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Abstract

Simulation and bisimulation metrics for stochastic systems provide a quantitative generaliza-
tion of the classical simulation and bisimulation relations. These metrics capture the similarity
of states with respect to quantitative specifications written in the quantitative µ-calculus and
related probabilistic logics.

We present algorithms for computing the metrics on Markov decision processes (MDPs),
turn-based stochastic games, and concurrent games. For turn-based games and MDPs, we
provide a polynomial-time algorithm for the computation of the one-step metric distance be-
tween states. The algorithm is based on linear programming; it improves on the previous
known exponential-time algorithm based on a reduction to the theory of reals. We then present
PSPACE algorithms for both the decision problem and the problem of approximating the met-
ric distance between two states, matching the best known algorithms for Markov chains. For
the bisimulation kernel of the metric, which corresponds to probabilistic bisimulation, our al-
gorithm works in time O(n4) for both turn-based games and MDPs; improving the previously
best known O(n9 · log(n)) time algorithm for MDPs.

For a concurrent game G, we show that computing the exact distance between states is at
least as hard as computing the value of concurrent reachability games and the square-root-sum
problem in computational geometry. We show that checking whether the metric distance is
bounded by a rational r, can be accomplished via a reduction to the theory of real closed fields,
involving a formula with three quantifier alternations, yielding O(|G|O(|G|5)) time complexity,

improving the previously known reduction, which yielded O(|G|O(|G|7)) time complexity. These
algorithms can be iterated to approximate the metrics using binary search.

1 Introduction

System metrics constitute a quantitative generalization of system relations. The bisimulation re-
lation captures state equivalence: two states s and t are bisimilar if and only if they cannot be
distinguished by any formula of the µ-calculus [5]. The bisimulation metric captures the degree
of difference between two states: the bisimulation distance between s and t is a real number that
provides a tight bound for the difference in value of formulas of the quantitative µ-calculus at s and
t [11]. A similar connection holds between the simulation relation, and the simulation metric.

∗This work has been partially supported by NSF CCR-0132780, NSF CNS-0720884.
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The classical system relations are a basic tool in the study of boolean properties of systems, that
is, the properties that yield a truth value. As an example, if a state s of a transition system can
reach a set of target states R, written s |= 3R in temporal logic, and t can simulate s, then we can
conclude t |= 3R. System metrics play a similarly fundamental role in the study of the quantitative
behavior of systems. As an example, if a state s of a Markov chain can reach a set of target states
R with probability 0.8, written s |= P≥0.83R, and if the metric simulation distance from t to s is
0.3, then we can conclude t |= P≥0.53R. The simulation relation is at the basis of the notions of
system refinement and implementation, where qualitative properties are concerned. In analogous
fashion, simulation metrics provide a notion of approximate refinement and implementation for
quantitative properties.

We consider three classes of systems:

• Markov decision processes. In these system there is one player. At each state, the player can
choose a move; the current state, and the move, determine a probability distribution over the
successor states.

• Turn-based games. In these systems there are two players. At each state, one of the two
players can play, and choose a move; the current state and the move determine a probability
distribution over the successor states.

• Concurrent games. In these systems there are two players. At each state, both players
choose moves, simultaneously and independently; the current state and moves determine a
probability distribution over successor states.

System metrics were first studied for Markov chains and Markov decision processes (MDPs) [11, 26,
27, 12, 13], and they have recently been extended to two-player turn-based and concurrent games
[10]. The fundamental property of the metrics is that they provide a tight bound for the difference
in value that formulas belonging to quantitative specification languages assume at the states of
a system. More precisely, let qµ indicate the quantitative µ-calculus, a specification language in
which many of the classical specification properties, including reachability and safety probability,
can be written [9]. The metric bisimulation distance between two states s and t, denoted [s ≃g t],
has the property that [s ≃g t] = supφ∈qµ |φ(s)−φ(t)|, where φ(s) and φ(t) are the values φ assumes
at s and t. To each metric is associated a kernel: the kernel of a metric d is the relation that relates
the pairs of states that have distance 0; to each metric corresponds a metric kernel relation. The
kernel of the simulation metric is probabilistic simulation; the kernel of the bisimulation metric is
probabilistic bisimulation [22].

Metric as bound for discounted and long-run average payoff. Our first result is that
the metrics developed in [10] provide a bound for the difference in long-run average and discounted
average properties across states of a system. These average rewards play a central role in the theory
of stochastic games, and in its applications to optimal control and economics [4, 16]. Thus, the
metrics of [10] are useful both for system verification, and for performance evaluation, supporting
our belief that they constitute the canonical metrics for the study of the similarity of states in a
game.

Algorithmic results. Next, we investigate algorithms for the computation of the metrics. The
metrics can be computed in iterative fashion, following the inductive way in which they are defined.
A metric d can be computed as the limit of a monotonically increasing sequence of approximations
d0, d1, d2, . . . , where d0(s, t) is the difference in value that variables can have at states s and t. For
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k ≥ 0, dk+1 is obtained from dk via dk+1 = H(dk), where the operator H depends on the metric
(bisimulation, or simulation), and on the type of system. Our main results are as follows:

1. Metrics for turn-based games and MDPs. We show that for for turn-based games, and MDPs,
the one-step metric operator H for both bisimulation and simulation can be computed in
polynomial time, via a reduction to linear programming (LP). The only previously known
algorithm, which can be inferred from [10], had EXPTIME complexity, and relied on a reduc-
tion to the theory of real closed fields; the algorithm thus had more a complexity-theoretic,
than a practical, value. The key step in obtaining our polynomial-time algorithm consists in
transforming the original sup-inf non-linear optimization problem (which required the theory
of reals) into a quadratic-size inf linear optimization problem that can be solved via LP. We
then present PSPACE algorithms for both the decision problem of the metric distance be-
tween two states and for the problem of computing the approximate metric distance between
two states for turn-based games and MDPs. Our algorithms match the complexity of the
best known algorithms for the sub-class of Markov chains [25].

2. Metrics for concurrent games. For concurrent games, our algorithms for the H operator
still rely on decision procedures for the theory of real closed fields, leading to an EXPTIME
procedure. However, the algorithms that could be inferred from [10] had time-complexity
O(|G|O(|G|7)), where |G| is the size of a game; we improve this result by presenting algorithms
with O(|G|O(|G|5)) time-complexity.

3. Hardness of metric computation in concurrent games. We show that computing the exact
distance of states of concurrent games is at least as hard as computing the value of concurrent
reachability games [14, 8], which is known to be at least as hard as solving the square-root-sum
problem in computational geometry [17]. These two problems are known to lie in PSPACE,
and have resisted many attempts to show that they are in NP.

4. Kernel of the metrics. We present polynomial time algorithms to compute the simulation and
bisimulation kernel of the metrics for turn-based games and MDPs. Our algorithm for the
bisimulation kernel of the metric runs in time O(n4) (assuming a constant number of moves)
as compared to the previous known O(n9 · log(n)) algorithm of [29] for MDPs, where n is the
size of the state space. For concurrent games the simulation and the bisimulation kernel can
be computed in time O(|G|O(|G|3)), where |G| is the size of a game.

Our problem differs from the one previously considered for MDPs in [2]: there, the names of
moves (called “labels”) must be preserved by simulation and bisimulation, so that a move from a
state has at most one candidate simulator move at another state. Our problem for MDPs is closer
to the one considered in [29], where labels must be preserved, but where a label can be associated
with multiple probability distributions (moves).

For turn-based games and MDPs, the algorithms for probabilistic simulation and bisimulation
can be obtained from the LP algorithms that yield the metrics. For probabilistic simulation, the
algorithm we obtain coincides with the algorithm previously published in [29]. The algorithm
requires the solution of feasibility-LP problems with a number of variables and inequalities that
is quadratic in the size of the system. For probabilistic bisimulation, we are able to improve on
this result by providing an algorithm that requires the solution of feasibility-LP problems that
have linearly many variables and constraints. Precisely, as for ordinary bisimulation, the kernel is
computed via iterative refinement of a partition of the state space [20]. Given two states that belong
to the same partition, to decide whether the states need to be split in the next partition-refinement
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step, we present an algorithm that requires the solution of a feasibility-LP problem with a number
of variables equal to the number of moves available at the states, and number of constraints linear
in the number of equivalence classes. Overall, our algorithm for bisimulation runs in time O(n4)
(assuming a constant number of moves), considerably improving the O(n9 · log(n)) algorithm of
[29] for MDPs, and providing for the first time a polynomial algorithm for turn-based games.

2 Definitions

Valuations. Let [θ1, θ2] ⊆ IR be a fixed, non-singleton real interval. Given a set of states S,
a valuation over S is a function f : S 7→ [θ1, θ2] associating with every state s ∈ S a value
θ1 ≤ f(s) ≤ θ2; we let F be the set of all valuations. For c ∈ [θ1, θ2], we denote by c the constant
valuation such that c(s) = c at all s ∈ S. We order valuations pointwise: for f, g ∈ F , we write
f ≤ g iff f(s) ≤ g(s) at all s ∈ S; we remark that F , under ≤, forms a lattice. Given a, b ∈ IR, we
write a ⊔ b = max{a, b}, and a ⊓ b = min{a, b}; we extend ⊓,⊔ to valuations by interpreting them
in pointwise fashion.

Game structures. For a finite set A, let Dist(A) denote the set of probability distributions over
A. We say that p ∈ Dist(A) is deterministic if there is a ∈ A such that p(a) = 1. We assume a
fixed, finite set V of observation variables.

A (two-player, concurrent) game structure G = 〈S, [·],Moves, Γ1, Γ2, δ〉 consists of the following
components [1, 7]:

• A finite set S of states.

• A variable interpretation [·] : V 7→ S 7→ [θ1, θ2], which associates with each variable v ∈ V a
valuation [v].

• A finite set Moves of moves.

• Two move assignments Γ1, Γ2: S 7→ 2Moves \ ∅. For i ∈ {1, 2}, the assignment Γi associates
with each state s ∈ S the nonempty set Γi(s) ⊆ Moves of moves available to player i at
state s.

• A probabilistic transition function δ: S×Moves×Moves 7→ Dist(S), that gives the probability
δ(s, a1, a2)(t) of a transition from s to t when player 1 plays move a1 and player 2 plays
move a2.

At every state s ∈ S, player 1 chooses a move a1 ∈ Γ1(s), and simultaneously and independently
player 2 chooses a move a2 ∈ Γ2(s). The game then proceeds to the successor state t ∈ S with
probability δ(s, a1, a2)(t). We let Dest(s, a1, a2) = {t ∈ S | δ(s, a1, a2)(t) > 0}. The propositional
distance p(s, t) between two states s, t ∈ S is the maximum difference in the valuation of any
variable: p(s, t) = maxv∈V([v](s) − [v](t)). The kernel of the propositional distance induces an
equivalence on states: for states s, t, we let s ≡ t if p(s, t) = 0. In the following, unless otherwise
noted, the definitions refer to a game structure with components G = 〈S, [·],Moves, Γ1, Γ2, δ〉. We
indicate the opponent of a player i ∈ {1, 2} by ∼i = 3 − i. We consider the following subclasses of
game structures.

Turn-based game structures. A game structure G is turn-based if we can write S = S1 ∪ S2

with S1 ∩ S2 = ∅ where s ∈ S1 implies |Γ2(s)| = 1, and s ∈ S2 implies |Γ1(s)| = 1, and further, if
there is a special variable turn ∈ V, such that [turn]s = θ1 iff s ∈ S1, and [turn]s = θ2 iff s ∈ S2.
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Markov decision processes. For i ∈ {1, 2}, we say that a structure is an i-MDP if ∀s ∈ S,
|Γ∼i(s)| = 1. For MDPs, we omit the (single) move of the player without a choice of moves, and
write δ(s, a) for the transition function.

Moves and strategies. A mixed move is a probability distribution over the moves available to a
player at a state. We denote by Di(s) ⊆ Dist(Moves) the set of mixed moves available to player i ∈
{1, 2} at s ∈ S, where: Di(s) = {D ∈ Dist(Moves) | D(a) > 0 implies a ∈ Γi(s)}. The moves in
Moves are called pure moves. We extend the transition function to mixed moves by defining, for
s ∈ S and x1 ∈ D1(s), x2 ∈ D2(s), δ(s, x1, x2)(t) =

∑

a1∈Γ1(s)

∑

a2∈Γ2(s) δ(s, a1, a2)(t)·x1(a1)·x2(a2).
A path σ of G is an infinite sequence s0, s1, s2, ... of states in s ∈ S, such that for all k ≥ 0,

there are mixed moves xk
1 ∈ D1(sk) and xk

2 ∈ D2(sk) with δ(sk, x
k
1, x

k
2)(sk+1) > 0. We write Σ for

the set of all paths, and Σs the set of all paths starting from state s.
A strategy for player i ∈ {1, 2} is a function πi : S+ 7→ Dist(Moves) that associates with every

non-empty finite sequence σ ∈ Q+ of states, representing the history of the game, a probability
distribution πi(σ), which is used to select the next move of player i; we require that all σ ∈ S∗ and
states s ∈ S, if πi(σs)(a) > 0, then a ∈ Γi(s). We write Πi for the set of strategies for player i. Once
the starting state s and the strategies π1 and π2 for the two players have been chosen, the game is
reduced to an ordinary stochastic process, denoted G

π1,π2
s , which defines a probability distribution

on the set Σ of paths. As usual, we can compute expectations E
π1,π2
s (·) of measurable functions,

and probabilities Prπ1,π2
s (·) of events (measurable sets of paths) with respect to this process. For

k ≥ 0, we let Xk : Σ → S be the random variable denoting the k-th state along a path.

One-step expectations and predecessor operators. Given a valuation f ∈ F , a state s ∈
S, and two mixed moves x1 ∈ D1(s) and x2 ∈ D2(s), we define the expectation of f from s

under x1, x2 by E
x1,x2
s (f) =

∑

t∈S δ(s, x1, x2)(t) f(t). For a game structure G, for i ∈ {1, 2} we
define the valuation transformer Prei : F 7→ F by, for all f ∈ F and s ∈ S as, Prei(f)(s) =
supxi∈Di(s) infx∼i∈D∼i(s) E

x1,x2
s (f). Intuitively, Prei(f)(s) is the maximal expectation player i can

achieve of f after one step from s: this is the standard “one-day” or “next-stage” operator of the
theory of repeated games [16].

Game bisimulation and simulation metrics. A directed metric is a function d : S2 7→ IR≥0

which satisfies d(s, s) = 0 and the triangle inequality i.e., d(s, t) ≤ d(s, u)+d(u, t) for all s, t, u ∈ S.
We denote by M ⊆ S2 7→ IR the space of all metrics; this space, ordered pointwise, forms a lattice
which we indicate with (M,≤). Since d(s, t) may be zero for s 6= t, these are pseudo-metrics as per
prevailing terminology. For a metric d, we indicate with C(d) the set of valuations k ∈ F where
k(s) − k(t) ≤ d(s, t) for every s, t ∈ S. A metric transformer H�1

: M 7→ M is defined as follows,
for all d ∈ M and s, t ∈ S:

H�1
(d)(s, t) = p(s, t) ⊔ sup

k∈C(d)

(

Pre1(k)(s) − Pre1(k)(t)
)

. (1)

The player 1 game simulation metric [�1] is the least fixpoint of H�1
; the game bisimulation metric

[≃1] is the least symmetrical fixpoint of H�1
and is defined as follows, for all d ∈ M and s, t ∈ S:

H≃1
(d)(s, t) = H�1

(d)(s, t) ⊔ H�1
(d)(t, s) . (2)

The operator H�1
is monotonic, non-decreasing and continuous in the lattice (M,≤). We can

therefore compute H�1
using Picard iteration; we denote by [�n

1 ] = Hn
�1

(0) the n-iterate of this.
From the determinacy of concurrent games with respect to ω-regular goals [18], we have that the

5



game bisimulation metric is reciprocal , in that [≃1] = [≃2]; we will thus simply write [≃g]. Similarly,
we have for all s, t ∈ S that [s �1 t] = [t �2 s].

The main result in [10] about these metrics is that they are logically characterized by the
quantitative µ-calculus of [9]. We omit the formal definition of the syntax and semantics of the
quantitative µ-calculus; we refer the reader to [9] for details. Given a game structure G, every closed
formula φ of the quantitative µ-calculus defines a valuation [[φ]] ∈ F . Let qµ (respectively, qµ+)
consist of all quantitative µ-calculus formulas (respectively, all quantitative µ-calculus formulas
with only the Pre1 operator and all negations before atomic propositions). The result of [10] shows
that for all states s, t ∈ S,

[s �1 t] = sup
φ∈qµ+

([[φ]](s) − [[φ]](t)) [s ≃g t] = sup
φ∈qµ

|[[φ]](s) − [[φ]](t)| . (3)

Metric kernels. The kernel of the metric [≃g] defines an equivalence relation ≃g on the states of
a game structure: s ≃g t iff [s ≃g t] = 0; the relation ≃g is called the game bisimulation relation
[10]. Similarly, we define the game simulation preorder s �1 t as the kernel of the directed metric
[�1], that is, s �1 t iff [s �1 t] = 0. For notational convenience, given a relation R ⊆ S × S, we
denote by 1R : S × S 7→ {0, 1} its characteristic set, defined by 1R(s, t) = 1 iff (s, t) ∈ R. Given a
relation R ⊆ S × S, let B(R) ⊆ F consist of all valuations k ∈ F such that, for all s, t ∈ S, if sRt

then k(s) ≤ k(t).

3 Bounds for Average and Discounted Payoff Games

From (3) it follows that the game bisimulation metric provides a tight bound for the difference
in values of quantitative µ-calculus formulas. In this section, we show that the game bisimulation
metric also provides a bound for the difference in average and discounted value of games. This lends
further support for the game bisimulation metric, and its kernel, the game bisimulation relation,
being the canonical game metrics and relations.

Discounted payoff games. Let π1 and π2 be strategies of player 1 and player 2 respectively.
Let α ∈ [0, 1) be a discount factor. The α-discounted payoff v1(s, π1, π2) for player 1 at a state s

for a variable r ∈ V and the strategies π1 and π2 is defined as

vα
1 (s, π1, π2) = (1 − α) ·

∞
∑

n=0

αn · Eπ1,π2

s

(

[r](Xn)
)

. (4)

The discounted payoff for player 2 is defined by vα
2 (s, π1, π2) = −vα

1 (s, π1, π2). Thus, player 1 wins
(and player 2 loses) the “discounted sum” of the valuations of r along the path, where the discount
factor weighs future rewards with the discount α. Given a state s ∈ S, we are interested in finding
the maximal payoff vα

i (s) that player i can ensure against all opponent strategies, when the game
starts from state s ∈ S. This maximal payoff is given by: wα

i (s) = supπi∈Πi
infπ∼i∈Π∼i

vi(s, π1, π2).
These values can be computed as the limit of the sequence of α-discounted, n-step rewards, for
n → ∞. For i ∈ {1, 2}, we define a sequence of valuations wα

i (0)(s), wα
i (1)(s), wα

i (2)(s), . . . as
follows: for all s ∈ S and n ≥ 0:

wα
1 (n + 1)(s) = (1 − α) · [r](s) + α · Pre1(w

α
i (n))(s) . (5)

where the initial valuation wα
i (0) is arbitrary. Shapley proved that wα

i = limn→∞ wα
i (n) [23].
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Average payoff games. Let π1 and π2 be strategies of player 1 and player 2 respectively. The
average payoff v1(s, π1, π2) for player 1 at a state s for a variable r ∈ V and the strategies π1 and
π2 is defined as

v1(s, π1, π2) = lim inf
n→∞

1

n

n−1
∑

k=0

E
π1,π2

s

(

[r](Xk)
)

. (6)

The reward for player 2 is obtained by replacing [r] with −[r] in (6). A game structure G with
average payoff is called an average reward game. The average value of the game G at s for player
i ∈ {1, 2} is defined by wi(s) = supπi∈Πi

infπ∼i∈Π∼i
vi(s, π1, π2).

Mertens and Neyman established the determinacy of average games, and showed that the limit of
the discounted value of a game as all the discount factors tend to 1 is the same as the average value
of the game: for all s ∈ S and i ∈ {1, 2}, we have limα→1 wα(s) = w(s) [19]. It is easy to show that
the average value of a game is a valuation.

Metrics for discounted and average payoffs. We show that the game simulation metric [�1]
provides a bound for discounted and long-run rewards. In the following we consider player 1 rewards
(the case for player 2 is identical). Our first result is that the difference in discounted rewards is
bound by the metric.

Theorem 1 For all α-discounted rewards wα, we have that wα(s)−wα(t) ≤ [s �1 t] and |wα(s)−
wα(t)| ≤ [s ≃g t].

Proof As the metric can be computed via Picard iteration, we have for all n ≥ 0:

[s �n
1 t] = p(s, t) ⊔ sup

k∈C([�n−1

1
])

(Pre1(k)(s) − Pre1(k)(t)) . (7)

We prove by induction on n ≥ 0 that wα(n)(s)−wα(n)(t) ≤ [s �n
1 t]. The base case is immediate.

Assume the result holds for n − 1 ≥ 0. We have:

wα(n)(s) − wα(n)(t) = (1 − α) · [r](s) + α · Pre1(w
α(n − 1))(s)−

(1 − α) · [r](t) − α · Pre1(w
α(n − 1))(t)

= (1 − α) ·
(

[r](s) − [r](t)
)

+

α ·
(

Pre1(w
α(n − 1))(s) − Pre1(w

α(n − 1))(t)
)

≤ (1 − α) · p(s, t) + α · [s �n
1 t] ≤ [s �n

1 t],

where the last step follows by (7), since by the induction hypothesis we have wα(n−1) ∈ C([�n−1
1 ]).

�

Using the fact that the limit of the discounted reward, for the discount factor that approaches 1,
is equal to the average reward, we obtain that the metrics provide a bound for the difference of
average values as well.

Theorem 2 For all game structures G and states s and t, we have w(s) − w(t) ≤ [s �1 t] and
|w(s) − w(t)| ≤ [s ≃g t].
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4 Algorithms for Turn-Based Games and MDPs

In this section, we present algorithms for computing the metric and its kernel for turn-based games
and MDPs. We first present a polynomial time algorithm to compute the operator H�i

(d) that
gives the exact one-step distance between two states, for i ∈ {1, 2}. We then present a PSPACE
algorithm to decide whether the limit distance between two states s and t (i.e., [s �1 t]) is at most
a rational value r. Our algorithm matches the best known bound known for the special class of
Markov chains [25]. Finally, we present improved algorithms for the important case of the kernel
of the metrics. For the bisimulation kernel our algorithm is significantly efficient when compared
to previous algorithms.

4.1 Algorithms for the metrics

For turn-based games and hence MDPs, only one player has a choice of moves at a given state.
We consider two player 1 states. A similar analysis applies to player 2 states. We remark that the
distance between states in Si and S∼i is always θ2 − θ1 due to the existence of the variable turn.
For a metric d ∈ M, and states s, t ∈ S1, computing H�1

(d), given that p(s, t) is trivially computed
by its definition, entails evaluating the expression, supk∈C(d) supx∈D1(s) infy∈D1(t)(E

x
s (k) − E

y
t (k)).

By expanding the expectations, we get the following form,

sup
k∈C(d)

sup
x∈D1(s)

inf
y∈D1(t)

(

∑

u∈S1

∑

a∈Γ1(s)

δ(s, a)(u) · x(a) · k −
∑

v∈S1

∑

b∈Γ1(t)

δ(t, b)(v) · y(a) · k

)

. (8)

We observe that the one-step distance as defined in (8) is a sup-inf non-linear (quadratic) optimiza-
tion problem. Using the following lemma we transform (8) to an inf linear optimization problem,
which we solve by linear programming.

Lemma 1 For all turn-based game structures G, for all player i states s and t, given a metric
d ∈ M, the following equality holds,

sup
k∈C(d)

sup
x∈Di(s)

inf
y∈Di(t)

(Ex
s (k) − E

y
t (k)) = sup

a∈Γi(s)
inf

y∈Di(t)
sup

k∈C(d)
(Ea

s(k) − E
y
t (k)) .

Proof We prove the result for player 1 states s and t, with the proof being identical for player 2.
Given a metric d ∈ M, we have,

sup
k∈C(d)

sup
x∈D1(s)

inf
y∈D1(t)

(Ex
s (k) − E

y
t (k)) = sup

k∈C(d)
( sup
x∈D1(s)

E
x
s (k) − sup

y∈D1(t)
E

y
t (k))

= sup
k∈C(d)

( sup
a∈Γ1(s)

E
a
s(k) − sup

y∈D1(t)
E

y
t (k)) (9)

= sup
k∈C(d)

sup
a∈Γ1(s)

inf
y∈Γ1(t)

(Ea
s(k) − E

y
t (k))

= sup
a∈Γ1(s)

sup
k∈C(d)

inf
y∈D1(t)

(Ea
s(k) − E

y
t (k)) (10)

= sup
a∈Γ1(s)

inf
y∈D1(t)

sup
k∈C(d)

(Ea
s(k) − E

y
t (k)) (11)

For a fixed k ∈ C(d), since pure optimal strategies exist at each state for turn-based games and
MDPs, we replace the supx∈D1(s) with supa∈Γ1(s) yielding (9). Since the difference in expectations
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is multi-linear, y ∈ D1(t) is a probability distribution and k ∈ C(d) is a compact convex set, we
can use the generalized minimax theorem [24], and interchange the innermost sup inf to get (11)
from (10). � Therefore, given d ∈ M, we can write the one-step distance between states s and t

as follows,
OneStep(s, t, d) = sup

a∈Γ1(s)
inf

y∈D1(t)
sup

k∈C(d)
(Ea

s(k) − E
y
t (k)) . (12)

Hence we compute for all a ∈ Γ1(s), the expression OneStep(s, t, d, a) = infy∈D1(t) supk∈C(d)(E
a
s(k)−

E
y
t (k)), and then choose the maximum, i.e., maxa∈Γ1(s) OneStep(s, t, d, a). We now present a lemma

that helps reduce the above inf sup optimization problem to a linear program. We first present a
few notations. We denote by λ the set of variables λu,v, for u, v ∈ S. Given d ∈ M, a ∈ Γ1(s), and
a distribution y ∈ D1(t), we write λ ∈ Φ(d, a, y) if the following linear constraints are satisfied:

(1) for all v ∈ S :
∑

u∈S

λu,v = δ(s, a)(v); (2) for all u ∈ S :
∑

v∈S

λu,v =
∑

b∈Γ1(t)

y(b) · δ(t, b)(u);

(3) for all u, v ∈ S : λu,v ≥ 0 .

Lemma 2 For all turn-based games and MDPs, for all d ∈ M, and for all s, t ∈ S, the following
assertion hold:

sup
a∈Γ1(s)

inf
y∈D1(t)

sup
k∈C(d)

(Ea
s(k) − E

y
t (k)) = sup

a∈Γ1(s)
inf

y∈D1(t)
inf

λ∈Φ(d,a,y)

(

∑

u,v∈S

d(u, v) · λu,v

)

.

Proof From the LP duality based results of [26], we have that for all a ∈ Γ1(s) and y ∈ D1(t),

sup
k∈C(d)

(Ea
s(k) − E

y
t (k)) = inf

λ∈Φ(d,a,y)

(

∑

u,v∈S

d(u, v) · λu,v

)

.

The formula on the right hand side of the above equality is the trans-shipping formulation, which
solves for the minimum cost of shipping the distribution δ(s, a) into δ(t, y), with edge costs d. The
result of the lemma follows. �

Using the above result we obtain the following LP for OneStep(s, t, d, a) over the variables:
(a) {λu,v}u,v∈S , and (b) yb for b ∈ Γ1(t):

Minimize
∑

u,v∈S

d(u, v) · λu,v subject to (13)

(1) for all v ∈ S :
∑

u∈S

λu,v = δ(s, a)(v); (2) for all u ∈ S :
∑

v∈S

λu,v =
∑

b∈Γ1(t)

yb · δ(t, b)(u);

(3) for all u, v ∈ S : λu,v ≥ 0; (4) for all b ∈ Γ1(t) : yb ≥ 0; (5)
∑

b∈Γ1(t)

yb = 1 .

Theorem 3 For all turn-based games and MDPs, given d ∈ M, for all states s, t ∈ S, we can
compute H�1

(d)(s, t) in polynomial time by the LP (13).

Iteration of OneStep(s, t, d) converges to the exact distance, however, in general, there are no
known bounds for the rate of convergence. We now present a decision procedure to check whether
the exact distance between two states is at most a rational value r. We first show how to express
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the predicate d = OneStep(s, t, d), for a given d ∈ M. We observe that since H�1
is non-decreasing,

it follows that OneStep(s, t, d) ≥ d. It follows that the equality d = OneStep(s, t, d) holds iff all the
linear inequalities of LP (13) are satisfied, and d(s, t) =

∑

u,v∈S d(u, v) · λu,v holds. It then follows
that d = OneStep(s, t, d) can be written as a predicate in the theory of real closed fields. Given a
rational r, two states s and t, we present an existential theory of reals formula to decide whether
[s �1 t] ≤ r. Since [s �1 t] is the least fixed point of H�1

, we define a formula Φ(r) that is true iff
[s �1 t] ≤ r, as follows:

∃d ∈ M.[(OneStep(s, t, d) = d) ∧ (d(s, t) ≤ r)] .

If the formula Φ(r) is true, then there exists a fixpoint that is bounded by r, which implies that
the least fixpoint is bounded by r. Conversely, if the least fixpoint is bounded by r, then the least
fixpoint is a witness d for Φ(r) being true. Since the existential theory of reals is decidable in
PSPACE [6], we have the following result.

Theorem 4 (Decision complexity for exact distance). For all turn-based games and MDPs,
given a rational r, and two states s and t, whether [s �1 t] ≤ r can be decided in PSPACE.

Given a rational ǫ > 0, using binary search and O(log( θ2−θ1

ǫ
)) many calls to check the formula

Φ(r), we can obtain an interval [l, u] with u − l ≤ ǫ such that [s �1 t] lies in the interval [l, u].

Corollary 1 (Approximation for exact distance). For all turn-based games and MDPs, given
a rational ǫ, and two states s and t, an interval [l, u] with u − l ≤ ǫ such that [s �1 t] ∈ [l, u] can
be computed in PSPACE.

4.2 Algorithms for the kernel

The kernel of the simulation metric �1 can be computed as the limit of the series �0
1, �1

1, �2
1,

. . . , of relations. For all s, t ∈ S, we have (s, t) ∈�0
1 iff s ≡ t. For all n ≥ 0, we have (s, t) ∈�n+1

1

iff OneStep(s, t, 1�n

1
) = 0. Checking the condition OneStep(s, t, 1�n

1
) = 0, corresponds to solving

an LP feasibility problem for every a ∈ Γ1(s), as it suffices to replace the minimization goal
γ =

∑

u,v∈S 1�n

1
(u, v) ·λu,v with the constraint γ = 0 in the LP (13). We note that this is the same

LP feasibility problem that was introduced in [29] as part of an algorithm to decide simulation of
probabilistic systems in which each label may lead to one or more distributions over states.

For the bisimulation kernel, we present a more efficient algorithm, which also improves on
the algorithms presented in [29]. The idea is to proceed by partition refinement, as usual for
bisimulation computations. The refinement step is as follows: given a partition, two states s and t

belong to the same refined partition iff every pure move from s induces a probability distribution
on equivalence classes that can be matched by mixed moves from t, and vice versa. Precisely, we
compute a sequence Q0, Q1, Q2, . . . , of partitions. Two states s, t belong to the same class of
Q0 iff they have the same variable valuation (i.e., iff s ≡ t). For n ≥ 0, since by the definition of
the bisimulation metric given in (2), [s ≃g t] = 0 iff [s �1 t] = 0 and [t �1 s] = 0, two states
s, t belonging to a particular class in Qn remain in the same class in Qn+1 iff both (s, t) and (t, s)
satisfy the set of feasibility LP problems OneStepBis(s, t,Qn) below:

OneStepBis(s, t,Q) consists of one feasibility LP problem for each a ∈ Γ(s). The problem
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for a ∈ Γ(s) has set of variables {xb | b ∈ Γ(t)}, and set of constraints:

(1) for all b ∈ Γ(t) : xb ≥ 0, (2)
∑

b∈Γ(t)

xb = 1,

(3) for all V ∈ Q :
∑

b∈Γ(t)

∑

u∈V

xb · δ(t, b)(u) ≥
∑

u∈V

δ(s, a)(u) .

Complexity. The number of partition refinement steps required for the computation of both the
simulation and the bisimulation kernel is bounded by O(|S|2) for turn-based games and MDPs,
where S is the set of states. At every refinement step, at most O(|S|2) state pairs are considered,
and for each state pair (s, t) at most |Γ(s)| LP feasibility problems needs to be solved. Let us denote
by LPF(n, m) the complexity of solving the feasibility of m linear inequalities over n variables. We
obtain the following result.

Theorem 5 For all turn-based games and MDPs G, the following assertions hold:

1. the simulation kernel can be computed in O
(

n4 · m · LPF(n2 + m, n2 + 2n + m + 2)
)

time;

2. the bisimulation kernel can be computed in O
(

n4 · m · LPF(m, n + m + 1)
)

time;

where n = |S| is the size of the state space, and m = maxs∈S |Γ(s)|.

Remark 1 T he best known algorithm for LPF(n, m) works in time O(n2.5 · log(n)) [28] (assuming
each arithmetic operation takes unit time). The previous algorithm for the bisimulation kernel
checked two way simulation and hence has the complexity O(n4 · m · (n2 + m)2.5 · log(n2 + m)),
whereas our algorithm works in time O(n4 · m · m2.5 · log(m)). For most practical purposes, the
number of moves at a state is constant (i.e., m is constant). For the case when m is constant, the
previous best known algorithm worked in O(n9 · log(n)) time, whereas our algorithm works in time
O(n4).

5 Algorithms for Concurrent Games

In this section we first show that the computation of the metric distance is at least as hard as the
computation of optimal values in concurrent reachability games. The exact complexity of the latter
is open, but it is known to be at least as hard as the square-root sum problem, which is in PSPACE
but whose inclusion in NP is a long-standing open problem [15, 17]. Next, we present algorithms
based on a decision procedure for the theory of real closed fields, for both checking the bounds of
the exact distance and the kernel of the metrics. Our reduction to theory of real closed fields gets
rid of one quantifier alternation as compared to the previous known formula. Thus we obtain a
better complexity as compared to the previous known algorithms.

5.1 Reduction of reachability games to metrics

We will use the following terms in the result. A proposition is a boolean observation variable, and
we say a state is labeled by a proposition q iff q is true at s. A state t is absorbing in a concurrent
game, if both players have only one action available at t, and the next state of t is always t (it is a
state with a self-loop). For a proposition q, let 3q denote the set of paths that visit a state labeled
by q at least once. In concurrent reachability games, the objective is 3q, for a proposition q, and
without loss of generality all states labeled by q are absorbing states.

11



Theorem 6 Consider a concurrent game structure G, with a single proposition q, such that all
states labeled by q are absorbing states. We can construct in linear-time a concurrent game structure
G′, with one additional state t′, such that for all s ∈ S, we have [s �1 t′] = sup

π1∈Π1

inf
π2∈Π2

Prπ1,π2

s (3q).

Proof The concurrent game structure G′ is obtained from G by adding an absorbing state t′. To
prove the desired claim we show that for all s ∈ S we have [s �1 t′] = supπ1∈Π1

infπ2∈Π2
Prπ1,π2

s (3q).
The states that are not labeled by q are labeled by its complement ¬q, and we label the additional
state t′ by the negation of q (i.e., ¬q). Observe there is only one proposition sequence from t′,
and it is (¬q)ω. From a state s in G the possible proposition sequences can be expressed as
the following ω-regular expression: (¬q)ω ∪ (¬q)∗ · qω. Since the proposition sequence from t′ is
(¬q)ω, the supremum of the difference in values over qµ formulas at s and t′ is obtained by sat-
isfying the set of paths formalized as (¬q)∗ · qω at s. The set of paths defined by (¬q)∗ · qω is
same as reaching q in any number of steps, since all states labeled by q are absorbing. Hence
supφ∈qµ+([[φ]](s) − [[φ]](t′)) = [[µX.(q ⊔ Pre1(X))]](s). It follows from the results of [9] that for all
s ∈ S we have [[µX.(q ⊔ Pre1(X))]](s) = supπ1∈Π1

infπ2∈Π2
Prπ1,π2

s (3q). From the above equalities
and the logical characterization result (3) we obtain the desired result. �

5.2 Algorithms for the metrics

We first prove a lemma that helps obtain reduced-complexity algorithms for concurrent games. The
lemma states that the distance [s �1 t] is attained by restricting player 2 to pure moves at state t,
for all states s, t ∈ S.

Lemma 3 Given a game structure G and a distance d ∈ M, we have

sup
k∈C(d)

sup
x1∈D1(s)

inf
y1∈D1(t)

sup
y2∈D2(t)

inf
x2∈D2(s)

(Ex1,x2

s (k)) − E
y1,y2

t (k))

= sup
k∈C(d)

sup
x1∈D1(s)

inf
y1∈D1(t)

sup
c∈Γ2(t)

inf
x2∈D2(s)

(Ex1,x2

s (k) − E
y1,c
t (k)) . (14)

Proof To prove our claim we fix k ∈ C(d), and player 1 mixed moves x ∈ D1(s), and y ∈ D1(t).
We then have,

sup
y2∈D2(t)

inf
x2∈D2(s)

(Ex,x2

s (k)) − E
y,y2

t (k)) = inf
x2∈D2(s)

E
x,x2

s (k) − inf
y2∈D2(t)

E
y,y2

t (k) (15)

= inf
x2∈D2(s)

E
x,x2

s (k) − inf
c∈Γ2(t)

E
y,c
t (k) (16)

= sup
c∈Γ2(t)

inf
x2∈D2(s)

(Ex,x2

s (k) − E
y,c
t (k)),

where (16) follows from (15) since the decomposition on the rhs of (15) yields two independent
linear optimization problems; the optimal values are attained at a vertex of the convex hulls of the
distributions induced by pure player 2 moves at the two states. This easily leads to the result. �

We now present algorithms for metrics in concurrent games. Due to the reduction from con-
current reachability games, shown in Theorem 6, it is unlikely that we have an algorithm in NP for
the metric distance between states. We therefore construct statements in the theory of real closed
fields, firstly to decide whether [s �1 t] ≤ r, for a rational r, so that we can approximate the metric
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distance between states s and t, and secondly to decide if [s �1 t] = 0 in order to compute the
kernel of the game simulation and bisimulation metrics.

The statements improve on the complexity that can be achieved by a direct translation of
the statements of [10] to the theory of real closed fields. The complexity reduction is based on
the observation that using Lemma 3, we can replace a sup operator with finite conjunction, and
therefore reduce the quantifier complexity of the resulting formula. Fix a game structure G and
states s and t of G. We proceed to construct a statement in the theory of reals that can be used
to decide if [s �1 t] ≤ r, for a given rational r.

In the following, we use variables x and y with subscripts to denote a set of variables {x(a) |
a ∈ Γ} and {y(a) | a ∈ Γ}, we use k to denote the set of variables {k(u) | u ∈ S}, and d for the
set of variables {d(u, v) | u, v ∈ S}. The variables α, α′, β, β′ range over reals. For convenience, we
assume Γ1(t) = {c1, . . . , cl}.

First, notice that we can write formulas that state that x is a mixed move at a state s, and k

is a constructible predicate (i.e., k ∈ C(d)):

IsDist(x,Γ1(s)) ≡
∧

a∈Γ1(s)

x(a) ≥ 0 ∧
∧

a∈Γ1(s)

x(a) ≤ 1 ∧
∑

a∈Γ1(s)

x(a) = 1

kBounded(k, d) ≡
∧

u∈S

[

k(u) ≥ θ1 ∧ k(u) ≤ θ2

]

∧
∧

u,v∈S

(k(u) − k(v) ≤ d(u, v)) .

In this section, we write bounded quantifiers of the form “∃x ∈ D1(s)” or “∀k ∈ C(d)” which mean
respectively ∃x.IsDist(x,Γ1(s)) ∧ · · · and ∀k.kBounded(k, d) → · · · .

Let η(k, x1, x2, y1, c) be the polynomial E
x1,x2
s (k) − E

y1,c
t (k). Notice that η is a polynomial of

degree 3. We write a = max{a1, . . . , al} for variables a, a1, . . . , al for the formula

(a = a1 ∧
l

∧

i=1

a1 ≥ ai) ∨ . . . ∨ (a = al ∧
l

∧

i=1

al ≥ ai) .

We construct the formula for game simulation in stages. First, we construct a formula Φ1(d, k, x, α)
with free variables d, k, x, α such that Φ(d, k, x1, α) holds for a valuation to the variables iff

α = inf
y1∈D1(t)

sup
c∈Γ2(t)

inf
x2∈D2(s)

(Ex1,x2

s (k) − E
y1,c
t (k)) .

We use the following observation to move the inf out of the sup over the finite set (for any function
f):

sup
c∈Γ2(t)

inf
x2∈D2(s)

f(c, x2, x) = inf
x

c1
2

∈D2(s)
. . . inf

x
cl

2
∈D2(s)

max(f(c1, x
c1
2 , x), . . . , f(cl, x

cl

2 , x)) .
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The formula Φ1(d, k, x1, α) is given by:

∀y1 ∈ D1(t).∀xc1
2 ∈ D2(s) . . . x

cl

2 ∈ D2(s).∀w1 . . . wl.∀a.∀α′.

∃ŷ1 ∈ D1(t).∃x̂c1
2 ∈ D2(s) . . . x̂

cl

2 ∈ D2(s).∃ŵ1 . . . ŵl.∃â.


































(

w1 = η(k, x1, x
c1
2 , y1, c1)

)

∧ · · · ∧
(

wl = η(k, x1, x
cl

2 , y1, cl)
)

∧
(

a = max{w1, . . . , wl}
)























→ (a ≥ α)













∧



































(

ŵ1 = η(k, x1, x̂
c1
2 , ŷ1, c1)

)

∧ · · · ∧
(

ŵl = η(k, x1, x̂
cl

2 , ŷ1, cl)
)

∧
(

â = max{ŵ1, . . . , ŵl} ∧ â ≥ α′
)























→ (α ≥ α′)













.

Using Φ1, we construct a formula Φ(d, α) with free variables d and α such that Φ(d, α) is true iff:

α = sup
k∈C(d)

sup
x1∈D1(s)

inf
y1∈D1(t)

sup
c∈Γ2(t)

inf
x2∈D2(s)

(Ex1,x2

s (k) − E
y1,c
t (k)) .

The formula Φ is defined as follows:

∀k ∈ C(d).∀x1 ∈ D1(s).∀β.∀α′.
[

Φ1(d, k, x1, β) → (β ≤ α)∧
(∀k′ ∈ C(d).∀x′

1 ∈ D1(s).∀β′.Φ1(d, k′, x′
1, β

′) ∧ β′ ≤ α′) → α ≤ α′

]

. (17)

Finally, given a rational r, we can check if [s �1 t] ≤ r by checking if the following sentence is true:

∃d ∈ M.∃a ∈ M.[Φ(d, a) ∧ (d = a) ∧ (d(s, t) ≤ r)] . (18)

The above sentence is true iff the least fixpoint is bounded by r. Like in the case of turn-based
games and MDPs, given a rational ǫ > 0, using binary search and O(log( θ2−θ1

ǫ
)) calls to a decision

procedure to check the sentence (18), we can compute an interval [l, u] with u − l ≤ ǫ, such that
[s �1 t] ∈ [l, u].

Complexity. Note that Φ is of the form ∀∃∀, because Φ1 is of the form ∀∃, and appears in negative
position in Φ. The formula Φ has (|S| + |Γ1(s)| + 3) universally quantified variables, followed
by (|S| + |Γ1(s)| + 3 + 2(|Γ1(t)| + |Γ2(s)| · |Γ2(t)| + |Γ2(t)| + 2)) existentially quantified variables,
followed by 2(|Γ1(t)|+ |Γ2(s)| · |Γ2(t)|+ |Γ2(t)|+1) universal variables. The sentence (18) introduces
|S|2 + |S|2 existentially quantified variables ahead of Φ. The matrix of the formula is of length at
most quadratic in the size of the game, and the maximum degree of any polynomial in the formula
is 3. We define the size of a game G as: |G| = |S|+ |T |, where |T | =

∑

s,t∈S

∑

a,b∈Moves
|δ(s, a, b)(t)|.

Using the complexity of deciding a formula in the theory of real closed fields [3], we get the following
result.

Theorem 7 (Decision complexity for exact distance). For all concurrent games G, given a
rational r, and two states s and t, whether [s �1 t] ≤ r can be decided in time O(|G|O(|G|5)).

Corollary 2 (Approximation for exact distance). For all concurrent games G, given a
rational ǫ, and two states s and t, an interval [l, u] with u − l ≤ ǫ such that [s �1 t] ∈ [l, u] can be
computed in time O(log( θ2−θ1

ǫ
) · |G|O(|G|5)).
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In contrast, the formula to check whether [s �1 t] ≤ r, for a rational r, as implied by the definition
of H�1

(d)(s, t), that does not use Lemma 3, has five quantifier alternations due to the inner sup,
which when combined with the 2 · |S|2 existentially quantified variables in the sentence (18), yields
a decision complexity of O(|G|O(|G|7)).

5.3 Computing the kernels

Similar to the case of turn-based games and MDPs, the kernel of the simulation metric �1 for
concurrent games can be computed as the limit of the series �0

1, �
1
1, �

2
1, . . . , of relations. For all

s, t ∈ S, we have (s, t) ∈�0
1 iff s ≡ t. For all n ≥ 0, we have (s, t) ∈�n+1

1 iff the following sentence
Φs is true: ∀a.Φ(�n, a) → a ≤ 0, where Φ is defined as in (17). At any step in the iteration, the
distance between any pair of states u, v ∈ S is defined as follows,

∀u, v ∈ S. d(u, v) =

{

0 if (s, t) ∈ �n
1

1 if (s, t) 6∈ �n
1

.

To compute the bisimulation kernel, we again proceed by partition refinement. For a set of partitions
Q0,Q1, . . ., (s, t) ∈≃n+1 iff the following sentence Φb is true for the state pairs (s, t) and (t, s):
∀a.Φ(Qn, a) → a ≤ 0.
Complexity. In the worst case we need O(|S|2) partition refinement steps for computing both the
simulation and the bisimulation relation. At each partition refinement step the number of state
pairs we consider is bounded by O(|S|2). We can check if Φs and Φb are true using a decision
procedure for the theory of real closed fields. Therefore, we need O(|S|4) decisions to compute
the kernels. The partitioning of states based on the decisions can be done by any of the partition
refinement algorithms, such as [21].

Theorem 8 For all concurrent games G, states s and t, whether s �1 t can be decided in
O(|G|O(|G|3)) time, and whether s ≃g t can be decided in O(|G|O(|G|3)) time.
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