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Abstract

Conditional random fields (CRFs) have been successful in many sequence label-
ing tasks, which conventionally rely on a hand-craft feature representation of input
data. However, a powerful data representation could be another determining fac-
tor of the performance, which has not attracted enough attention yet. We describe
a novel sequence labeling framework for gesture recognition, which builds a su-
pervised CRF and an unsupervised dynamic model on a shared nonlinear feature
transformation neural network. The model is a case of transfer learning that jointly
optimizes two learning tasks together with learning a meaningful feature repre-
sentation of input data. We demonstrate a gesture recognition system that yields a
significant improvement of recognition accuracy over conventional CRFs.

1 Introduction

Motivated by the desire for improved human-machine communication systems, recognizing visual
gestures has been studied by many researchers recently. Due to its dynamic an dependence between
observations over time, gesture recognition has been formulated into a sequence labeling problem
which arises from many scientific fields. There are many works on recognizing head nod [1], eye
gaze behavior [2] [3] [4] and arm gestures [5]. As a well understood and widely used model, Hid-
den Markov models(HMM) [6] have been popular in gesture recognition and general human action
recognition systems. However, HMMs are limited by its strict assumption on the conditional inde-
pendence of input data.

It is widely recognized that the Conditional Random Fields [7] models are very powerful in sequence
learning. CRF have been applied successfully to many sequence labeling tasks such as Natural
Language Processing [8] [9] [10] [11], bioinformatics [12] [13], and computer vision [14] [15] etc.,
because they have good ability of learning the structures and dynamics of sequence data.

However, it is also important to capture the intrinsic representation of the observations of sequences,
on which there is not much attention has been paid. Impropriate features result in bad performance,
even though good models are used. Designing features manually is hard for people and could con-
sume much time on tuning, which could be regarded as a important part of the cost of a learning task,
especially when the problem is complex. How to learn features from data automatically is getting
increasingly interest. The success of other techniques, such as Singular Value Decomposition and
Principle component analysis, demonstrates the powerful of learning hidden representation of the

∗Work done while the author was visiting UC Santa Cruz.
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observations. Unfortunately, little research attention has been paid on learning the hidden represen-
tation in the context of sequence modeling. Besides, data labeling is a widely recognized cost, and
how to learn a sequence model with limited training data is a challenging problem. Many previous
works have been done to solve such problem in tradition i.i.d machine learning tasks. Models that
can utilize unlabeled data have been proposed in recent years.

Motivated by prior work in non sequence modeling tasks, we propose a transfer learning framework
for the sequence models, especially CRF. Our approach is to learn powerful hidden features auto-
matically and utilizing unlabeled sequence data, while retaining the ability of capturing dynamics
of CRF. More specifically, a transformation layer is added to a CRF model to capture the hidden
representation of the input raw vector. As a component of the transfer learning framework, we de-
sign an auxiliary learning task to share the transformation parameters, which give the model much
better ability of generalization. Furthermore, the auxiliary learning task is a unsupervised generative
language model with a similar transformation layer. This enables us to make use of large amount of
unlabeled sequence data. We evaluate the algorithm on continuous gesture data. The performance
of our model is much better than standard CRF under both supervised and semi-supervised learning
condition.

2 Transfer Learning for Conditional Random Fields

The topic of transfer learning is also referred as multi-task learning or learning to learn, motivated
by the fact that many different learning tasks are related in some way and a communication of
knowledge between them may improve the performances of all the tasks. For example, for human,
knowledge of one language is helpful for learning another Language.

In this section, we first introduce some basic of Conditional Random Field model, and then describe
how our transfer learning sequence model are built. There are two learning tasks in the model. One
is the main task, which is a CRF mounted on a hidden representation layer. The other is an unsuper-
vised sequence model sharing the layer. Communicating through the shared parametric layer, these
two learning tasks are learned from the same dataset D = {x(n),y(n)}N

n=1 simultaneously, where
x(n) is a sequence of observation labeled as sequence y(n).The relationship between the tasks are
the set of parameters shared by all the learning tasks.

2.1 Condition Random Fields

CRFs have been very successful in many sequence labeling tasks. By modeling conditional prob-
ability P (y|x) rather than joint probability P (y|x), the discriminative models are believed better
than generative models [16]. In addition, the CRF models allow arbitrary, non-independent features
on the observation sequence X , because the probability of a transition between labels may depend
on past and future observations. For a CRF model, we want to learn a mapping from a observa-
tion sequence X = {x1, x2, ..., xT } to a label sequence Y = {y1, y2, ..., yT }. A CRF defines the
conditional probability of y(n) as

P (y|x; θ) =
1

Z(x)

∏
t

Φ(yt, xt; θ)

= exp
(
θ>F(y,x)− log Z(x; θ)

)
(1)

where F(y,x) =
∑

t f(yt,x, t), Z(x) is a normalization factor over all the possible states of y′ of
length |x| defined as

Z(x) =
∑

y′
exp

(∑
t

Φ(y′t, xt; θ)

)
(2)

and Φ is a parametric potential function

Φ(yt, xt; θ) = θ>f(yt,x, t) (3)

where θ is a vector of linear weights and f(yt,x, t) computes a set of features given the node at time
t.
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Typically, given a set of training example D = {x(n),y(n)}N
n=1, where x(n) ∈ X and y(n) ∈ Y ,

for example, video sequences of gesture, the linear weights can be estimated by maximizing the
penalized log-likelihood with respect to the conditional probability

max
θ

{
N∑

n=1

log P (y(n)|x(n); θ)

}
(4)

There are efficient exact inference algorithms for linear chains CRFs.

2.2 CRF with Hidden Features

In this subsection, we describe a CRF model that is capable of learning powerful feature from data
automatically. To make the CRF have the ability to learn features as well as transfer learning, we
introduce a nonlinear transformation layer to compute hidden representation of input observation
vectors. Here the hidden representation can be viewed as powerful features leaned from input data.
Consider a sequence of observations x = {x(n)}N

i=1 and labels y = {y(n)}N
i=1. Let yt ∈ y =

{1, · · · , C}, we use ct = [In=yt ]
N
n=1 to encode yt, e.g., if yt = 2 and C = 4, then ct = [0, 1, 0, 0]T ,

we define our linear-chain CRF as

P (y|x; θ, α) =
1

Z(x; θ)
exp

{∑
t

θ>f(yt, φ(xt;α), t)

}

=
1

Z(x; θ)
exp

{∑
t

〈λ, ct ⊗ ct−1〉+ 〈µ, ct ⊗ φ(xt;α)〉
}

(5)

where ⊗ is Kronecker product, θ = {λ, µ}, and xt = {xi|i = t − Q−1
2 , · · · , t + Q−1

2 } is segment
of length Q centered at t of x. In its simplest form, φ(xt;α) is a Q ×M vector by concatenating
{φ(xi;α)|xi ∈ (x)t}, where φ(xi;α) is a nonlinear function x → RM with parameter α. Then λ is
a C × C parameter vector, and µ is a C ×Q×M parameter vector. There are many other ways to
enrich the model, for example, by defining highter-order features ct−1 ⊗ ct ⊗ φ(xt;α).

The proposed model (5) is like a multi-layer neural network (NN), which generally optimizes the
classifier and hidden-layer features simultaneously. Our model, as is shown in Figure ??, puts a
CRF upon φ(xi;α) that amounts to a hidden layer. In fact, our implementation φ(xi;α) itself is an
neural network

φi(xi;α) = %

(
H∑

k=1

ωφ
i,khk(x) + bφ

i

)
, hk(x) = %




D∑

j=1

ωh
k,jxj + bh

k


 (6)

where i = 1, · · · ,M , % is an non-linear (tanh) transfer function, and the parameters α include all
the weights ω and bias term b. Therefore, the overall CRF-NN bybrid contains two nonlinear hidden
layers and one structured-output layer.

The model (5) is different with traditional CRF (1) in its learning process. It not only learns the linear
parameters, e.g., λ and ω, but also optimizes the features by tuning the transformation parameter α
in transformation function φ. This capacity of learning features is important, especially when the
task if complex.

2.3 Generative Sequence Model with Hidden Feature

In CRF model, the transition between different labels are captured to learn the model. Besides
such transitions, in structure data, there is some relationship between the neighbor nodes of the
observation sequence, which can be caputured regardless the labels. Taking the sequence of human
action as a example, the action at the time t usually is an extension of the trend of action in the past
several time points, that is there is some physical dependence between consecutive observations
in a sequence. As a second task, we design a sequence model to learn such dependence between
neighbor observation nodes over a sequence. Such a model is like a statistical language model. It
can be represented by the conditional probability of the next observation given all the previous ones,
since

3



P (x) =
T∏

t=1

P (xt|x1,··· ,t−1), (7)

where xt is the t-th observation vector, and writing sub-sequence xi,··· ,j =
(xi, xi+1, · · · , xj−1, xj). Such statistical language models have already been found useful in
many technological application.

Taking the advantage of observation vector order can considerably reduce the difficulty of this mod-
eling problem. The fact that temporally closer vectors in the sequence are statistically more depen-
dent. Thus, n-gram models construct tables of conditional probabilities for the next vector:

P (xt|xt−1
1 ) ≈ P (xt|xt−n+1,··· ,t−1). (8)

With the learned feature output by the NN, the 1-gram language model is

P (x; θ) =
∏

t

P (xt|xt−1; θ) (9)

We use a softmax function as the output layer, if we regard the whole model as neural sequence
model.

P (xt|xt−1;α,A) =
expΨ(φt, φt−1;A)∫

expΨ(φt, φ′t−1;A)dφ′t−1

(10)

where Ψ is the potential function, A is a parameter matrix, and the function φ is exactly the nonlinear
function used by neural CRF.

It can be very flexible to design the potential functions for the learning tasks under different appli-
cation scenarios. In our experiment for gesture recognition, we use two functions. First, (11) is used
to learn the dependence between the nodes of the sequence.

Ψ(φt, φt−1;A) = −||A · φt−1 − φt||2. (11)

From the (5) and (9), we can see that both the tasks share the same transformation φ. By sharing the
same transformation, we can achieve a better generalization. In other words, the knowledge learned
from other task can improve the new learning task by transferring its shared part of knowledge.
Then we can use shared parameter of the transformation function to capture the common knowledge
of the tasks. The input vector can be transformed to flexible dimensions. The result vector of
transformation, φt, can be regarded as new feature learned by the model.

Besides the benefit on the generalization, the sequence model can be learned from unlabeled data as
well as from labeled data. Together with the supervised learning model in the first task, the whole
training process is semi-supervised learning.

3 Joint Training of Labeled & Unlabeled Sequence Models

With the supervised model (5) and the unsupervised model (9), it is natural to consider the joint
model P (y, x; θ) = P (y|x; θ)

∏
t P (xt|xt−1; θ). Note that, without sharing of parameters, the two

models are independent. The loss function for the two tasks are defined as (12) and (13) respectively.

`1(λ, µ, α) =
N∑

n=1

−logP (y(n)|x(n);λ, µ, α). (12)

`2(A,α) =
N∑

n=1

1
T

∑
t

− log P (x(n)
t |x(n)

t−1;α, A) (13)

Letting the two models share the nonlinear feature transformation φ(x;α), we are able to develop
a transfer learning framework for sequence model: Given labeled sequences {x(n),y(n)}, n =
1, · · · , N , the joint model aims to minimize the loss

`(θ) = `1(λ, µ, α) + η`2(α, A) +
1

2σ2
||θ||2 (14)
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where parameter vector θ = (λ, µ, A, α). The third term is the log of a Gaussian prior with variance
σ2, i.e., P (θ) ∼ exp( 1

2σ2 ||θ||2).
We use the gradient descendent method to search for the optimal parameters. For the second task,
the derivatives are pretty straightforward to be calculated, so we omit them for lack of space. Below
are some derivatives from the supervised neural CRF:

∂`1
∂λi

=
∑

i

fi(yt, φt, t)−
∑

t

∑

y′t

fi(y′t, φt, t)P (y′t|x) (15)

∂`1
∂αi,j

=
∑

t

λi
∂fi(yt, φt, t)

∂αi,j
−

∑
t

∑

y′t

λi
∂fi(y′t, φt, t)

∂αi,j
P (y′t|x) (16)

Note that the marginal probabilities P (yt|x) can be computed efficiently using belief propagation.
In our experiments, we use BFGS to optimize the objective function.

3.1 Training with Unlabeled Data

Labeling data can be very expensive, while the unlabeled data are usually abundant and easy to
get. With the unsupervised sequence model, it is very straightforward to use unlabeled data when
training. Given labeled sequences {x(n),y(n)}, n = 1, · · · , L, and unlabeled sequence {x(n)}, n =
L + 1, · · · , L + U , we get a semi-supervised sequence model minimizing the similar loss with (14),
while the `1 and `2 are slightly changed:

`1(λ, µ, α) = − 1
L

L∑
n=1

log P (y(n)|x(n);λ, µ, α) (17)

`2(A, α) = − 1
L + U

L+U∑
n=1

log P (x(n);A, α) (18)

In the joint training of the two learning task, the same gradient descendent optimization technique,
BFGS, is performed to search the optimal parameters.

4 Inference

The main goal of inference is to infer the most probable label, given the values of the observed
nodes. Given the model parameters θ∗ learned from training data, prediction of a new test sequence
X is to estimate the label sequence Y ∗ with the maximum probability

Y ∗ = arg max
Y

P (Y |X, θ∗) (19)

There are two main methods to estimate the labels. One is compute the Viterbi path, the other is
to compute the maximum marginal probabilities. In our experiments, we use the latter to minimize
the err per frame. As discussed in previous subsection, the marginal probability can be computed
efficiently using belief propagation.

5 Experimental Results

In this section, we evaluate the performance of the model on visual gesture recognition task, a
specific example of sequence labeling problem. We choose this task because it is an important
problem that arises from many scientific fields, and because discriminative sequence models, like
CRF and Latent Dynamic Conditional Field (LDCRF) [17], have achieved good performance on the
tasks.
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Figure 1: Result on synthetic data. (a): The data is comprised of two class of spiral data. (b): The
evolution of the auc values over the increase of the transition probabilities inside each class.

5.1 Synthetic Experiment

We will first perform experiments on a synthetic data to show the improvement offered by capability
of our framework in learning features. The synthetic data consists of two spiral data shown in Figure
(1). A set of sequences are sampled according to an HMM with two state, where each states emits
instances uniformly from one of the class. Let p is the probability of staying in the same class and
1− p is the chance of transiting to the other class. The idea is to show the improvement offer by the
learned hidden feature that the smaller the p is, the dependence between neighboring labels. In other
words, the feature function measuring the dependence of labels contributes less with the decrease of
p.

We sample 200 sequences of length 100 with different p. Sequence model with feature learning
(TCRF) and sequence model without feature learning (CRF and LDCRF). The values on x-axis
are the probabilities of staying in the same state and y-axis is the AUC (the area under the ROC
curve) value. Figure 1 (b) shows that the TCRF outperforms the other two sequence models a steady
margin with p varies from 0.5 to 0.9. When p is 0.5, the states transit to each other totally randomly,
which directs the models into i.i.d. classification tasks. Under such condition, we can say that the
improvement of the TCRF is offered by the feature learning.

5.2 Gesture Recognition

Two visual gesture recognition datasets are used in our experiments. One is AvatarEye: This dataset
consists of eye gaze estimates from 6 human participants interaction with a virtual embodied agent.
The goal is to recognize gaze aversion gestures from unsegmented video sequences. Eache video
sequence lasted approximately 10-12 minutes, and was recorded at 30 frames/sec. Each frame was
labeled as a gaze-aversion gesture or a background gesture/motion. The other is MelHead: This
dataset consists of head velocities from 16 human participants. The gestures were video recorded
and labeled start and end point of each head nod. There are total 274 head nods were performed by
the participants.

Both the datasets are very unbalanced because of the large amount background frames. In order
to train the models efficiently, we randomly remove some of the background frames in the training
sequences. The resulted training sequences consisted of equal numbers of sequences with and with-
out target frames. The sequence with target frames are the subsequences of the consecutive positive
labeled frames and the buffers before and after it. The length of buffers varied from 2 to 50 ran-
domly. The pure background sequences are randomly cut from the sequences with length vary from
30 to 60. To compare and demonstrate the performance, we employ receiver operation characteristic
(ROC) curve and the area under the ROC curve (AUC) [18].
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Figure 2: Result under supervised learned model

On these two gesture recognition tasks, we describe our evaluation of the performance of our pro-
posed model against the baseline models. In addition to supervised learning experiments, we present
the performance of our model under semi-supervised leaning process as well.

In the supervised learning experiments, we performed K-fold testing approach where k sequences
were hold out for testing while all other sequences for training and validation. N/k times of training
and testing are performed, where N is the number of total sequence of the dataset. K are 4 and 1 for
the Melhead and Avatareye respectively.

Our proposed transfer learning CRF (TCRF) was compared with standard CRF, Latent-Dynamic
CRF (LDCRF), and Support Vector Machine (SVM). Besides, we also trained our model without
the second task model(describe in sec. 2.3), which is noted as TCRF-Single.

In the experiments we compared our transfer learning Conditional Random Field (TCRF) model
with standard Conditional Random Field (CRF), Latent Dynamic Conditional Field (LDCRF), and
Support Vector Machine (SVM) with a linear kernal. The output of the models when testing are the
probabilities of the possible labels of each frame.

As is shown in Figure 2, our framework of transfer learning for CRF yielded the best performance
1. It is noteworthy that the performance of TCRF on single task is also better than the standard CRF,
which indicated that only learning hidden representation itself without the support of the second task
still can be helpful.

Under the semi-supervised learning setting, we divided the dataset into k folds where k sequences
were hold out for testing as in the supervised learning experiments. On each fold, we trained the
models using ascendent percentage of the training sequences as labeled data while the rest of the
training sequences were used as unlabeled data. The random selection of the labeled data were
performed m times of each percentage, that is, the performance value at each amount of labeled data
is an average of m×k results. For AvatarEye and Melhead, k was 3 and 4 respectively, and n was 5
for both dataset.

As is shown in the Figure 3, our proposed frame work of sequence model outperform the supervised
models like CRF and LDCRF a large margin on both dataset. On AvatarEye dataset, the LDCRF
showed better performance when labeled sequences are more than 20%, and catched up TCRF with
the increase the amount of labeled sequences. For the Melhead dataset, there is less improvement
offered by the increase of the amount of labeled sequence. This phenomenon may caused by the
different size of the two dataset. The AvatarEye dataset had only 6 participants and 77 eye gestures,
while the MelHead is much bigger (274 head nods). So under same percentage, the sequences of
MelHead provided more knowledge to the models to learn the manifold, which left less room for im-
provement when more labeled sequences were added. However, our proposed model demonstrated
a significant superior performance when little labeled sequences were used.

1Although LDCRF model didn’t reproduce as good performance as in [17] due to different preprocessing
of training data, it is consistent that it achieved better performance on both dataset than CRF.
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Figure 3: Result under semi-supervised learned model. The values on x axis are the the percentages
of the training sequences used as labeled data, the values on y axis are the evaluation metric, which
is AUC here.

6 Conclusions

There are limited research on transfer learning for structure learning. In this paper, we proposed a
framework for performing transfer learning on sequence model. With shared parameters, our model
allows the multiple tasks to robustly communicate information from each other, but powerful hidden
features are learned automatically. Additionally, enjoying the ability of the generative sequence
model to make use unlabeled data, the proposed framework can smoothly turn to a semi-supervised
learning method. Experimental results have demonstrated that our proposed model outperforms
the standard CRF a large margin and is comparable with the state-of-the-art model LDCRF on this
recognition task under supervised learning setup, which suggested that the learned hidden features
and communication between learning tasks offer significant benefits. The semi-supervised learning
experiments have also showed superior performance of our proposed model, which is an another
important contribution against other existing models.
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