomes the primary concern. Not only must the ten-
sor field be stored on the graphics card, the output volume must
be stored as well. Common graphics cards are limited to 256
megabytes of memory, which is not enough to store even just the in-
put tensor field. A 5123 3D tensor field will require more than 384
megabytes if each eigenvector could be stored as one byte each. In
addition to the input texture, the output texture must be stored. Ob-
viously, there is a large problem for extending any of these methods
directly to 3D. A solution to this problem is to place a smaller sub-
section of the input data into memory at anytime. By placing a slab
of the tensor field into memory, a slice of the output texture can be
created.

A 3D texture can be thought of as nothing more than a stack of
2D textures. When slice zi of the output volume is being created,
only slices i−(L/2) to i+(L/2) need to be in memory, where L is
the number of steps in the integration. This does create some over-
head however. Depending on how much memory is available there
will be constant swapping of memory between the graphics card
and the main memory of the computer to load the tensor texture, in
addition to the transfer of the output slices. Despite the overhead,
this approach will still realize performance gains over the software
version, and as the memory available on graphics cards increases,
the overhead will drop to almost zero.



4.4 Image Boundary

The edges of images are also a problem. As a streamline leaves
the defined region of the vector field , there is a question of how to
handle the boundary. One solution is to generate an image that is
smaller than the vector field. This solution provides quality images,
but requires a larger dataset than needed. A simple solution for the
LIC images is to change the settings for the noise texture lookup
to wrap around the texture. If the texture coordinates are clamped
between 0.0 and 1.0 a smearing appears on the borders, but with
periodic wrap, the smearing disappears and the images maintain
most of the information at that edges. This doesn’t work as well for
the HyperLIC images. The wrapping texture lookups work as well
for LIC because the noise image is random. In the intermediate step
of the HyperLIC algorithm, the noise image is no longer random.

5 RESULTS

The use of hardware acceleration produced images of the same
quality as traditional software LIC. Figure 3 shows an example of a
vector field visualized using the traditional LIC algorithm done in
software and in hardware. The image on the left took 3.773 sec-
onds to create, while the hardware image was generated in 0.02985
seconds. Using an nVidia GeForceFX 5950 GPU, frame rates of
33 fps were achieved for generating a LIC image. For HyperLIC,
rates of 22 fps were achieved on the same graphics card. Figure
4(b) shows a HyperLIC image generated using 16 integration steps
per streamline along both the major and minor eigenvectors. This is
more than two orders of magnitude faster than two pass HyperLIC
images using traditional LIC implemented in software, and more
than an order of magnitude over FastLIC. The hardware implemen-
tations show great performance gains over the optimized software
versions.

The images generated by the one neighbor based method for ten-
sor visualization generated the same frame rates as the hardware
accelerated HyperLIC when using 16 rendering passes. While the
frame rate was acceptable, the image quality was much lower than
that of the HyperLIC algorithm. The two neighbor based method
images appeared more blurred in regions where the tensor field
changed rapidly. Figures 5(b) and 5(c) show only the major eigen-
vector field rendered using one and two neighbors. Figure 6(b)
shows both the major and the minor eigenvector fields rendered us-
ing the two neighbor method.

The weighted neighbor method produced the images shown in
Figure 5(d) and 6(c). Again the images did not have the same qual-
ity as when using the traditional LIC and HyperLIC algorithms.
However the picture quality is much better than that of the one and
two neighbor based approaches, especially for the LIC version. If
the number of passes is limited to 2, performance is on par with the
hardware HyperLIC algorithm, but the image quality is lower. This
method is limited in performance as it uses almost as many texture
lookups as one pass in HyperLIC, and uses slightly less floating
point calculations.

6 CONCLUSIONS

Fragment and Vertex shaders provide a very useful tool for scien-
tific visualization. Many applications that can take advantage of
parallel processing such as LIC and HyperLIC can be adapted to
run on these GPUs. The performance gain from parallelization and
the graphics hardware itself is remarkable. For HyperLIC, interac-
tive frame rates for a 512x512 image are easily attainable. It is even
possible to gain more performance improvements as new, more ca-
pable graphics cards come out.

Floating point operations are typically very expensive on most
graphics cards. In addition to being expensive, the amount of bits

Figure 2: LIC image generated completely in hardware.

available to represent a floating point number is limited. This results
in slower frame rates and slightly lower image quality than can be
obtained by a software implementation. Even with the loss of per-
formance by using floating point calculations, hardware accelerated
methods are vastly faster than software. The image quality issue is
not readily apparent, but with new graphics cards not only will per-
formance increase, but the quality of the images will be identical
to software. By using 64 bit or 128 bit textures, there will be no
perceptible loss of precision; and new graphics cards are just as fast
with floating point numbers as integers.

ACKNOWLEDGEMENTS

We would like to thank Xiaoqiang Zheng for insights and sugges-
tions on HyperLIC, Jiwon Shin for earlier work on image based
HyperLIC, and Yeon Gyoung Gwack for the FastLIC implementa-
tion of HyperLIC. We would also like to thank Craig Wittenbrink
and NVidia for the graphics card used in the experiments.

REFERENCES

[1] A. Bhalerao and C.-F. Westin. Tensor splats: Visualising tensor fields
by texture mapped volume rendering. In Sixth International Con-
ference on Medical Image Computing and Computer-Assisted Inter-
vention (MICCAI’03), pages 294–901, Montreal, Canada, November
2003.

[2] B. Cabral and L. Leedom. Imaging vector fields using line inte-
gral convolution. Computer Graphics (SIGGRAPH Proceedings),
27(4):263–272, 1993.

[3] T. Delmarcelle and L. Hesselink. Visualizing second-order tensor
fields with hyperstreamlines. IEEE Computer Graphics and Appli-
cations, 13(4):25–33, July 1993.

[4] L. Hesselink, T. Delmarcelle, and J.L. Helman. Topology of second-
order tensor fields. Computers in Physics, 9(3):304–311, May-June
1995.

[5] I. Hotz, Z.X. Feng, H. Hagen, B. Hamann, K.I. Joy, and B. Jeremic.
Physically based methods for tensor field visualization. In Proceed-
ings of Visualization ’04, pages 123–130, Austin, 2004.



(a) Software (b) Hardware

Figure 3: Software and Hardware LIC images

(a) Software (b) Hardware

Figure 4: Software and Hardware HyperLIC images



(a) Hardware LIC (b) One Neighbor

(c) Two Neighbor (d) Weighted Neighbor

Figure 5: Neighbor Based LIC compared to Hardware LIC



(a) One Neighbor (b) Two Neighbor

(c) Weighted Neighbor

Figure 6: Neighbor Based HyperLIC



[6] Gordon Kindlmann. Superquadric tensor glyph. In Vissym’04, pages
147–154, 2004.

[7] Gordon L. Kindlmann and David M. Weinstein. Hue-balls and lit-
tensors for direct volume rendering of diffusion tensor fields. In IEEE
Visualization, pages 183–189, 1999.

[8] David Laidlaw, Eric Ahrens, David Kremers, Matthew Avalos, Russell
Jacobs, and Carol Readhead. Visualizing diffusion tensor images of
the mouse spinal cord. In Proceedings of Visualization ’98, pages
127–134, 1998.

[9] H.W. Shen and D.L. Kao. Uflic: A line integral convolution algorithm
for visualizing unsteady flows. In R. Yagel and H. Hagen, editors,
Proceedings IEEE Visualization ’97, pages 317–322. IEEE Computer
Society Press, 1997.

[10] D. Stalling and H.-C. Hege. Fast and resolution independent line in-
tegral convolution. Computer Graphics Siggraph Proceedings, pages
249–256, 1995.

[11] Alexandru Telea and Jarke J. van Wijk. 3D IBFV: Hardware-
accelerated 3d flow visualization. In Proceedings of Visualization ’03,
pages 233–240, 2003.

[12] Jarke J. van Wijk. Image based flow visualization. Computer Graph-
ics, pages 745–754, 2002.

[13] V. Verma, D. Kao, and A. Pang. Plic: Bridging the gap between
streamlines and lic. In D. Ebert, M. Gross, and B. Hamann, editors,
Proceedings IEEE Visualization ’99, pages 341–348. IEEE Computer
Society Press, 1999.

[14] W.Benger and H.-C. Hege. Tensor splats. In Visualization and Data
Analysis, pages 151–162, 2004.

[15] D. Weiskopf and T. Ertl. GPU-based 3D texture advection for the
visualization of unsteady flow fields. In Proceedings of WSCG 2004
Short Papers, pages 259–266, 2004.

[16] Xiaoqiang Zheng and Alex Pang. HyperLIC. In Proceedings of Visu-
alization ’03, pages 249–256, Seattle, 2003.

[17] Xiaoqiang Zheng and Alex Pang. Topological lines in 3D tensor fields.
In Proceedings of Visualization ’04, pages 313–320, Austin, 2004.


