
Interface Building for Software by Modular
Three-Valued Abstraction Refinement

Pritam Roy
Computer Engineering Dept, UC Santa Cruz, Santa Cruz, CA, USA

Sept 2008
Technical Report No. UCSC-SOE-08-19

School of Engineering, University of California, Santa Cruz, CA, USA

Abstract

Verification of software systems is a very hard problem due to the large size of program state-space.
The traditional techniques (like model checking) do not scale; since they include the whole state-space
by inlining the library function codes. Current research avoids these problem by creating a lightweight
representation of the library in form of an interface graph (call sequence graph). In this paper we in-
troduce a new algorithm to compute a safe, permissive interface graph for C-type functions. In this
modular analysis, each function transition is summarized following three-valued abstraction semantics.
There are two kinds of abstraction used here. The global abstraction contains predicates over global
variables only; however the local abstraction inside each function may also contain the local variables.
The abstract summary needs refinement to guarantee safety and permissiveness. We have implemented
the algorithms in TICC tool and compared this algorithm with some related interface generation algo-
rithms. We also discuss the application of interface as an offline test-suite. We create an interface from
the model program (specification) and the interface will act as a test-suite for the new implementation-
under-test (IUT).

1 Introduction

Verification of software systems is a very hard problem due to the large size of program state-space.
Most software programs contain library functions and these kind of functions are examples of open
systems. The verification of such open systems becomes infeasible due to two main problems. Firstly, in
order to verify a given program one needs to inline the library function code and it increases the space
complexity of the verification algorithms. Current formal techniques like model-checking can not handle
the large state-space generated from the program variables. The second option is to verify the library
functions a priori so that there is no need to inline them. For this purpose, most of the time a small code
containing a sequence of library functions calls(called client) is written. The client code invokes the
library functions to close the open system. The library functions are impossible to verify in the absence

of exhaustive client program. Hence most of the verification approaches plug-in a client code to close
the open-system.

1.1 Interface and Properties

The current research [9, 1, 3] avoids these two problems by applying modular verification techniques
which builds a small call sequence graph, called interface representing union of all client programs. The
interface contains all possible call sequences which leads the library to error or illegal states. Similarly,
the interface should contain all possible call sequences which avoids the error states. Henceforth con-
strains on the use of the library function calls from outside and the user can distinguish the legal call
sequences from the illegal ones by simply looking at the interface. There are two immediate benefits
of using the interfaces. Firstly, these interfaces are light-weight representation of the libraries and the
implementation of the library functions can be replaced by the interface. Secondly, the interfaces can
be constructed without the help of any client program. The interface should be safe i.e. all illegal call
sequences (which leads the library to the error states) will be present in the interface. The interface graph
should be permissive i.e. all legal sequences will be present in the interface.

1.2 Related Work

However, there are some challenges in building succinct interfaces. The interface size can become
exponential in terms of number of variables. A symbolic representation and abstraction techniques
partition the state-space into a small number of regions where every region represents one node of the
interface graph. Some researches apply these abstraction and symbolic techniques to obtain a small but
safe and permissive interface.

The work by Alur et. al. ([1]) uses Angluin’s learning algorithm L* to create an interface. The
algorithm learns the interface language by asking membership and equivalence queries to teacher (here
program). The generated interface is safe and minimal; but not permissive. To handle big case studies
predicate abstraction has been used, however the user need to provide the predicates. There is no auto-
matic abstraction refinement. The algorithm returns minimal size interface if the algorithm is not hit by
timeout. Experimental results show that even in small examples timeout occurs. The CEGAR approach
by Henzinger et. al. ([9]) creates a safe and permissive interface. The size of the interface can be big
enough depending on the chosen counter-example. The direct approach by Beyer et. al. ([3]) creates an
interface which is safe and permissive. This approach does not use abstraction and hence the interface
can become very large.

1.3 Contribution

Unlike the related work, our work can also be used in unstructured or non-object oriented (C style)
functions. In an object-oriented framework every class variable is accessible to every class method
and can be a global variable to the class method. Instead we assume that each function may contain
several local variables in addition to those global variables. Hence, we have more general platform to
compute an interface. Each of these functions can also have several sequential updates of variables, call
to other functions even recursive calls to themselves. However, we compute the interface including only
functions accessible to the user level.

2

In the first stage of three stages algorithm, every C library function is parsed by CIL (C Intermediate
Language)[11] and converted into TICC [4] input language. This language syntax is similar to the
guarded-update language. We have implemented the next two stages in this Multi-valued Decision
Diagram [10]-based symbolic tool TICC. The second stage computes the transition summary of each
function. This modular algorithm handles each function separately including local variables within the
scope. However, the space complexity of function summary becomes a bottleneck in order to compute
big functions which may contain large number of guarded-updates. Hence, we employ three valued
abstraction refinement schemes in addition to symbolic techniques. The abstraction in summarization
ensures small size; whereas successive refinement of the abstract states fine tune the abstraction to obtain
the safety and permissiveness. In the last stage, an interface graph is built from the abstract set of states.
We show different stages of building a symbolic safe and permissive interface in the following example.

Example 1 (Motivating Example) Figure 1(a) defines a stack data-type stackT and two functions
push and pop. The data type stackT has an array of integers el of size MAX and an integer showing
the top of the stack. The function pop returns error when the stack is empty i.e. top is zero. The function
push returns error if the top is equal to MAX . Otherwise copies the input value sd into the el array at
address top. The top is incremented later. Figure 1(b) shows how the C code is converted into guarded-
update rule in the next stage. The global variable err denotes the error in the library and the library
goes to error state when err is set to 1. Figure 1(c) shows the interface graph from the set of rules. The
initial state of the interface graph is state 1 where the stack is empty. A call to pop function from the
initial state will move the library into an ERROR state. Similarly calling push form state 3 will be an
error due to full stack. We can note that the interface can create many legal as well as illegal sequences
of stack functions. To check each of them we otherwise need a set of client programs.

#define MAX 3

typedef struct {

} stackT;

 int el[MAX] // array based
 int top // range : 0 to MAX

void Pop(stackT * st){

 fprintf (stderr, "stack empty");
 exit(1);

 }

}

void Push (stackT * st, int sd){

 fprintf(stderr, "stack full");

 exit(1);
 }

 st.el[top] = sd;

}

 if (st.top == 0){

 st.top = st.top − 1;

 if (st.top == MAX){

 st.top = st.top + 1;

(a) Code

s=0 & top >= 2 ==> s’=1 & err’ = 1;

var err : [0..1]

module pop:
 var s : [0..1]
 initial : s =0
 output pop1:{
 s = 0 & top > 0 ==> s’ = 1 & top’ = top −1;
 s = 0 & top = 0 ==> s’ = 1 & err’ = 1;
 }
endmodule

module push:
 var s : [0..1]
 initial : s = 0
 output push1:{

s=0 & top = 0 ==> s’=1 & el_0’ = sd & top’ = top +1;

s=0 & top = 1 ==> s’=1 & el_1’ = sd & top’ = top +1;

var el_0, el_1, el_2 : [0..3]
var sd, top : [0..3]

}

endmodule

(b) Rules

 1

 2

push

 ERROR

pop

pop

 3

push pop

push

(c) Rules

Figure 1. Stack Example

Finally we discuss the applications of the safe and permissive interface graph. Firstly, any given client
program can immediately verify with the help of the interface graph whether the function call sequence
in the client leads the library to some error states. Secondly, the interface can actually provide an offline
test-suite for a set of functions. Often the source of the library is unknown; however one can create a
model program from the available documentation of the functions. The interface graph obtained from
the model program can be used to test the implementation-under-test (IUT).

3

2 Preliminary Definitions

In this section we provide preliminary definitions and the background work.

2.1 A Transition System Model for Libraries

A software library module Lib = (FG, VG, E, I) contains a set of functions FG and a set of global
variables VG. The global variables VG constitute variables declared outside any of the functions in FG.
The global state space SG can be defined with respect to different valuations of global variables VG. The
variable err ∈ VG is a special global variable in Lib which can take two values 0 and 1. The library
reaches an error set E ⊆ SG when the global variable err is set to 1. Moreover, the error set is a sink set
of the library. The initial configuration of the library is given by set I ⊆ SG.

Each function f ∈ FG also contains a set of local variables V f
L . The scope of any local variable

v ∈ V f
L is function f . There is a special local variable, called s, in V f

L which corresponds to the relative
location in the function with respect to the first location. For a function f , all variables V f can be given
as V f

L ∪ VG and function state-space Sf can be defined with respect to different valuations V f . We note
that each global set sG ∈ SG is a non-empty subset of sG ⊆ Sf function state-space. The initial local
state set If

L ⊆ Sf denotes the entry point to the function f . All variables of the library Lib is denoted by
V and is given by V :=VG ∪ ∪f∈FG

V f
L . The total state-space S can be defined with respect to different

valuations of all variables V .
Each function f ∈ F contains some number (say k) of guarded-update rules. For i-th such rule, its

condition part i.guard ⊆ Sf can be given as a set of function states, and the assignment part i.update ⊆
Sf ×Sf can be given as the set of transitions. For a set X ⊆ Sf , i.update(X) : Sf denotes the next state
of X in the i− th update rule. The conditional transition of rule i given as

i.trans:={(s1, s2) ∈ Sf × Sf | s1 ∈ i.guard, s2 ∈ i.update(i.guard)}.

The transition relation Transf ⊆ Sf × Sf can be given as the union of rules corresponding to the
function f i.e. Transf := ∪i=1...k i.trans. We will use Transf (t) ⊆ Sf to denote the successor set of
state t ∈ Sf .

For a binary relation on∈ {=,≤,≥} and a state-space S, the set S |vona denotes the set where the value
of a variable v related to value a with relation on. For a set X ⊆ Sf , we define support(X) ⊆ Vf as the
set of variables whose value change result in a value change of X . Formally we can write,

support(X) := V f \ {v ∈ V f | ∀s, s′ ∈ Sf .s =v s
′ → s ∈ X ⇐⇒ s′ ∈ X}

where s =v s′ implies that s = s′ except for a variable v ∈ V f . Interface graph is an input-enabled
interface automata. Given a Library Lib = (FG, VG, E, I) and global state-space SG, we can define
interface-graph or call sequence graph as IG = 〈N, T, Te, In, Er〉 where,

• the nodes N ⊆ 22SG correspond to the set of states,

• the set In ⊆ N denotes the initial nodes corresponding to I ,

• the set Er ⊆ N denotes the error nodes corresponding to E,

• the set T ⊆ N × FG × (N \ Er) denotes good transitions.

• the set Te ⊆ N × FG × Er denotes erroneous transitions.

4

2.2 Three Valued Abstraction

For a library L = (FG, VG), a function f ∈ FG and a function state-space Sf , an abstraction R ⊆
22

Sf \∅ is defined such that each abstract state (or region) r ∈ R is a non-empty subset r ⊆ Sf of concrete
states. We require

⋃
R = Sf . For subsets T ⊆ Sf and U ⊆ R, we write:

U↓ =
⋃

u∈U u T↑mR = {r ∈ R | r ∩ T 6= ∅} T↑MR = {r ∈ R | r ⊆ T}

Thus, for a set U ⊆ R of abstract states, U↓ is the corresponding set of concrete states. For a set
T ⊆ R of concrete states, T↑mR and T↑MR are the set of abstract states that constitute over and under-
approximations of the concrete set T . We say that the abstraction R of a state-space Sf is precise for a
set T ⊆ Sf of states if T↑mR = T↑MR .

2.3 µ-Calculus

We will express our algorithms for solving reachability on the function state space in µ-calculus
notation [8]. Consider a procedure γ : 2V f 7→ 2V f , monotone when 2V f is considered as a lattice with
the usual subset ordering. We denote by µZ.γ(Z) (resp. νZ.γ(Z)) the least (resp. greatest) fix-point
of γ, that is, the least (resp. greatest) set Z ⊆ V such that Z = γ(Z). As is well known, since V is
finite, these fix-points can be computed via Picard iteration: µZ.γ(Z) = limn→∞ γ

n(∅) and νZ.γ(Z) =
limn→∞ γ

n(V).

2.4 Predecessor Operators

For a library function f and a function state-space Sf , we define the one-step predecessor operator
Pref,1 : 2Sf 7→ 2Sf as follows, for all Y ⊆ Sf :

Pref,1(Y) = {x ∈ Sf | Transf (x) ∩ Y 6= ∅} (1)

We define the multi-step predecessor operator Pref,∗ : 2Sf 7→ 2Sf as follows, for all Y ⊆ Sf :

Pref,∗(Y) = {s ∈ Sf | s ∩ (µX.(Y ∪ Pref,1(X))) 6= ∅} (2)

Intuitively, the set Pref,∗(X) consists a subset of Sf from which one can reach to X by applying zero
or more transitions within the function f by applying rules one after another.

For the abstract state space R, we introduce abstract versions of Pref,R
· . As multiple concrete states

may correspond to the same abstract state, we cannot compute, on the abstract state space, a precise
analogous of Pref,R

· . We define two abstract operators: the may operator Pref,R
m : 2R 7→ 2R, which

constitutes an over-approximation of Pref , and the must operator Pref,R
M : 2R 7→ 2R, which constitutes

an under-approximation of Pref [6]. We let, for U ⊆ R:

Pref,R
m (U) = Pref,∗(U↓)↑mR Pref,R

M (U) = Pref,∗(U↓)↑MR . (3)

The fact that Pref,R
m and Pref,R

M are over and under-approximations of the predecessor operator is made
precise by the following observation: for all U ⊆ R we have

Pref,R
M (U)↓ ⊆ Pref,∗(U↓) ⊆ Pref,R

m (U)↓ (4)

5

. For an integer k ≥ 1 and function state-space Sf , we recursively define the k-step post operator
Postf,k : 2Sf 7→ 2Sf as follows, for all X ⊆ Sf :

Postf,1(X) = ∪x∈X Transf (x) (5)

Postf,k(X) = Transf (Postf−1,k(X)) (6)

For an abstract state space R ⊆ 22
Sf , we define the abstract post operator Postf,R

m : 2R 7→ 2R as
follows, for all X ⊆ R:

Postf,R
m (X) = {r ∈ R | r ∩ Postf,k(If

L ∩ (X↓)) 6= ∅} (7)

where k is the smallest integer to satisfy Postf,k+1(If
L ∩ (X↓)) = ∅. Intuitively, the condition implies

that no new states are added in the k+ 1-th iteration, hence the last updated value when f returns can be
obtained by applying Postf,k to a subset of X↓ corresponding to the function’s initial state set If

L.

3 Translation from C to Guard-Update Rules

In this section we discuss our procedure to convert C functions into the ”sociable interface automata”
[5] format. This format is contains several guarded-update rules and is the input format of our symbolic
tool TICC. In our work the front-end and back-end are separate. Hence one only need a different front-
end to parse functions from any other language (like Java/C++) to generate the TICC input format
models. The next stages of the algorithm can reuse the out tool TICC to build interface graphs.

The C functions are fed into CIL[11] tool which parses C source code and returns the control flow
graph. The control flow graph contains block structure as nodes and the conditions as the transitions. We
have modified the control flow graph for each function into set of guarded-update rules. The conditions
are represented as guards and the assignments are represented as updates. The special local variable s
defines the location of current block. For a variable v, the primed variable v′ denotes the v in the next
sequential step. When the translator encounters a critical error condition (e.g. call to exit(1)) in the
control flow graph; the global variable err is set to 1 in the translated library.

• Control Flow Structures: The C source like ”if (a =0) {b=0;} else {b=1;}” is converted into the
following rules:

a = 0, s = 0 ==> b′ = 0, s′ = 1;

a! = 0, s = 0 ==> b′ = 1, s′ = 1

The switch and loop (like while, for) structures can be handled similarly.

• Variables and Data Structures: Currently the algorithm supports unsigned integers with small
number (e.g. 4) of bits. The fixed-size arrays and structures are flattened in the translation process.
In the Integer Stack example in Figure 1(b) shows how an array of size 3 is translated as 3 integer
variables. The structure elements are also flattened in the example. Currently our translation does
not directly handle pointers and recursive data types. However we can manually translate the
pointers into integers only if we know that the control flow of the function does not depend on the
value at its pointer location.

6

• Function Calls: Currently in order to compute the abstract transition for function f , we inline all
the intermediate function calls inside the body of f . In the guarded-update rule semantics, the
rules of the intermediate functions are explicitly added to the rules of f . An explicit stack data
structure is added to store the return address and the context variables. This trick can be applied
to one function calling another function as well as the non-tail recursive function calls. The tail-
recursive function calls can be converted into loops and do not need the stack. In the Appendix,
we show a complete translation of a recursive c function.

4 Algorithm

In this section we assume that the C functions are already parsed by CIL and modified into a software
library module Lib = (FG, VG, E, I). We describe the basic algorithms for abstract refinement and
building interface from a given libraryLib. We also provide some implementation specific optimizations.

4.1 Basic Algorithm

Algorithm 1 computes the interface for library Lib = (FG, VG, E, I). The algorithm takes as input
the library Lib, a set of functions F ⊆ FG, an abstraction R. The first abstraction is obtained from the
error set E and initial set I . Let us define r1 = {s ∈ SG | s ∈ E}, r2 = {s ∈ SG | s 6∈ E, s ∈ I} and
r3 = {s ∈ SG | s 6∈ E, s 6∈ I}. For i ∈ {1, 2, 3}, if ri is non-empty, then we add the set to R as one of
the initial abstract states. The algorithm 1 calls AbsRef for every function f ∈ F separately to obtain a
refined abstraction R w.r.t. the function. The procedure BuildInterface returns an interface graph IG
given the set of abstract states.

Algorithm 1 Explore(Lib, F,R)
Input: a library Lib = (FG, VG, E, I), set of functions F , abstraction R
Output: Interface Graph IG

1. for each f ∈ F do R:= AbsRef (R, f, E) end for
5. IG := BuildInterface(R,F, Lib)

Modular Verification : Each function is considered separately in AbsRef (Algorithm 2). Since, the
interface graph is an input-enabled interface automata, every abstract state in the function can be checked
separately for error reachability in one step function transition. The algorithm starts with the initial
abstraction R and the set of useful variables Vabs are obtained from the support set of the abstract states.
The local abstractionRf and global abstractionRG are initialized withR. The must abstraction transition
is computed with respect to Rf and we compute the must predecessor SM of the error set E. The set SM

determines the set of states of the function which eventually reach the error set E. The set Sf
M is subset

of SM corresponding to the initial set of states of the function. One-step concrete pre-image S1 of SM↓
checks whether any new states can be added to SM↓. If S1 \SM↓ is non-empty then the local abstraction
Rf is refined and the loop continues. Otherwise the global abstraction RG is refined with respect to Sf

M .
The local and global refinements are described in the next paragraph. The algorithm terminates when
each abstract state can either reach E or can not reach E in one function step.

7

Algorithm 2 AbsRef(R, f, E)
Input: Abstraction R, function f , error set E
Output: updated R

1. Vabs := ∪r∈Rsupport(r), Rf :=R
2. loop
3. SM := Pre

f,Rf

M (E); Sf
M := SM ∩ If

L

4. S1 := Pref,1(SM↓)
5. snew := S1 \ (SM↓)
6. if snew := ∅ then RG:=R
7. for each r ∈ R do
8. if (r ∩ Sf

M) 6= ∅ & (r \ Sf
M) 6= ∅

9. RG:=RG ∪ {r1, r2} \ {r}, where r1 := (r ∩ Sf
M) and r2 := (r \ Sf

M)
8. return RG

7. else
8. split including a variable v from {v ∈ (V f \ Vabs) | v ∈ support(snew)}
10. Abstraction Rf is refined for all valuations of v
11. end if

Automatic Refinement : For refinement of the local abstraction Rf , the algorithm finds a variable
v ∈ V f which is not in the set Vabs and is in the support set of S1

m \ SM↓. The variable is added to the
significant set Vabs and a new abstraction Rf is obtained with respect to different valuations of v. The
refinement of global abstraction RG happens after the local abstraction reaches a fix-point and no new
states can be added in the SM set. For each abstract state r ∈ RG have a non-empty intersection with
both Sf

M and ¬Sf
M , then it is split into two states r1 and r2.

Building Interface : Algorithm 3 computes the interface graph from the abstraction R. For the algo-
rithm, a list Q is maintained. the procedure append(Q,X) adds each element x ∈ X at the end of Q.
The procedure member(Q, x) check if x is a member of Q. The procedure removeF irst(Q) removes
the first element from Q and returns the element. The algorithm computes the next symbolic state for
each element in Q by applying Postf,R

m operator. There is an error- edge from the current state curr to
the error state Er when the next state of curr is a part of error set E. Otherwise appends the next state
Q and a new good edge (curr, f, next) is added. The algorithm terminates when the list Q is empty.

Example 2 To illustrate the algorithms defined before, let us revisit the Integer Stack example (Fig-
ure 1). We assume that the guarded-update rules (Figure 1(b)) are converted into a library model with the
set of functions {pop, push}. Let us denote the state-space as S. Figure 2 illustrates the run of the explore
algorithm(Algorithm 1). The initial abstract states r0, r1 and r2 partitions the state-space S into three
regions (Figure 2(a)), where r0 = S |err=1 corresponds to error states, r1 = S |err=0,top=0 corresponds to
the initial states without error states, r2 = S |err=0,top>0 corresponds to the non-initial non-error states.
AbsRef (Algorithm 2) is invoked for pop function, the significant variables are Vabs := {err, top}. In
the first iteration, the must predecessor SM of error state r0 fail to add any new states. However, one
step concrete predecessor of set SM returns a set S1 corresponding to S |pop.s=0,top=0,err=0, where pop.s

8

Algorithm 3 BuildInterface(R,F, Lib)
Input: Abstraction R, a set of functions F , a library Lib = (FG, VG, E, I)
Output: Interface Graph IG = (N, T, Te, In, Er)

1. Q,N, T, Te, In, Er = ∅
2. append(Q, I); append(N, I ∪ E); append(In, I); append(Er,E)
3. while Q is non-empty do
4. curr := removeFirst(Q)
5. for each f ∈ F do
6. next := Postf,R

m (curr)
7. if (not member(N, next)) then append (Q, next); append (N,next) endif
8. if (next ⊆ E) then Te := Te ∪ (curr, f, Er) else T := T ∪ (curr, f, next)endif
9. end for
10.end while

(c)

top =0 top>0

r0

r1 r2

(a)

 err = 0

err = 1

r10 r11 r20 r21

r00 r01

top =0 top>0

(b)

top=2top=1top =0

r20 r21r1

r0

Figure 2. Run of the algorithm Explore on IntStack Example. (a) The initial abstraction (b) The local
abstraction inside function (c) The final global abstraction.

is the local variable s at function pop. The support set of S1 \ SM contains a new variable pop.s which
is in V f , but not in Vabs. The local refinement of Rf adds different valuations of local variable pop.s
(Figure 2(b)). The second digit of each abstract states denotes the value of pop.s in the abstract state.
In the next iteration the must predecessor SM becomes {r10, r00, r01} and no new concrete states can
be added by one step predecessor of set SM . Hence the local abstraction Rf can not be further refined.
The local refinement at Figure 2(b) can not be returned as as the locally added variable pop.s can not
reach outside the scope of function pop. The global set which leads the error set can be given by Sf

M

which is a subset of SM corresponding to local initial state If
L of the pop function i.e. S |pop.s=0. Hence

the final global abstraction RG for pop function is obtained from the initial global abstraction R of the
function and will be refined with respect to set Sf

M and its compliment set. The algorithm returns with
an unchanged global abstraction.

Similarly for the push function the local variable push.s is included in the local abstraction. Even if
no new global variable is added in the refinement, there is a new refinement of the global abstract set r2
with respect to the set of states (where top is 2 and err is 0) which reaches error states in one push call.
The final global abstraction is shown in Figure 2(c). The build interface algorithm (Algorithm 3) starts
with the initial state r1 and adds the edges in the graph (Figure 1(c)) until every node is explored with
respect to all functions.

9

The interface generated by Explore algorithm is safe and permissive by construction. The safety in
ensured by AbsRef Algorithm and permissiveness is ensured by BuildInterface algorithm. The final
abstraction R after calling AbsRef algorithms for each function f ∈ F distinguishes error reaching
regions from the non-reaching ones. In BuildInterface algorithm each function f is applied in each of
the states in the graph obtained by the abstraction R and hence all behaviors are captured in the interface
graph.

Theorem 1 Explore (Algorithm 1) returns a safe and permissive interface.

4.2 Implementation Optimizations

Approximate Abstract Function Summary and Predecessors: For practical purposes, we do not
compute the abstract predecessor operators on the monolithic transition relations. Like [7], Equation 4
holds for approximate operators. The transition for a function f ∈ FG is represented as a number
(say k) of guarded-update rules. For an abstraction R ⊆ 22

Sf , the must and may abstraction of rule
i ∈ {1, . . . , k} can be given as follows:

i.transf,R
m+ := {(r1, r2) ∈ (R×R) | r1 ∈ i.guard↑mR , r2 ∈ i.update(r1↓)↑mR}

i.transf,R
M− := {(r1, r2) ∈ (R×R) | r1 ∈ i.guard↑MR , r2 ∈ i.update(r1↓)↑mR}

For all j ∈ {m+,M−}, X ⊆ 2R, the approximate transition relation, one step predecessor operator and
multi-step predecessor operator can be given respectively as:

Transf,R
j :=

⋃
i=1...k

i.transf,R
j

Pref,R,1
j (X) := {r ∈ R | Transf,R

j (r) ∩X 6= ∅}
Pref,R

j (X) := {r ∈ R | r ∩ (µY.(X ∪ Pref,R,1
j (Y))) 6= ∅}

. For disjunctive transition relation, the approximate may predecessor operator will be precise; however,
the approximate must predecessor will be under-approximation of the precise one.

Theorem 2 For each f ∈ F , R ⊆ 22
Sf , and X ⊆ 2R, we have

Pref,R
M−(X)↓ ⊆ Pref,∗(X↓) ⊆ Pref,R

m+(X)↓.

Incremental Building of Interface: Algorithm 1 can be used for incremental addition of function
sets; as we may not need to create the interface for all the functions at first. The algorithm returns the
refined interface for the included functions only. The created interface can be used if we want to add
more functions from the library.

Rule Partition for Function One more optimization will be partitioning the rule set of each function
with respect to the abstraction to create less splitting. Computation of each individual rule for must
abstraction can create huge under-approximation; hence may need more splitting.

10

Example 3 In presence of If-Then-Else or Switch constructs in the source code, we may encounter the
following rules after the translation.

r1 : hd = true ==> indata′ = 0;hd′ = false

r2 : hd = false ==> indata′ = 0;hd′ = hd

The abstract set R is defined with respect to different valuations of indata variable. If we consider each
rule separately and apply the must abstraction, we miss the fact that the final value of variable indata
will be 0 and does not depend on the initial value of hd. The must predecessor of S |indata=0 will be ∅ for
both rules since the must abstraction of guards will be empty-set. However, if we combine two rules by
taking union of sets, then the must predecessor of S |indata=0 will be S for the combined rule and there
will not be any further splitting.

The heuristic of rule set partition is obtained from the abstraction itself. If a function f has k rules, then
i-th and j-th rules can be grouped together for an abstractionR if the condition i.guard↑mR = j.guard↑mR
holds.

5 Results

In this section we will provide results of some case studies and compare with the related works.

Data Stream Case Study There is a data stream with a header of length 2h and data of length 2d

where h ≤ d. The program uses d bits to represent the pointer and 1 bit for the ”error”. The boolean
variable isHeader is 1 when in header and is 0 otherwise. There are four functions in the program. The
function FirstHeader and FirstData takes the pointer to the first header and data location respectively.
The function Next moves the pointer within the header or data in a cyclic way. The function Write
results in an error when pointer points to header section. Our algorithm produces the interface shown
in Figure 3(a). The state 1 represents that the pointer in the data part and the state 2 represents that the
pointer in the header part.

Bit Array Manipulator The Bit Array Manipulator has four functions : prev , next, access and modify.
Two global variables ptr of length 2k specify the current location of the pointer. The global Boolean
variable valid denotes whether the pointer is valid. Another Boolean variable err specify the library
error states. The functions next and prev respectively increments and decrements the current pointer
and set the valid flag to true. The functions access resets the valid flag. The function modify return sets
err to true when the valid is false, otherwise sets valid to false. Our algorithm produces the interface
shown in Figure 3(b). The state 1 represents that the valid bit is false and the state 2 represents that the
valid bit is true.

Comparison Figure 4 shows a comparison of our algorithm with the related work on these two ex-
amples. The first two columns show the name and different parameter values of the case-studies. The
next column describes the running time (in milli seconds) of explore algorithm from the parsed guarded-
update rules. The next column represent the number of non-error regions in the interface graph. The

11

 1 firstDatawritenext

 2

firstHeaderfirstData

firstHeadernext

 ERROR

write

(a) Data Stream

 1 access

 2

prev next

 ERROR

modifymodify access

prevnext

(b) Bit-Array-Manipulator

Figure 3. Interfaces

Case Study Params Time (ms) Regions Direct Learning CEGAR
Data Stream h = 2, d = 12 3 2 1028 2 257

h = 4, d = 12 4 2 4112 2 257
h = 13, d = 13 18 2 16384 2 2

Bit Array k = 8 2 2 68 2 2
Manipulator k = 9 4 2 130 2 2

k = 16 8 2 16386 Timeout 2

Figure 4. Results

non-error regions from other three related work are given in the last three columns and the data is ob-
tained from Beyer et. al.’s. work [2]. The results for Direct algorithm show that direct algorithm runs
fastest, but the size of interface graph is exponential in d. We obtain that the CEGAR algorithm provides
minimal graph only when h = d in the Data Stream example. The size of the graph in the CEGAR algo-
rithm depends on the proper representation of variables with Boolean variables. The CEGAR approach
refine by adding a new boolean variable; which has a risk of splitting many abstract states unnecessarily.
In contrast, our algorithm keeps global abstraction separate from local abstraction inside the function
and refines the global abstraction lazily with respect to the final reachable set (Sf

M). Learning algorithm
provides the minimal graph, but slowest of all three approaches. Our algorithm provides the same num-
ber of non-error regions as the learning algorithm. However, we can not compare time due to different
platforms.

6 Application of Interfaces

In this section, we show how a safe and permissive interface can be useful in the verification and
testing of the software programs. The following section briefly describe the modifications needed for
the interface to be compatible with these settings.

12

6.1 Software Verification with Interfaces

Let us assume that we have computed an interface graph for a set of functions. Given a client program
consisting of those functions one can immediately check the client with respect to the interface graph.
The idea would be simulating the actions of the client program into the interface graph and check whether
the library error state (State ”ERROR”) is reached. For example, a client with a single line modify(b)
on the BitArrayManipulator b can be simulated in the interface graph (Figure 3(b)). We can see that
the error state ERROR is reached from the initial state (State 1). There could be an infinite number
of possible clients corresponding to those functions and each of them can be model-checked after the
interface is computed.

6.2 Offline Test Case Generation

In the model-based testing paradigm, an implementation under test (IUT) is checked with respect to a
given model program (a specification of the IUT). Our algorithm can build an interface graph from the
definitions of the functions given in the model program. We can create a C source regression test-suite
from the interface generated from the libraries. However, we need to extend the function calls with the
argument values to create a test-bench for the IUT. For example, Figure1(a) can be generated from the
model program in Figure1(c). If we are given a linked-list implementation of a finite-size integer stack,
we can create an offline test-suite from the interface graph. The testing of the implementation with
respect to the test-suite checks whether the interface goes to the error state if and only if the implemen-
tation goes to the error state. If there is a discrepancy between the behavior of the interface graph and
the code, we understand the implementation source needs further checking.

7 Conclusions

In this section we conclude with the summary of the work and possible future directions. We have
provided a new algorithm for interface synthesis with a local-global abstraction refinement framework.
This framework is can dramatically reduce the state-space of the interface generation by hiding local
variables inside each function. The abstract summarization of the functions provides scalability. The
modular analysis is used to handle each function separately. In our generalized setting any C-style set of
functions can be handled.

The results show that our algorithm provides a safe, permissive and sufficiently minimal (i.e. compa-
rable to the learning algorithms) interface from the set of functions. We have provided the approximate
abstract predecessor operators to handle the state-space inside the function. The interface synthesis
can be incremental : hence one can add new functions to the interface and it may lead to refinements
corresponding to the function.

The interface could be used to immediately verify clients and as offline test-suite for a new untested
implementation. However, the translation engine is very basic and some parts are done manually. In
future we like to work more on covering more aspects (e.g. pointers, recursive data types) of the C
source code such that we can have bigger case studies. We like to see how we can use the shape analysis
algorithms to translate complex data types. We also like to include CIL inside the tool TICC s.t. it can
parse C functions and represent the rules directly in MDD format. We like to implement the back-end
using a combination of MDD and SMT solvers such that the space-space problems can be handled better.

13

References

[1] Rajeev Alur, Pavol Černý, P. Madhusudan, and Wonhong Nam. Synthesis of interface specifica-
tions for java classes. SIGPLAN Not., 40(1):98–109, 2005.

[2] Dirk Beyer, Thomas A. Henzinger, and Vasu Singh. Three Algorithms for Interface Synthesis: A
Comparative Study. Technical report, 2006.

[3] Dirk Beyer, Thomas A. Henzinger, and Vasu Singh. Algorithms for interface synthesis. In
W. Damm and H. Hermanns, editors, Proceedings of the 19th International Conference on Com-
puter Aided Verification (CAV 2007, Berlin, July 3-7), LNCS 4590, pages 4–19. Springer-Verlag,
Berlin, 2007.

[4] L. de Alfaro, B. Ader, M. Faella, A. Legay, V. Raman, P. Roy, and L. Dias Da Silva. TICC: Tool
for interface compatibility checking, 2006. http://dvlab.cse.ucsc.edu/dvlab/Ticc.

[5] L. de Alfaro, L. Dias da Silva, M. Faella, A. Legay, P. Roy, and M. Sorea. Sociable interfaces. In
FROCOS: Frontiers of Combining Systems, Proc. of the 5th Intl. Workshop, volume 3717 of Lect.
Notes in Comp. Sci., pages 81–105. Springer-Verlag, 2005.

[6] L. de Alfaro, P. Godefroid, and R. Jagadeesan. Three-valued abstractions of games: Uncertainty,
but with precision. In Proc. 19th IEEE Symp. Logic in Comp. Sci., pages 170–179, 2004.

[7] Luca de Alfaro and Pritam Roy. Solving games via three-valued abstraction refinement. In CON-
CUR 2007 - Concurrency Theory, 18th International Conference, CONCUR 2007, Lisbon, Por-
tugal, September 3-8, 2007, volume 4703 of Lecture Notes in Computer Science, pages 74–89.
Springer, 2007.

[8] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determinacy (extended abstract).
In Proc. 32nd IEEE Symp. Found. of Comp. Sci., pages 368–377. IEEE Computer Society Press,
1991.

[9] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Permissive interfaces. In ESEC/FSE-
13: Proceedings of the 10th European software engineering conference held jointly with 13th
ACM SIGSOFT international symposium on Foundations of software engineering, pages 31–40,
New York, NY, USA, 2005. ACM.

[10] T. Kam and R. Brayton. Multi-valued decision diagram, 1990. UC Berkeley Electronics Research
Laboratory, Memorandum No. UCB/ERL M90/125.

[11] G. Necula, S. McPeak, W. Weimer, R. To, and A. Bhargava. CIL: Infrastructure for C program
analysis and transformation.

14

Appendix

A C function to compute n-th Fibonacci number is translated into a set of guard-update rules. To
handle the activation stack and store the context of the caller, there is an explicit implementation of
integer stack. The variable nextpc denotes the next value of the location variable after return from one of
the the stack operations. The variable v contains value of input parameter of push and is assigned before
a call to push . v is the output parameter of pop and obtained after returns from pop.

module Fibonacci:
var i,s,top : [0..MAX]
var v:[0..15]
var a0, a1, : [0..15]
var nextpc: [0..31]

output push: {
s=15 & top < MAX ==> top’=top+1 & i’=top & s’=16;
s=16 & i=0 ==> s’=nextpc & a0’=v;
.............
}

output pop :{
s=17 ==> i’=top & t’=18;
s=18 & i=0 ==> s’=19 & v’ = a0;
...........
s=19 & i>0 ==> top’=i-1 & s’ = nextpc

}
...
endmodule

The rule set fib defines the transitions inside the Fibonacci function. The variable res stores the result
when the call returns and tmp1 and tmp2 are two temporary variables. A recursive call to itself is
translated into saving the return address, the current value of n, initializing n for the called function and
a subsequent jump to the initial location of the function.

var n : [0...20]
var res, tmp1, tmp2 : [0..31]
output fib: {

s=0 & n<3 ==> res’=1 & s’=11;
s=0 & n>=3 ==> s’=2;
s=2 ==> nextpc’ = 3 & s’=15 & v’=5;
s=3 ==> nextpc’ = 4 & s’=15 & v’ =n;
s=4 ==> n’ = n -1 & s’=0;
s=5 ==> t’=6 & tmp1’ = res;
s=6 ==> nextpc’ = 7 & s’=15 & v’=9;
s=7 ==> nextpc’ = 8 & s’=15 & v’=n;
s=8 ==> n’=n-2 & s’=0;
s=9 ==> s’=10 & tmp2’= res;
s=10 ==> s’=11 & res’ = tmp1+tmp2;
s=11 ==> nextpc’ = 12 & s’=17;
s=12 ==> n’ = v & s’=13;
s=13 ==> nextpc’ = 14 & s’=15;
s=14 ==> s’ = v;

}

15

