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Abstract

This paper deals with methods for direct volume rendering of 3D
multi-valued scalar data sets. A multi-valued scalar data is one
where there are multiple scalar values at each location. Hence, a
3D multi-valued scalar data contains multiple scalar values at each
voxel. While there are a few techniques that deal with direct vol-
ume rendering of vector data (velocity components at each voxel),
diffusion tensor data (eigenvalues at each voxel), multi-field data
(multivariate vector at each voxel), or scalar uncertainty data (data
plus scalar uncertainty at each voxel), the multi-values are about a
single variable. As such, the emphasis of the visualization is not
so much about the relationships among the different instances of
the same variable, but rather about their collective pattern and be-
havior. We discuss two approaches for direct volume rendering of
multi-valued scalars: (a) convert to scalar then volume render, or
(b) volume render then convert to scalar. The latter offers a wide
array of interesting possibilities which are described in the paper.

1 Introduction

In direct volume rendering, every voxel contributes to the rendered
image. Using a raycasting approach, a ray is shot from the view-
point through each pixel on the view plane into the 3D volume.
Scalars that are encountered along this ray contribute to the fi-
nal color of the respective pixel. However, what happens when a
collection of scalars, rather than a single scalar, is found at each
voxel? How do we determine the contribution of each group of
scalars to the final pixel color? This paper will discuss two gen-
eral approaches to extend current direct volume rendering methods
to handle this new form of data, which we refer to as multi-valued
data.

Visualizing multi-valued data was introduced in [Luo et al.
2003]. In that paper, it was referred to as a distribution data, but
has since been renamed multi-valued data since not all multi-valued
data are necessarily distribution data. A multi-valued data consist
of a collection of values about a single variable. This collection
can be denoted as M(v1, v2, ..., vn) where each vi is an instance
value of variable V . The collection may arise from a measurement

process or a modeled process for example. In the latter case, it is
particularly useful to consider probabilistic models where the col-
lection of values describe the set of sample of possible outcomes of
the modeled process. This makes multi-values an ideal representa-
tion for both data and its associated uncertainty. Where previously
uncertainty has often been represented as a scalar quantity, using
multi-values to represent uncertainty offers a much richer insight
into the nature of uncertainty than could be captured by a single
number.

Multi-valued data and multivariate data can both be represented
as vectors, but are conceptually distinct. Multivariate data, also re-
ferred to as multi-field [Kniss et al. 2003], comprise multiple vari-
ables at each spatial location and time whereas multi-valued data
describe values found for a single variable. While multivariate vi-
sualization techniques may be applied to multi-valued data, they are
not necessarily appropriate. For example, a common objective with
multivariate data is to find relationships among variables; finding
relationships among different instances of the same variable is not
usually relevant.

Multi-valued data can be defined for multiple dimensions. Spa-
tial multi-valued data consist of multiple values at each physi-
cal location in the domain. One can have time-varying spatial
multi-valued data as well. Furthermore, multiple values may exist
for more than variable, leading to multidimensional, multivariate,
multi-valued data sets. The three data descriptors: multi-valued,
multivariate, and multidimensional are orthogonal concepts.

The multi-values at each location and/or each point in time, can
be described by its probability density function (pdf). The pdf may
be known or unknown, estimated from a sample, or approximated
using a discrete function (a histogram) or a continuous function (a
continuous pdf). Multi-valued data can also be order-invariant or
order-sensitive. For example, multi-valued data from probabilistic
models are not ordered. On the other hand, if the values represent a
gene expression sequence, then a multi-valued set will only remain
meaningful if the order of its components is preserved.

2 Related Work

Several papers deal with the question of how to visualize more than
one variable at each 3D location. One of these works extended
scalar direct volume rendering to direct volume rendering of vec-
tor fields [Fruhauf 1996] by encoding flow directions together with
flow magnitudes to both color and opacity. An alternative approach
was proposed in [Interrante and Grosch 1998] where 3D LIC is
first applied to the volumetric flow data before it is rendered as a
scalar texture field. Moving beyond vector fields, [Kindlmann et al.
2000] discussed different methods for directly volume rendering
diffusion-weighted magnetic resonance imaging (MRI) tensor data.
Among the proposed techniques are: a 2D transfer function defined
over a barycentric mapping of tensors with linear anisotropy, planar
anisotropy and isotropic regions; Lit-tensors to encode lighting and



Figure 1: Illustration and comparison between multidimensional,
multivariate and multi-valued data. The first row represents spatial
domains of dimensionality 0D, 1D, 2D and 3D. For multivariate
data, at each location in the spatial domain, there is a multivariate
vector shown in the second row. For multi-valued data, (denoted
by square brackets in the third row) at each location in the spatial
domain, there can be scalar multi-values (1st column) all the way
to multivariate multi-values (last column).

shading information to the extracted data; and reaction-diffusion
textures as an alternative means to display the anisotropy in the ten-
sors.

A general approach for dealing with multivariate volume render-
ing is the use of multidimensional transfer functions [Kniss et al. ]
and their efficient implementation [Kniss et al. 2003]. 2D, 3D or
higher dimensional transfer functions can be used to extract fea-
tures in multi-field data such as CT and MRI data sets. A possible
mapping is to map the first dimension to the raw data, the second
dimension to gradient magnitude which highlights areas of rapid
change in the volume, and the third dimension to the second di-
rectional derivative along the gradient direction in order to better
isolate material boundaries.

[Djurcilov et al. 2001] proposed both an inline approach using
2D transfer functions, as well as a post-processing pass of com-
positing separately volume rendered data sets. The former approach
used 2D transfer functions that mapped one dimension to raw data
and the other dimension to the scalar uncertainty field. The latter
approach used directly volume rendered scalar uncertainty and used
the result to introduce artifacts into the volume rendered image of
the raw data.

In terms of visualizing multi-valued data sets, the previous work
in this area are described in [Kao et al. 2001; Kao et al. 2002; Luo
et al. 2003]. The results can be summarized into three approaches
as follows: (a) Reduce the multi-values at each location into a small
set of parametric statistics, then visualize the statistics; (b) Use non-
parametric statistical descriptors to describe the shape of the distri-
bution of values in a multi-value, then visualize those descriptors;
and (c) Define an algebra that operates directly on multi-valued data
types and use it to implement visualization algorithms. These meth-
ods were largely applied to 2D distribution data; this paper extends
these methods to 3D multi-valued data by volume rendering.

3 Data

One of the data sets used in this paper is a 3D time varying output
from ocean modeling. The model covers the Middle Atlantic Bight
shelfbreak which is about 100 km wide and extends from Cape Hat-
teras to Canada. Both measurement data and ocean dynamics were
combined to produce a 4D field that contains a time evolution of
a 3D volume including variables such as temperature, salinity, and
sound speed. To dynamically evolve the physical uncertainty, an Er-
ror Subspace Statistical Estimation (ESSE) scheme was employed

[Lermusiaux 1999]. This scheme is based on a reduction of the
evolving error statistics to their dominant components or subspace.
To account for nonlinearities, they are represented by an ensemble
of Monte-Carlo forecasts. Hence, numerous 4D forecasts are gen-
erated and collected into a 5D field for each physical variable. For
each physical variable, the dimension of the data set is 65 x 72 x
42 voxels with multiple values at each point. We look at the sound
speed field which has 80 values at each voxel.

The other data set is a 3D diffusion profile data set taken from
a sequence of 55 magnetic resonance imaging (MRI) scans of a
normal human brain. Diffusion refers to the movement of water
molecules within biological tissue. It is an anisotropic activity,
meaning the water can travel faster in some directions than others.
The diffusion weighting was obtained along 55 different directions
uniformly distributed in 3D space, thus creating 55 complete 3D
brain volumes. Each volume measures 256 x 256 x 70 voxels, with
a scalar at each voxel representing the MRI signal intensity. This
signal intensity, which we will denote as S, can be summarized by
the following equation:

S = S0 ∗ exp−b ∗ ADC (1)

S0 is the signal intensity when a diffusion gradient direction is
not specified, b is the diffusion weighting factor measured in sec

mm2

(equal to 1000 in this data set), and ADC is the apparent diffusion
coefficient in mm2

sec
. Solving for ADC in the above equation, we

obtain:

ADC =
ln S

S0

−b
(2)

If we plot the ADC along each of the 55 diffusion weighting di-
rections in 3D, we acqure the ADC profile of the particular voxel.
The ADC profile’s shape tells us the preferred direction of diffu-
sion at the location in the brain. If the profile resembles a sphere,
diffusion is isotropic. If the profile is peanut-shaped, there is one
preferred diffusion direction. Knowing these directions is useful as
it corresponds to the orientation of white matter tracts in the brain.
The profile can also take on a cross shape, meaning there are two
intersecting diffusion directions, or two fibers crossing each other.
Abnormalities in the white matter can signify the existence of a dis-
ease such as Alzheimer’s. In this paper, we concentrate our methods
on the ADC profile multi-values.

4 Approach

We now discuss two different approaches for direct volume render-
ing of 3D multi-valued data. The first approach involves converting
the multi-values to scalars and then volume rendering the scalar
data. The second approach volume renders the multi-valued data
directly and then converts the result to scalars.

4.1 Convert to Scalar, then Volume Render

In this section, we discuss several techniques for converting the
multi-values to scalar first, before volume rendering. The first
method computes parametric statistics on each multi-value which
are then volume rendered. The second and third methods take a
shape descriptor approach to characterize each multi-value. The
fourth method calculates local gradients of multi-values at each
voxel to determine opacity. The fifth method uses a 3D scatter plot
to map multi-valued voxels to color and opacity.



4.1.1 Computing Aggregate Statistics

One simple way to summarize a multi-value would be to compute a
parametric statistic. In order to do this, we assume that each multi-
value can be described by a Gaussian distribution. The statistics
that we then compute could be, for example, the mean, standard
deviation, or variance. Calculating these values provides us with a
scalar at each voxel. We can then map these scalars to color and
opacity using a simple 1D transfer function. This is illustrated in
Figure 2 and Figure 3.

Figure 2: Volume rendered image of ocean data. Normalized stan-
dard deviation is linearly mapped to opacity and color. A rainbow
color map is used. Red opaque regions have high standard devia-
tion, while blue transparent regions have low standard deviation.

4.1.2 Kullback-Leibler Distance

The assumption that a multi-value can be described by a Gaussian
is not always valid. For example, the distribution could be multi-
modal. It is also possible to have two multi-values that have com-
pletely different distribution shapes, but possess similar means and
standard deviations. It would therefore be difficult to discern the
difference between these two multi-values when rendering the vol-
ume based on these statistics alone. A solution to this problem
could be to use a different distance measure that can describe the
similarity or difference between two distributions.

One such measure is the Kullback-Leibler (KL) distance [Kull-
back 1959]. This KL distance is used to describe the similarity (or
lack thereof) between a source distribution P (k) and target distri-
bution Q(k). In this paper, P (k) and Q(k) are evaluated at con-
tinuous locations from a kernel density estimate of the multi-value.
We use the following formula to compute KL distance:

KL(P, Q) =
∑

k

P (k) log
P (k)

Q(k)
(3)

If KL distance equals zero, P (k) and Q(k) are identical; as the
KL distance increases, the similarity between the two distributions

Figure 3: Volume rendered image of brain data. Normalized stan-
dard deviation is linearly mapped to opacity and color. A rainbow
color map is used. Voxels with normalized standard deviation less
than 0.15 were rendered transparent in order to allow a better view
of regions higher in standard deviation.

decreases. Note that KL distance can never be a negative value.
However, since it is possible that Q(k) = 0, P (k)

Q(k)
will thus result

in ∞. We can solve this issue by padding the appropriate Q(k)
with small nonzero values. Distortion of the actual KL distance can
occur, but minimizing the padded values can reduce this.

One way to use this distance is for the user to specify a target
multi-value of interest. Each of the multi-value in the data can then
be compared to the target using KL. This helps us to isolate voxels
that share similar properties as the target without having to rely on,
but still be able to use, parametric statistics. For example, we can
still use standard deviation for assigning color to voxels, but map
opacity to increasing similarity. We can also define a cut-off thresh-
old where voxels containing a similarity value below the specified
threshold are rendered transparently, while the remaining voxels’
opacity is still mapped to a parametric statistic such as standard de-
viation. Figure 4 shows an example of how this is done.

4.1.3 Peak Hunting

We can further describe the shape and structure of a multi-value by
employing a peak hunting algorithm. [Kao et al. 2002] offers a way
to classify and count peaks with a user-adjustable threshold. We
have used their algorithm in this research, allowing us to determine
the following information about each peak: height, width, location
and positional order. These values provide us with more informa-
tion that we can use in building a transfer function. For example, we
can isolate multi-values with a peak height above a certain thresh-
old, or highlight multi-values with a certain number of peaks. The



(a) KL distance with unimodal multi-value (b) KL distance with multimodal multi-value

Figure 4: Volume rendering using a similarity measure to filter out unwanted voxels. In the plots on the left, the red curves are the user-
specified target multi-value, while the black curves are the density estimate of the multi-value at some voxel in the volume. KL distance is
linearly mapped to opacity, where voxels falling below a user-specified threshold are rendered transparently. In (a), we wish to extract regions
with unimodal distributions, while in (b), we wish to extract regions that are multimodal. Comparing these two images with Figure2, we now
have the ability to extract only those portions of the volume that are more interesting.

(a) KL distance with isotropic ADC profile (b) KL distance with anisotropic ADC profile

Figure 5: Volume rendering using a similarity measure to filter out unwanted voxels. In the plots on the top left, the curves are the density
estimate of the ADC profile’s magnitudes. In the plots on the bottom left, the ADC profile is displayed. In (a), we wish to extract regions that
have isotropic ADC profiles, while in (b), we wish to extract regions that are anisotropic. Comparing these two images with Figure3, we now
have the ability to extract only those portions of the volume that are more interesting.

ability to combine these characteristics with other associated scalar
values when assigning color and opacity helps to make interesting
regions of the volume more apparent. Figure 6 shows a rendering
based on the number of peaks at each multi-value.

4.1.4 3D Transfer Functions

Once we have computed the various statistics and measures ex-
plained above, we can apply a transfer function to assign color and
opacity to each voxel. In Figure 2 we used a basic 1D transfer
function, giving increasing opacity to higher values, and applying
a rainbow color map. The downside to this approach is that only
one scalar is used in the transfer function, which does not exploit
the extra information provided by other measures. Here, we experi-
mented with 3D transfer functions similar to [Djurcilov et al. 2001;
Kniss et al. 2003].

Instead of a 2D scatter plot, we use a 3D scatter plot with each
axis representing a different scalar value. For example, in Figure
7, the X-axis represents modality, the Y-axis denotes standard de-
viation, and the Z-axis is arithmetic mean. We can interactively
highlight different regions of the scatter plot and assign any color
and opacity we desire. This method helps us to isolate voxels with
constraints on three parameters.

4.2 Volume Render, then Convert to Scalar

In this section, we introduce a method of volume rendering the
multi-value data first, and then converting to scalar for assign-
ing color and opacity. One such approach involves performing
a weighted binwise addition of the multi-values intersected along
each ray cast into the 3D volume (see Figure 8). We then discuss
three possible weights that can be used to isolate certain features in
the data.

In traditional raycasting, a ray is “shot” into 3D space for each
pixel. Voxels encountered along each ray contribute to the final
pixel color. Each voxel is usually associated with a scalar, but in our
research, a multi-value exists at each location. Previously, we first
reduced each multi-value to a scalar, and then used these scalars to
composite the final image. The result is that we are losing much
of the information about each multi-value when we are composit-
ing just a derived scalar. While similarity measures such as the
Kullback-Leibler distance can tell us certain properties about the
shape of a multi-value, the ideal situation would be to composite
the actual multi-values so that their shape and structure contribute
to the final pixel color.

The approach that we propose is to compute a weighted bin-
wise addition of the density estimates of the multi-values met at
each pixel. We now describe the combination process, followed by
explanations of possible weights that would be useful in isolating
features in the volume.



Figure 8: Illustration of multi-values encountered by a view ray. The top row represents a traditional scalar volume rendering. The bottom
row shows what happens when we wish to volume render multi-valued data. For a ray cast into the volume at pixel coordinates (x, y), we
encounter n multi-values. The multi-values Mi,x,y are summed binwise, with a weight wi corresponding to each multi-value. The result is
a final multi-value Fx,y . Volume rendering the actual multi-values, rather than converting the multi-values to scalars first, helps retain more
information about each multi-value’s structure.

Figure 6: Volume rendering using a transfer function based on
modality (number of peaks) of each distribution. Unimodal multi-
values are characterized by the dark blue area. They were given
lower opacity to allow a clearer view of the multimodal multi-
values in the central portion of the volume.

4.2.1 Technique

It is important to note that when performing the binwise addition,
we use a density estimate of the multi-value instead of the actual
multi-value. Before we explain our combination algorithm, we first
provide the following definitions:

1. Let (x, y) be the current pixel coordinates of the ray we are
casting.

2. Let n be the number of voxels (and thus, the number of multi-
values) encountered along the ray.

3. Let Mi,x,y(vi,1, vi,2, vi,3, ..., vi,k) be the i-th multi-value
found at pixel coordinate (x, y). Let k be the number of sam-
ples in the density estimate, and let vi,j be the j-th sample
associated with the i-th multi-value.

4. Let wi be the weight associated with the i-th multi-value.

Figure 7: Volume rendering using a 3D scatter plot transfer func-
tion. The image on the left shows the 3D scatter plot with the red
axis corresponding to the modality of each multi-value, the green
axis denoting standard deviation, and the blue axis representing
arithmetic mean. A lower opacity was given to the more abundant
white region which corresponds to voxels with a lower modality.
The green regions denote areas with higher modality.

5. Let Fx,y(r1, r2, r3, ..., rk) be the final combined multi-value
at pixel coordinate (x, y). Let k be the number of samples in
the multi-value, and let rj be the j-th sample.

Our basic equation for the weighted binwise addition is then:

Fx,y =

n∑

i

wiMi,x,y (4)

where for each rj , j = 1...k

rj =

n∑

i

wivi,j (5)

The end result is a 2D array of multi-values that we can then
compute various metrics of, and apply a transfer function based on
those computed values. The weight wi can be a precalculated scalar
associated with the multi-value, such as the standard deviation or
modality mentioned in previous sections. We now look at different
possible measures that we can use to weight the multi-values along
each ray.

4.2.2 Standard Deviation

Standard deviation is a statistic used to measure the dispersion or
variation in a distribution. In our ocean data, the highest fluctuation
in sound speed values occurred along the shelf break, which is situ-
ated along the curved region running across the center of the image



in Figure 9. The surrounding water showed relatively consistent
sound speeds by comparison.

Naturally, assigning greater weight to the multi-values with
higher standard deviations gave greater prominence to voxels along
the shelf break, denoted by the red-pinkish area. The resulting 2D
array of multi-values can then be assigned color and opacity ac-
cording to standard deviation as in Figure 9.

4.2.3 Similarity

Weighting by similarity to a target multi-value is an efficient means
of isolating only certain multi-values of a desired shape. This
method gives us even greater flexibility because instead of just
weighting by a standard deviation or the number of peaks, we can
specify an exact multi-value to compare against. For the similarity
measure, we use the KL distance described earlier.

Figure 10 shows sample renderings of the ocean data when we
compare each multi-value to a unimodal multi-value and use the
corresponding similarity value as the weight. We see the advantage
of our multi-value combination method, since we see a separation
among unimodal multi-values that was not evident before. The red-
pinkish region at the top of the volume represents a unimodal area
with a high standard deviation. The yellow-greenish area at the bot-
tom denotes similarity to a unimodal multi-value, but with a lower
standard deviation. We also see a faint, almost transparent blue
curved region running through the center of the volume, which is
the shelf-break. This means the shelf-break differs in shape from a
unimodal multi-value.

4.2.4 Peak Information

The modality, or number of peaks in a distribution, can also be used
to weight the multi-values. A complication that we encountered
was that the more interesting but rare multimodal multi-values were
overwhelmed by an abundance of unimodal multi-values. During
the computation of the final multi-value Fx,y , the contribution of
unimodal voxels outweighed the multimodal, resulting in a uni-
modal Fx,y . To combat situations like this, it is necessary to scale
down the weight of the overwhelming multi-values.

In this case, we scaled down the weight of unimodal multi-values
by a factor of 100. The result can be seen in Figure 9. Not surpris-
ingly, the multimodal multi-values are populated in the shelf break
region, where standard deviation is higher.

As mentioned before, the peak hunting algorithm that we imple-
mented also gives us additional information other than the number
of peaks. For example, we can discern the location of the peak’s
apex within the multi-value. The location of the peak’s apex de-
notes the most frequently occurring value in the multi-value. This
criterion can also be used to weight the multi-values during the
combination process. However, in the ocean data, the apex loca-
tions among unimodal multi-values are so consistent that practically
the same image is rendered when weighting by modality. The same
situation applies to other peak measures such as height and width.

4.2.5 Gradient

A popular technique in volume rendering is to compute the gradi-
ent at each voxel. The gradient is useful because it provides insight
into regions with the highest change. Calculation of the gradient in
the scalar case is straightforward. With multi-values, gradient cal-
culations can be used to tell us where there are significant changes
in the shape of the distributions.

For interior voxels, central differencing can be used to calcu-
late gradients; while forward differencing cab be used for boundary
voxels. (see Figure 11).

To calculate gradients of voxels with multi-values, we can use
the KL distance mentioned earlier. Since t, b, l, r, n, and f are now

Figure 11: Illustration of the relative locations of the voxels for
computing the gradient. Voxel v is the location we want to find the
gradient of, and t, b, l, r, n, and f are its neighboring voxels.

multi-values instead of scalars, we calculate KL distance instead of
differences. So, for interior voxels, ∆x, ∆y, and ∆z become:

∆x = KL(l,r)
2∆

∆y = KL(t,b)
2∆

∆z = KL(n,f)
2∆

While for boundary voxels, we have:

∆x = KL(r,v)
∆

+ KL(l,v)
∆

∆y = KL(t,v)
∆

+ KL(b,v)
∆

∆z = KL(n,v)
∆

+ KL(f,v)
∆

The gradient is then just the sum of δx, δy, and δz: We then use
the gradient as a weight when computing our binwise summation
of the multi-values.

∇v = ∆x + ∆y + ∆z (6)

4.2.6 Area

One metric that describes the shape of a multi-value, like similar-
ity and modality, is the area under the distribution representing the
multi-value. For probability distributions, the area would be one.
But for the combined, weighted multi-values along the view ray,
the area can change. The area can be computed in many different
ways using a number of approximation methods. We used a sim-
ple trapezoidal approximation for various implementation reasons.
Figure 13 shows two volumes weighted by area.



(a) Standard deviation-weighted volume (b) Modality-weighted volume

Figure 9: Raycast renderings of a standard deviation-weighted volume on the left, and a modality-weighted volume on the right. Both are
assigned color and opacity according to a linear map of standard deviation, illustrated at the bottom of each image. In (a), the shelf break is
denoted by the reddish area, having high standard deviation. We also see the shelf break in (b), where the red and yellow regions have higher
modality (number of peaks), and higher standard deviation as well.

(a) Unimodal similarity-weighted volume (b) Multimodal similarity-weighted volume

Figure 10: Raycast renderings of similarity-weighted volumes. The volume on the left was weighted by similarity to a unimodal multi-value,
while the volume on the right was weighted by similarity to a multimodal multi-value. Both are assigned color and opacity according to a
linear map of standard deviation, illustrated at the bottom of each image. In (a), we can see a transparent curve along the center, where the
shelf-break is located. This means the shelf-break is least similar to a unimodal multi-value, while the surrounding areas are most similar.
We note that the upper half has much higher standard deviation than the lower half, which is not evident in the other volume rendering
methods we have discussed. In (b), we see a red curved region running through the center, meaning the shelf break is similar to a multimodal
multi-value, and has high standard deviation. The image in (b) looks fairly close to the standard deviation-weighted volume, but provides
sharper definition to the shelf break.



(a) Gradient-weighted volume #1 (b) Gradient-weighted volume #2

Figure 12: Raycast renderings of gradient-weighted volumes. The volume on the left was assigned color and opacity according to a linear
map of area. The volume on the right was assigned color and opacity according to a linear map of standard deviation. In (a), we see better
isolation of the shelf break from the rest of the volume. The red and yellow areas denote regions of rapid change and increased area (under
the multi-value curve). In (b), we see that some areas along the shelf break, although having high area, have lower standard deviation.

(a) Area-weighted volume #1 (b) Area-weighted volume #2

Figure 13: Raycast renderings of area-weighted volumes. The volume on the left was assigned color and opacity according to a linear map
of area. The volume on the right was assigned color and opacity according to a linear map of standard deviation. In (a), we see that the areas
are high in the top portion, with a smaller region below with low area. In (b), we see better separation along the shelf break. The top half has
high area and high standard deviation, while the lower half has high area but lower standard deviation.



5 Results

In Figures 2 and 3 we computed the standard deviation on each
multi-value. In Figure 6 we found the number of peaks in each
multi-value’s density estimate. All three images are examples of
extracting one scalar per multi-value, and then using those scalars
to determine color and opacity. For the ocean dataset, these meth-
ods helped to define the curved shelf break in the center region of
the volume. For the brain dataset, computing the standard devi-
ation of each multi-value proved useful in highlighting anisotropic
regions. Isotropic ADC profiles have a spherical shape, meaning all
55 directions share a consistently similar magnitude, and thus have
low standard deviation. Since anisotropic ADC profiles have a mix
of high and low magnitudes to comprise a peanut shape, standard
deviation is higher. For these methods, only one parameter was
used in each case.

In Figures 4 and 5 we combined another variable into the render-
ing. We computed the similarity between each multi-value and a
target multi-value. Multi-values whose similarity fell below a cer-
tain threshold, i.e. not similar enough, were made transparent. In
Figure 4, the image on the left consists of multi-values which are
most similar to a unimodal multi-value. Note the absence of the
center region. We see this appear in the right image, where we
isolated multimodal multi-values. This suggests that multi-values
along the shelf break are mostly multimodal, while the rest are uni-
modal. We can also infer that the unimodal multi-values have fairly
consistent standard deviations, as all of them share the same dark
blue color. The multimodal multi-values, on the other hand, show a
wider distribution of standard deviation values, denoted by the red,
yellow, and green areas.

In Figure 5, we wished to isolate regions of isotropy and
anisotropy. Through probing various points in the volume, we dis-
covered that isotropic regions were denoted by a unimodal multi-
value whose peak was relatively high. The image on the left shows
the multi-value, the corresponding spherical ADC profile below,
and the resulting volume with isotropic regions given high opac-
ity, while anisotropic voxels are made transparent. The signature
of anisotropic regions, on the other hand, was illustrated by a bi-
modal multi-value. The taller peak represents the higher frequency
of smaller magnitudes (located near the center of an anisotropic
voxel’s peanut shaped profile), while the smaller peak represents
the lower frequency of higher magnitudes (the elongated ends of
the peanut). While we were able to see a basic structure of the
white matter tracts in Figure 3, using a similarity measure provides
us with a more accurate and defined image. We were unable to suc-
cessfully separate voxels with two fibers intersecting from voxels
with a single fiber running through it. This is because the density
estimates for these two cases were too similar to each other, and KL
distance was not sensitive enough to pick up on their slight differ-
ences.

In Figure 7, we illustrate a way to directly assign color and opac-
ity to the computed scalars using a 3D scatter plot. The user can
draw a 3D box around a group of data points and assign any color or
opacity to only those points. The red axis corresponds to modality,
the green axis denotes standard deviation, and the blue axis repre-
sents arithmetic mean. The greenish areas in the rendered volume
show the shelf break having higher modality and standard devia-
tion, while the mean is fairly consistent regardless of spatial loca-
tion.

In Figures 9, 10, 12, and 13, we provide example renderings
from our multi-value combination method. In Figure 9, we see
standard deviation-weighted and modality-weighted volumes, both
with color and opacity linearly increasing with standard deviation.
The shelf break predictably has higher standard deviation, illus-
trated by the red curved region. The modality-weighted volume
also isolates the shelf break multi-values and tells us that they are

generally multimodal.
Figure 10a shows an image produced from a volume weighted

by similarity to a multimodal multi-value, with color and opacity
determined by standard deviation. It appears similar to the stan-
dard deviation-weighted volume in Figure 9a, but provides better
definition of the reddish shelf break. The volume in Figure 10b is
weighted by similarity to a unimodal multi-value, with color and
opacity also increasing linearly with standard deviation. The shelf
break is of course more transparent than the rest of the volume,
but what is most interesting is that the top half has much higher
standard deviation than the lower half. This separation among uni-
modal multi-values was not evident before in Figure 2 or 4, where
we converted the multi-value data to scalar prior to volume ren-
dering. We now see the advantage of our multi-value combination
method, as we can render the volume of multi-values before con-
verting the data to a scalar form. Our technique enables each multi-
value itself, rather than a scalar representative, to contribute to the
final rendered image. Moreover, we can combine different weights
and transfer functions to render our volume with a rich amount of
information.

Figure 12 shows two volumes weighted by gradient magnitude.
The shelf break shows a region of higher change among multi-
values. The color and opacity in the left image is determined by the
area under each multi-value density estimate, while the right image
is colored according to standard deviation. We see that multi-values
along the shelf break have high area denoted by the red-yellowish
blobs in the left volume, but not necessarily as high standard devi-
ation, since those same areas are more green in the right image.

Figure 13 shows two volumes weighted by area, with the left
one colored by area, and the right one colored by standard devia-
tion. We see that although the area is fairly high for a majority of
the volume, standard deviation is high mostly for the top half above
the shelf break. Note the grainy texture of both volumes, and note
the similar appearance of Figure 13b to Figure 10b. This suggests
that although unimodal multi-values have smooth transitions among
standard deviation values, the area varies much more from voxel to
voxel. We can also conclude that the upper half above the shelf
break is a region of high area and standard deviation, but exhibit
a unimodal shape. The bottom half is unimodal as well, but has
lower standard deviation and area. This example again illustrates
the power of rendering a volume using our weighted binwise addi-
tion of multi-values, prior to converting the multi-values to scalars
for assigning color and opacity. We are able to combine various
weights and measures to draw the most conclusions about the data.

6 Implementation and Performance

The images in Figures 2 to 7 were rendered using a 2D texture map-
ping approach. Texture stacks are axis-aligned, and so the rendered
stack depends on the current viewpoint. Alpha blending is used
to composite the textures. Because we are using equipment with
hardware-accelerated texture mapping, the volume is fully interac-
tive in that it can be rotated and zoomed with no perceived delay.
Pre-processing was done to reduce the multi-values first into scalar
statistical measures; this step took less than 5 seconds.

Renderings involving the combination of different multi-values
were drawn using a software-based raycasting approach. As a re-
sult, performance drops significantly, with render times dependent
on viewpoint and the number of voxels intersected along each ray.
Average render times hovered around five minutes on a Pentium 4
3.0 Ghz machine with an NVidia GeForce4 MX440 graphics card.
With the recent attainment of newer graphics hardware, we now
have the ability to considerably reduce rendering times by using
hardware-supported 3D texture maps and fragment shaders. Unfor-
tunately time did not allow for this newer implementation, but we
hope to achieve this in a future revision of this paper.



7 Conclusions and Future Work

We have presented several methods of direct volume rendering 3D
multi-valued data. First, we used basic parametric statistics such as
arithmetic mean and standard deviation to summarize each multi-
value. Since these measures cannot adequately distinguish two dif-
ferently shaped multi-values from each other, we employed a shape
descriptor approach. Kullback-Leibler distance helped to define the
similarity between the volume’s multi-values and a target multi-
value, and a peak hunting algorithm gave us information on the
multi-value’s modality.

We also explored a way to delay the conversion from multi-value
to scalar as late as possible in the volume rendering pipeline, so
that each multi-value – rather than a scalar associated with it –
could contribute to the final image. The idea involved perform-
ing a weighted binwise addition, and results helped to highlight the
interesting features of the volume.

In some of the renderings, a voxel’s spatial location relative to
other voxels is difficult to discern due to the nature of direct volume
rendering. In the future we plan to implement shading techniques to
enhance the visual structure of the volume. We plan to improve on
our current binwise addition method by applying the transfer func-
tion after each ray-cast step, rather than applying it after the entire
ray-casting process. This should alleviate the problem of unimodal
multi-values polluting the final image, and reduce the chance of in-
consistent results. The recent acquiring of a newer graphics board
will also allow us to use 3D textures to manage the brain data more
easily, since previous memory limitations have prevented us from
performing the binwise addition process on the data. More impor-
tantly, now that we have methods for volume rendering multi-value
data, we will share the results and obtain feedback on their utility
and improvements from our science colleagues.
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