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Markov switching models can be used to study heterogeneous populations that are observed over time. This

paper explores modeling the group characteristics nonparametrically, under both homogeneous and nonho-

mogeneous Markov switching for group probabilities. The model formulation involves a finite mixture of

conditionally independent Dirichlet process mixtures, with a Markov chain defining the mixing distribution.

The proposed methodology focuses on settings where the number of subpopulations is small and can be as-

sumed to be known, and flexible modeling is required for group regressions. We develop Dirichlet process

mixture prior probability models for the joint distribution of individual group responses and covariates. The

implied conditional distribution of the response given the covariates is then used for inference. The modeling

framework allows for both non-linearities in the resulting regression functions and non-standard shapes in the

response distributions. We design a simulation-based model fitting method for full posterior inference. Fur-

thermore, we propose a general approach for inclusion of external covariates dependent on the Markov chain

but conditionally independent from the response. The methodology is applied to a problem from fisheries

research involving analysis of stock-recruitment data under shifts in the ecosystem state.
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1 INTRODUCTION

The focus of this work is to develop a flexible approach to nonparametric switching regression which

combines Dirichlet process (DP) mixture nonparametric regression with a hidden Markov model. A

modeling framework for data that has been drawn from a number of unobserved states (or regimes),

where each state defines a different relationship between response and covariates, switching regression

was originally developed in the context of econometrics (Goldfeld and Quandt, 1973; Quandt and

Ramsey, 1978) and has primarily been approached through likelihood-based estimation. A hidden

Markov mixture model in this context holds that the state vector constitutes a Markov chain, and

thus introduces an underlying dependence into the data. In such models, the regression functions

corresponding to individual population regimes are typically linear with additive error, and may or

may not include an explicit time-series component (e.g., Hamilton, 1989; McCulloch and Tsay, 1994).

The work presented here has a different focus: inference that is completely flexible and nonparametric

within regimes, but guided by an informative parametric hidden Markov model for regime state

switching. Such approaches reveal a baseline inference: the posterior distribution for individual

regression functions when informed by little more than the state switching model. The proposed

posterior simulation algorithms and approach to forward-backward sampling for stick-breaking prior

models will also serve as a useful framework for more general inference about mixtures of conditionally

independent nonparametric processes.

Bayesian nonparametrics, and DP mixtures in particular, provide highly flexible models for in-

ference. Indeed, the practical implication of this flexibility is that, for inference based on small to

moderate sample sizes, a certain amount of prior information must be provided to avoid a uselessly

diffuse posterior. The DP hyperparameters provide the natural mechanism for introducing prior

information, and this aspect of prior specification is discussed in Section 2.1. However, it is also pos-

sible to constrain inference by embedding the nonparametric component within a larger model. The

typical semiparametric extension to linear regression – nonparametric modeling for the additive error
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distribution – is a familiar example of this approach. One can afford to be very noninformative about

the error distribution only because linearity of the mean imposes a substantial constraint on model

flexibility. This paper explores one such class of semiparametric inference settings: nonparametric

density or regression estimation for heterogeneous populations, using a DP mixture framework, nested

within an informative parametric model for the group membership, using an either homogeneous or

nonhomogeneous hidden Markov switching model.

Although this framework applies generally to nonparametric density estimation, our particular

focus is Markov switching nonparametric regression, specified in detail in Section 2. Section 2.1

presents the hidden Markov DP mixture model, and Section 2.2 develops an efficient Markov chain

Monte Carlo (MCMC) algorithm for posterior simulation. Effective sampling of the hidden chain

states is essential to success of the MCMC algorithm, and we thus propose a method based on forward-

backward sampling rather than direct Gibbs (see, e.g., Scott, 2002). An extension of the hidden

Markov DP mixture model to include external variables that are correlated with the underlying

Markov chain, but conditionally independent of the joint covariate-response distribution, is described

in Section 2.3. In Section 3, the methods are illustrated with an application from fisheries research

involving analysis of stock-recruitment data under shifts in the ecosystem state. Finally, Section 4

concludes with a summary and discussion of possible extensions. As a precursor to that work, we first

introduce the two building blocks upon which the full model is based: Markov switching mixtures of

DP mixtures in Section 1.1, and fully nonparametric implied conditional regression in Section 1.2.

1.1 Mixtures of Conditionally Independent Dirichlet Process Mixtures

Our methodological framework involves a known small number of states where prior information is

available on the properties of the underlying state Markov chain, but there is a need for nonparametric

modeling within each subpopulation. The assumption that the number of mixture states is known

fits within the general premise of an informative state estimation coupled with flexible nonparametric

modeling for regression estimation. In contrast with, say, switching linear regression, the state-specific
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DP mixture models do not generally provide significant information about the relative likelihood of

different observation state allocations. Thus, while the methodology is not generally suitable for

settings with little information about state membership, it offers a practical solution to switching

regression problems that lack prior information about the shape of the individual regression functions.

The generic nonparametric DP mixture model is written as f(z; G) =
∫

k(z; θ)dG(θ) for the

density of z, with a parametric kernel density, k(z; θ), and a random mixing distribution G that

is assigned a DP prior (Ferguson, 1973; Antoniak, 1974). In particular, G ∼ DP(α, G0), where α

is the precision parameter, and G0 is the centering distribution. A model for multiple heteroge-

neous populations may be built upon this platform. Assume R distinct random mixing distributions

G1, . . . , GR, each characterized as a DP in the prior, such that, for observations z1, . . . , zn with pop-

ulation membership vector h = (h1, . . . , hn), f(zi; Ghi
) =

∫

k(zi; θ)dGhi
(θ). This leads to the Gr

being independent in the posterior full conditional (due, in particular, to conditioning on h), which

is both conceptually important and, in MCMC simulation, practically useful. Model specification

is completed with a state probability vector, pi = (pi,1, ..., pi,R), defining the probability that the

i-th observation was drawn from the DP mixture corresponding to each of the Gr. The goal of this

framework is to introduce information into the model through the pi.

One way to inform pi,r is to incorporate temporal structure, and a natural way to do so is by

assuming that the hi constitute a Markov chain. Robert et al. (1993) and Chib (1996) discuss such

hidden Markov models in the estimation of mixtures of parametric densities. Since, in our context,

the Gr are modeled nonparametrically, this leads to inference that is driven primarily by state

membership and, in particular, the Markov transition probabilities. Taking this approach further,

the nonparametric switching regression methodology will be most effective when state membership

probabilities are informed by external covariates. Hughes and Guttorp (1994) and Berliner and

Lu (1999) have proposed nonhomogeneous hidden Markov models where each observation’s state

probability vector pi is regressed onto a set of external covariates, ui. In Section 2.3, we obtain
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a similar model by assuming that the external ui are randomly distributed according to a state

dependent density function, phi
(ui). Conditioning on ui then implies a nonhomogeneous hidden

Markov model for h.

The general approach of having informative parametric modeling linked with nonparametric mod-

els through an underlying hidden stochastic process is both theoretically appealing and practically

powerful. We believe that there is great potential for such models, since they provide an efficient

way to bridge the difference in scale between two observed processes, and the MCMC algorithms

presented in this paper can be the basis for extended techniques in other settings.

1.2 Implied Conditional Nonparametric Regression

In the Bayesian regression literature, two dominant trends have been to attempt to find increasingly

flexible regression function models and to accompany these models with more comprehensive uncer-

tainty quantification. Typically, Bayesian nonparametric modeling focuses on either the regression

function or the error distribution. Müller and Quintana (2004) provide an overview of the respective

methodologies.

The starting point for our approach is Bayesian nonparametric implied conditional regression,

wherein DP mixtures are used to model the joint distribution of response and covariates, from which

full inference is obtained for the desired conditional distribution for response given covariates. Both

the response distribution and, implicitly, the regression function are modeled nonparametrically, thus

providing a flexible framework for the general regression problem. In particular, working with (real-

valued) continuous variables, we use DP mixtures of multivariate normal densities to model the joint

density of the covariates, X = (X1, ..., Xdx), and response Y (as in, e.g., Müller et al., 1996). This

joint density, when divided by the implied marginal for covariates, allows for inference about the

conditional density f(y | x) = f(x, y)/f(x).

In the d = dx + 1 dimensional setting, with data D = {zi = (x1
i , . . . , x

dx

i , yi) : i = 1, . . . , n}, the
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location-scale normal DP mixture model (model M1) can be described as follows:

zi | G
ind
∼ f(zi; G) =

∫

N(zi; µ,Σ)dG(µ,Σ), G | α, ψ ∼ DP (α, G0(ψ)) , (1)

with the DP centering distribution given by G0(µ,Σ; ψ) = N(µ; m, V )Wν(Σ
−1; S−1), where ψ =

(m, V, S), and Wv(·; M) denotes the Wishart distribution with v degrees of freedom and expecta-

tion vM . This mixture specification provides also the prior model for the marginal density for X,

f(x; G) =
∫

N(x; µx, Σxx)dG(µ,Σ), after the mean vector and covariance matrix of the normal kernel

have been partitioned. In particular, µ comprises (dx × 1) vector µx and scalar µy, and Σ is a square

block matrix with diagonal elements given by (dx × dx) covariance matrix Σxx and scalar variance

Σy, and above and below diagonal vectors Σxy, and Σyx, respectively.

Inference is based upon a truncation approximation of the infinite dimensional parameter G.

Although Müller et al. (1996) use only posterior predictive densities to obtain an approximation

to E{f(y | x; G) | D}, posterior dependence between regime specific densities and the underlying

state chain necessitates full inference for f(y | x; G). This extension of the implied conditional

regression framework follows the development in Taddy and Kottas (2009), where full inference about

f(y | x; G) is required to estimate quantile regression functions. Draws of the truncated random

mixing distribution are possible through the stick-breaking DP definition (Sethuraman, 1994). Based

on this definition, a realization G from the DP(α, G0(ψ)) is almost surely a discrete distribution

with a countable number of possible values drawn i.i.d. from G0(ψ), and corresponding weights that

are built from i.i.d. β(1, α) variables through stick-breaking. (We use β(a, b) to denote the Beta

distribution with mean a/(a+b).) Hence, a truncation approximation to G can be defined as follows,

GL(·) =

L
∑

l=1

ωlδθ̃l
(·) with ω, θ̃ ∼ PL(ω | 1, α)

L
∏

l=1

dG0(θ̃l; ψ), (2)

where ω = (ω1, ..., ωL), θ̃ = (θ̃1, ..., θ̃L), and the finite stick-breaking prior PL(ω | a, b) is defined
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constructively by

ζ1, . . . , ζL−1
iid
∼ β(a, b), ζL = 1; ω1 = ζ1, and for l = 2, . . . , L : ωl = ζl

l−1
∏

s=1

(1 − ζs), (3)

(see, e.g., Ishwaran and James, 2001). Given a posterior draw of the truncated DP parameters,

GL = {(ωl, (µ̃l, Σ̃l)) : l = 1, ..., L}, posterior realizations for the joint and marginal densities are

readily available through f(x, y; GL) =
∑L

l=1 ωlN(x, y; µ̃l, Σ̃l) and f(x; GL) =
∑L

l=1 ωlN(x; µ̃x

l , Σ̃xx

l ).

Then, the posterior realization for the conditional response density at any value (x, y) is given by

f(y | x; GL) = f(x, y; GL)/f(x; GL). In addition, the structure of conditional moments for the normal

mixture kernel enables posterior sampling of the conditional mean regression function without having

to compute the conditional density. Specifically,

E
[

Y | x; GL
]

=
1

f(x; GL)

L
∑

l=1

ωlN(x; µ̃x

l , Σ̃xx

l )
[

µ̃y
l + Σ̃yx

l (Σ̃xx

l )−1(x − µ̃x

l )
]

, (4)

which, evaluated over a grid in x, yields posterior realizations of the conditional mean function.

2 MARKOV SWITCHING NONPARAMETRIC REGRESSION

Mixtures of regressions are used to study multiple populations each of which involves a different

conditional relationship between response and covariates. The basic switching regression model

defines distinct regression functions for data that have been drawn from populations corresponding

to a number of unobserved states. Following the early work of Goldfeld and Quandt (1973) and

Quandt and Ramsey (1978), the more recent literature includes, for instance, approaches for switching

dynamic linear models (Shumway and Stoffer, 1991) and switching ARMA models (Billio et al.,

1999). Moreover, Hurn et al. (2003) describe a Bayesian decision theoretic approach to estimation

for mixtures of linear regressions, whereas the approach of Shi et al. (2005) offers a departure from

the linear regression assumption through a mixture of Gaussian process regressions.
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The generic mixtures of regressions setting holds that the response Y given covariates X has

been drawn from a member of a heterogeneous set of R conditional distributions defined by the

densities f1(y | x), . . . , fR(y | x), and hence that Pr(y | x) = p1f1(y | x) + . . . + pRfR(y | x),

where
∑R

r=1 pr = 1. We propose a departure from this standard form, wherein the response and

covariates are jointly distributed according to one of the densities f1(x, y), . . . , fR(x, y) – i.e., now

Pr(x, y) = p1f1(x, y)+. . .+pRfR(x, y) – and therefore Pr(y | x) = ρ1f1(x, y)+. . .+ρRfR(x, y), where

ρr = pr/
∑R

ℓ=1 pℓfℓ(x). Thus, the approach is particularly appropriate whenever mixture component

probabilities for a given x and y should be dependent upon the joint distribution for response and

covariates, even though primary interest is in the regression relationship for response given covariates.

Section 2.1 describes our Bayesian nonparametric modeling approach to hidden Markov switching

regression. Section 2.2 elaborates on the model formulation to develop methodology for posterior

simulation. Finally, Section 2.3 provides a modeling extension for the inclusion of external covariates.

2.1 Model Specification for Hidden Markov Nonparametric Switching Regression

Here, we develop the extension of DP mixture implied conditional regression to the context of time

dependent switching regression. The data consist of a set of covariate vectors xt and corresponding

responses yt observed at times t = 1, . . . , T . The data from each time point are associated with a

hidden state variable, ht ∈ {1, . . . , R}, such that, given ht, the response-covariate joint distribution

is defined by a state-specific density fht
(xt, yt). As in Section 1.2, we begin by describing density

estimation in the d = dx+1 dimensional setting, with data D = {zt = (x1
t , . . . , x

dx

t , yt) : t = 1, . . . , T}.

Now, however, the successive observations zt are correlated through dependence in state membership

h = (h1, . . . , hT ), which constitutes a stationary Markov chain defined by an R×R transition matrix

Q. Although we consider only first-order dependence in the Markov chain, the model and posterior

simulation methods can be extended to handle higher order Markov chains.

The first-order hidden Markov location-scale normal DP mixture model (model M2) can then be
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expressed as follows,

zt | ht, Ght

ind
∼ fht

(zt) ≡ f(zt; Ght
) =

∫

N(zt; µ,Σ)dGht
(µ,Σ), t = 1, . . . , T

Gr | αr, ψr
ind
∼ DP (αr, G0(ψr)) , r = 1, . . . , R (5)

h | Q ∼ Pr(h | Q) =
T

∏

t=2

Qht−1,ht
,

where we denote the r-th row of Q by Qr = (Qr,1, . . . , Qr,R), with Qr,s = Pr(ht = s | ht−1 = r), for

r, s = 1, ..., R. Applying the regression approach of Section 1.2, the joint response-covariate density

specification in (5) yields our proposed hidden Markov switching regression model.

We assume that, in the prior, each state is equally likely for h1. Moreover, the DP centering dis-

tributions, G0(µ,Σ; ψr) = N(µ; mr, Vr)Wνr(Σ
−1; S−1

r ), with ψr = (mr, Vr, Sr). For r = 1, . . . , R, we

place hyperpriors on ψr and αr such that π(ψr) = N (mr; amr , Bmr) WaVr
(V −1

r ; B−1
Vr

) WaSr
(Sr; BSr),

and π(αr) = Γ(αr; aαr , bαr). The prior for Q is built from independent Dirichlet distributions,

π(Qr) = Dir(Qr; λr), where Dir(Qr; λr), with λr = (λr,1, . . . , λr,R), denotes the Dirichlet distribution

such that E[Qr,s] = λr,s/(
∑R

i=1 λr,i).

In practice, the hyperparameters for the αr, ψr and for Q need to be carefully chosen. We

are motivated by a setting where prior information is available on the state vector h, and the λr

parameters of π(Qr) are chosen based on prior expectation for the probabilities of moving from

state r to each state in a single time step. However, this prior information pertains only to the

transition probabilities between states and does not fully identify the state components. Thus, we

need to provide enough information to facilitate identification of the mixture components and ensure

that the transition probabilities defined by Q refer to the intended states. On the other hand,

the nonparametric regression is motivated by a desire to be noninformative about each regression

component and we thus seek a more automatic prior specification for each ψr.

Within the framework of our DP mixture implied conditional regression, it is possible to have

each state-specific centering distribution, G0(ψr), associate the densities
∫

N(z; µ,Σ)dGr(µ,Σ) with
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specific regions of the joint response-covariate space, without putting prior information on the shape

of the conditional response density or regression curve within each region. Since the prior parameters

mr and Vr control the location of the normal kernels, the hyperparameters amr , Bmr , aVr , and BVr

can be used to express prior belief about the state-specific joint response-covariate distributions.

Specifically, assume a prior guess for the mean and covariance matrix corresponding to the population

for state r, where prior information for the covariance may only be available in the form of a diagonal

matrix. Then, we can set amr equal to the prior mean, Bmr to the prior covariance, and choose

aVr and BVr such that E[Vr] is equal to the prior covariance (alternatively, E[V −1
r ] can be set equal

to the inverse of the prior covariance matrix and we have observed the method to be robust to

either specification). In the absence of such prior information, one can use a data-dependent prior

specification technique. Given a prior allocation of observations expressed as the state vector hπ =

(hπ
1 , ..., hπ

T ), each set {amr , Bmr , BVr} can be specified through the mean and covariance of the data

subset {zt : hπ
t = r}. In particular, amr is set to the state-specific data mean and both Bmr and

E[Vr] = (aVr − d − 1)−1BVr are set to the state-specific data covariance. With care taken to ensure

that it does not overly restrict the component locations, this approach provides an automatic prior

specification that combines strong state allocation beliefs with weak information about the state-

specific regression functions.

For the Sr we seek only to scale the mixture components to the data, and thus we set all the

E(Sr) = aSrBSr equal to a diagonal matrix with each diagonal entry a quarter of the full data range

for the respective dimension. The precision parameters aVr , aSr , and νr, for r = 1, . . . , R, are set to

values slightly larger than d+2; in practice, we have found 2(d+1) to work well. Working with various

data sets, including the one in Section 3, we have observed results to be insensitive to reasonable

changes in this specification. In particular, experimentation with a variety of choices for the matrices

BSr , indicating prior expectation of either more or less diffuse normal kernel components, resulted

in robust posterior inference.

10



Specification of the hyperpriors on DP precision parameters is facilitated by the role that each

αr plays in the prior distribution for the number of unique components in the set of nr latent mixing

parameters θt = (µt, Σt) corresponding to state r. For a given nr (i.e., conditional on h), we can

use results from Antoniak (1974) to explore properties of this prior for different αr values. For

instance, the prior expected number of unique components in the set {θt : ht = r} is approximately

αr log[(nr + αr)/αr], and this expression may be used to guide prior intuition about the αr.

2.2 Efficient Posterior Simulation

Here, we present MCMC methods for posterior inference under the model developed in Section

2.1. To obtain the full probability model, we introduce latent parameters θ = {θt = (µt, Σt) : t =

1, ..., T} such that the first stage in (5) is replaced with zt | θt
ind
∼ N(zt; θt) and θt | ht, Ght

ind
∼

Ght
, for t = 1, ..., T . The standard approach to posterior simulation from DP-based hierarchical

models involves marginalization of the random mixing distributions Gr in (5) over their DP priors.

Conditionally on h, the vector of latent mixing parameters breaks down into state-specific subvectors

θr = {θt : ht = r}, r = 1, ..., R, such that the distribution of each θr is built from independent

Gr distributions for the θt corresponding to state r. Thus, the full posterior can be written as

Pr(h | Q)
∏R

r=1 π(αr)π(ψr)π(Qr)Pr(θr | h, αr, ψr)DP(Gr; α
⋆
r , G

⋆
r0)

∏T
t=1 N(zt; θt), using results from

Blackwell and MacQueen (1973) and Antoniak (1974). Here, Pr(θr | h, αr, ψr) is the Pólya urn

marginal prior for θr; α⋆
r = αr + nr (where nr = |{t : ht = r}|); and G⋆

r0(·) ≡ G⋆
r0(· | h, θr, αr, ψr) =

(αr + nr)
−1

[

αrdG0(·; ψr) +
∑

{t:ht=r} δθt
(·)

]

.

This posterior can be sampled extending standard MCMC techniques for DP mixtures (see,

e.g., Neal, 2000). However, marginalization over the Gr requires that each pair (θt, ht) must be

sampled jointly, conditional on the remaining paramaters (θt′ , ht′), for all t′ 6= t. This is possible,

but inefficient, through use of a Metropolis-Hastings step with proposal distribution built from a

marginal Pr(ht = r) ∝ Qht−1,rQr,ht+1
, r = 1, ..., R, and a conditional for θt|ht = r given by the Pólya

urn prior full conditional arising from Pr(θr | h, αr, ψr).
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2.2.1 Blocked Gibbs with forward-backward sampling

The posterior simulation approach discussed above requires updating each ht one at a time, whereas

forward-backward sampling for the entire state vector h is a substantially more efficient method

for exploring the state space (see, e.g., Scott, 2002). To implement forward-backward sampling, we

need to evaluate the joint probability mass function for states (ht−1, ht) conditional on the incomplete

data vector {z1, ..., zt} and relevant model parameters, which include the random mixing distributions

{G1, ..., GR}. It is thus necessary to compute state probabilities approximating each Gr with the finite

stick-breaking version in (2). The blocked Gibbs sampling method for DP mixture models (Ishwaran

and James, 2001) provides a natural approach wherein the entire MCMC algorithm is based on a

finite stick-breaking approximation of the DP. As well as being the consistent choice if the truncated

distributions are used in state vector draws, blocked Gibbs can lead to very efficient sampling for the

complete posterior.

Using the DP stick-breaking representation, we replace each Gr in model M2 with a trunca-

tion approximation of the form in (2). Specifically, for specified (finite) L, we work with GL
r (·) =

∑L
l=1 ωl,rδθ̃l,r

(·), where the θ̃l,r = (µ̃l,r, Σ̃l,r), l = 1, ..., L, are i.i.d. G0(ψr), and ωr = (ω1,r, ..., ωL,r)

has distribution PL(ωr | 1, αr) defined in (3). Hence, each GL
r is defined by the set of L location-scale

parameters θ̃r = (θ̃1,r, ..., θ̃L,r) and weights ωr. Guidelines to choose the truncation level L, up to

any desired accuracy, can be obtained, e.g., from Ishwaran and Zarepour (2000).

The first stage of model (5) is replaced with zt | ht, (ωht
, θ̃ht

)
ind
∼

∑L
l=1 ωl,ht

N(zt; θ̃l,ht
), t = 1, ..., T .

The limiting case of this finite mixture model (as L → ∞) is the countable DP mixture model

f(zt; Ght
) =

∫

N(zt; θ)dGht
(θ) in (5). Again, we can introduce latent parameters θt = (µt, Σt) to

expand the first stage specification to zt | θt
ind
∼ N(zt; θt) and θt | ht, (ωht

, θ̃ht
)

ind
∼ GL

ht
, for t = 1, ..., T .

Alternatively, since θt = θ̃l,ht
with probability ωl,ht

, we can work with configuration variables k =

(k1, ..., kT ), where each kt takes values in {1, ..., L}, such that, conditionally on ht, kt = l if and

only if θt = θ̃l,ht
. Hence, model M2 with the DP truncation approximation can be expressed in the
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following hierarchical form

zt | θ̃ht
, kt

ind
∼ N(zt; θ̃kt,ht

), t = 1, ..., T

kt | ht, ωht

ind
∼

L
∑

l=1

ωl,ht
δl(kt), t = 1, ..., T (6)

ωr, θ̃r | αr, ψr
ind
∼ PL(ωr | 1, αr)

L
∏

l=1

dG0(θ̃l,r; ψr), r = 1, ..., R

with h | Q ∼ Pr(h | Q) =
∏T

t=2 Qht−1,ht
, and the hyperpriors for α, ψ, and Q given in Section 2.1.

Denote by φ the vector comprising model parameters α, ψ, k, Q, and {(ωr, θ̃r) : r = 1, ..., R}.

The full posterior, Pr(φ,h | D), corresponding to model (6) is now proportional to

Pr(h | Q)

R
∏

r=1



π(αr)π(ψr)π(Qr)PL(ωr | 1, αr)

L
∏

l=1

dG0(θ̃l,r; ψr)
∏

{t:ht=r}

(

N(zt; θ̃kt,r)

L
∑

l=1

ωl,rδl(kt)

)



 .

Here, the key observation is that, conditionally on h, the first two stages of model (6),

∏T
t=1 Pr(zt, kt | ht, (ωht

, θ̃ht
)) =

∏T
t=1 N(zt; θ̃kt,ht

)
{

∑L
l=1 ωl,ht

δl(kt)
}

, can be expressed in the state-

specific form,
∏R

r=1

{

∏

{t:ht=r} N(zt; θ̃kt,r)
{

∑L
l=1 ωl,rδl(kt)

}}

. To explore the full posterior, we de-

velop an MCMC approach that combines Gibbs sampling steps for parameters in φ with forward-

backward sampling for the state vector h. We discuss the latter next, deferring to the Appendix the

details of the Gibbs sampler for all other parameters.

As discussed above, sampling the truncated random mixing distribution GL
r ≡ (ωr, θ̃r) for each

state r, enables use of forward-backward recursive sampling for the posterior full conditional dis-

tribution, Pr(h | φ,D). Note that this conditional distribution can be written, in general, as

Pr(hT | φ,D)
∏T−1

t=1 Pr(hT−t | {hT−t+1, ..., hT }, φ,D), whereas under the hidden Markov model struc-

ture it simplifies to

Pr(h | φ,D) = Pr(hT | φ,D)
T−1
∏

t=1

Pr(hT−t | hT−t+1, φ, {z1, ..., zT−t+1}). (7)
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Hence, the state vector can be updated as a block in each MCMC iteration by sampling from each

component in (7).

To this end, the forward-backward sampling scheme begins by recursively calculating the forward

matrices F (t), for t = 2, ..., T , where F
(t)
r,s = Pr(ht−1 = r, ht = s | φ, {z1, ..., zt}), for r, s = 1, ..., R.

Thus, F (t) defines the joint distribution for (ht−1, ht) given model parameters and data up to time t.

For t = 3, ..., T , F (t) is obtained from F (t−1) through the following recursive calculation:

F (t)
r,s ∝ Pr(ht−1 = r, ht = s, zt | φ, {z1, ..., zt−1})

= Pr(ht = s | ht−1 = r, φ) Pr(zt | ht = s,φ)Pr(ht−1 = r | φ, {z1, ..., zt−1})

= Qr,s

L
∑

l=1

ωl,sN(zt; θ̃l,s)
R

∑

i=1

Pr(ht−2 = i, ht−1 = r | φ, {z1, ..., zt−1})

= Qr,s

L
∑

l=1

ωl,sN(zt; θ̃l,s)
R

∑

i=1

F
(t−1)
i,r (8)

where the proportionality constant is obtained from
∑R

r=1

∑R
s=1 F

(t)
r,s = 1. For t = 2, a similar cal-

culation yields F
(2)
r,s ∝ Qr,s

∑L
l=1 ωl,sN(z2; θ̃l,s)

∑L
l=1 ωl,rN(z1; θ̃l,r), where, again, the proportionality

constant results from
∑R

r=1

∑R
s=1 F

(2)
r,s = 1.

Next, exploiting the form in (7), the (stochastic) backward sampling step begins by drawing hT

according to Pr(hT = r | φ,D) =
∑R

i=1 Pr(hT−1 = i, hT = r | φ,D) =
∑R

i=1 F
(T )
i,r , for r = 1, ..., R.

Sampling from (7) is then completed by drawing for each t = T − 1, T − 2, ..., 1 from Pr(ht = r |

ht+1, φ, {z1, ..., zt+1}) ∝ Pr(ht = r, ht+1 | φ, {z1, ..., zt+1}) = F
(t+1)
r,ht+1

, for r = 1, ..., R, where the

proportionality constant arises from
∑R

r=1 F
(t+1)
r,ht+1

.

2.2.2 Inference and forecasting for regression relationships

Inference for the state-specific regressions is based on an extension of the approach discussed in Section

1.2. In particular, conditional on the posterior draw for the state-specific mixing distribution, GL
r ,
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the posterior realization for the conditional response density, f(y | x; Gr), corresponding to state r is

f(y | x; GL
r ) =

f(x, y; GL
r )

f(x; GL
r )

=

∑L
l=1 ωl,rN(x, y; µ̃l,r, Σ̃l,r)

∑L
l=1 ωl,rN(x; µ̃x

l,r, Σ̃
xx

l,r )
. (9)

The conditional mean regression for state r, E [Y | x; Gr], can be estimated through a state-specific

application of equation (4).

Moreover, of interest is prediction in future years (forecasting) for the joint response-covariate

distribution and the corresponding implied conditional regression relationship. Illustrating with year

T+1, the full model that includes the future covariate-response vector (xT+1, yT+1) and corresponding

regime state hT+1, can be expressed as

Pr((xT+1, yT+1), hT+1, φ,h | D) = Pr(φ,h | D)QhT ,hT+1

L
∑

l=1

ωl,hT+1
N(xT+1, yT+1; θ̃l,hT+1

).

Hence, the posterior samples for (φ,h) along with draws for the new regime state hT+1, driven by

Q and hT , can be used to estimate the joint posterior forecast density Pr(xT+1, yT+1 | D). More

generally, using the posterior samples for (φ,h) and hT+1, we obtain posterior realizations for the

conditional response density in year T + 1 through f(y | x; GL
hT+1

) = f(x, y; GL
hT+1

)/f(x; GL
hT+1

).

Note that, in contrast to (9), these realizations incorporate posterior uncertainty in hT+1. This type

of inference is illustrated with the data example of Section 3.

2.3 Extension to Semiparametric Modeling with External Covariates

In the spirit of allowing the switching probabilities to drive the nonparametric regression, we extend

here model M2 to include additional information about the state vector in the form of an external

covariate, U , with values u = {u1, ..., uT }. (Although we present the methodology for a single

covariate, the work can be readily extended to the setting with multiple external covariates.) The

modeling extension involves a non-homogeneous Markov mixture where the hidden state provides a
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link between the joint covariate-response random variable and the external covariate.

The standard non-homogeneous hidden Markov model holds that the transition probabilities are

dependent upon the external covariates, such that Pr(ht | h1, . . . , ht−1, u) = Pr(ht | ht−1, ut). Berliner

and Lu (1999) present a Bayesian parametric approach to non-homogeneous hidden Markov models in

which Pr(ht | ht−1, ut) is estimated through probit regression. Also related is the likelihood analysis

of Hughes and Guttorp (1994), wherein a heuristic argument, using Bayes theorem, is proposed to

justify the model Pr(ht | ht−1, ut) ∝ Pr(ht | ht−1)L(ht; ut), where the likelihood L(ht; ut) in their

example is normal with state dependent mean.

Treating each ut as the realization of a random variable yields a natural modeling framework in

the context of our approach. Hence, we obtain a semiparametric extension of model M2 (referred to

as model M3) by adding a further stage, ut | ht
ind
∼ p(ut | γht

), to the hierarchical model specification

in (6), along with hyperpriors for γ = {γr : r = 1, ..., R}, the state-specific parameters of the

distribution for the external covariate. Moreover, we assume that u is conditionally independent of

{z1, ..., zT } given h. Thus, utilizing again the DP truncation approximation, the first stage of model

M3 is given by

zt, ut | ht, (ωht
, θ̃ht

), γ
ind
∼ p(ut | γht

)

L
∑

l=1

ωl,ht
N(zt; θ̃l,ht

), t = 1, ..., T. (10)

Clearly, the formulation of model M3 implies that the hidden Markov chain is non-homogeneous

conditional on u. However, unconditionally in the prior, it is more accurate to say that {z1, ..., zT }

and u are dependent upon a shared homogeneous Markov chain, and that they are conditionally

independent given h. In Section 3, we illustrate with a Gaussian form for p(ut | γht
). More general

examples, with multiple external covariates, could incorporate dependence relationships, or even

model some subset of the vector of external covariates as a function of the others.

Posterior inference under model M3 can be implemented with a straightforward extension of

the MCMC algorithm of Section 2.2. The parameters γ can be sampled conditional on only u and
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the state vector h. Regarding the other model parameters, only the MCMC draws that involve

h need to be altered. In particular, the starting point is again an expression analogous to (7) for

the posterior full conditional for h. Specifically, Pr(h | φ, γ,D) = Pr(hT | φ, γ,D)
∏T−1

t=1 Pr(hT−t |

hT−t+1, φ, γ, {(zℓ, uℓ) : ℓ = 1, ..., T − t + 1}). Note that now the data vector D comprises {(zt, ut) :

t = 1, ..., T}. For t = 3, ..., T , the recursive calculation of (8) for the forward matrices becomes

F (t)
r,s ∝ Qr,sp(ut | γs)

L
∑

l=1

ωl,sN(zt; θ̃l,s)
R

∑

i=1

F
(t−1)
i,r ,

with the proportionality constant obtained from
∑R

r=1

∑R
s=1 F

(t)
r,s = 1. Moreover, F

(2)
r,s ∝ Qr,sp(u2 |

γs)p(u1 | γr)
∑L

l=1 ωl,sN(z2; θ̃l,s)
∑L

l=1 ωl,rN(z1; θ̃l,r), where
∑R

r=1

∑R
s=1 F

(2)
r,s = 1. Finally, the back-

ward sampling step proceeds as described in Section 2.2 using probabilities from the forward matrices

F (T ), F (T−1), ..., F (2).

3 ANALYSIS OF STOCK-RECRUITMENT RELATIONSHIPS SUBJECT

TO ENVIRONMENTAL REGIME SHIFTS

The relationship between the number of mature individuals of a species (stock) and the production

of offspring (recruitment) is fundamental to the behavior of any ecological system. This has special

relevance in fisheries research, where the stock-recruitment relationship applies directly to decision

problems of fishery management with serious policy implications (e.g., Quinn and Derisio, 1999). A

standard ecological modeling assumption holds that as stock abundance increases, successful recruit-

ment per individual (reproductive success) decreases. However, a wide variety of factors will influence

this reproductive relationship and there are many competing models for the influence of biological

and physical mechanisms. Munch et al. (2005) present an overview of the literature on parametric

modeling for stock-recruitment functions, arguing for the utility of standard semiparametric Gaussian

process regression modeling. In the same spirit, albeit under the more general DP mixture modeling
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framework developed in Sections 1.2 and 2, our focus is to allow flexible regression to capture the

nature of recruitment dependence upon stock without making parametric assumptions for either the

stock-recruitment function or the errors around it.

An added complexity in studying stock-recruitment relationships is introduced by ecosystem

regime switching. It has been observed that rapid shifts in the ecosystem state can occur, during

which biological relationships, such as that between stock and recruitment, will undergo major change.

This has been observed in the North Pacific in particular (McGowan et al., 1998; Hare and Mantua,

2000). Although empirical evidence of regime shifts is well documented and there have been attempts

to establish mechanisms for the effect of this switching on stock-recruitment (e.g., Jacobson et al.,

2005), the relationship between the physical effects of regime shifts and their biological manifestation

is still unclear. This presents an ideal setting for Markov-dependent switching regression models due

to their ability to link observed processes that occur on different scales (in this case, biological and

physical) and are correlated in an undetermined manner.

To illustrate our Markov switching regression models, we use data on annual stock and recruitment

for Japanese sardine from years 1951 to 1991. Wada and Jacobson (1998) use modeling of catch

abundance and egg count samples to estimate R, the successful recruits of age less than one (in

multiples of 106 fish). With estimated annual egg production E (in multiples of 1012 eggs) used as

a proxy for stock abundance, they investigate the relationship between log(E) and log reproductive

success, log(R/E). Japanese sardine have been observed to switch between favorable and unfavorable

feeding regime states related to the North Pacific environmental regime switching discussed above.

Based upon a predetermined regime allocation (see Figure 1), Wada and Jacobson (1998) fit a linear

regression relationship for log(E) vs log(R/E) within each regime.

Figure 1 about here.

We consider an analysis of the Japanese sardine data using the modeling framework developed

in Section 2, which relaxes parametric (linear) regression assumptions and allows for simultaneous
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estimation of regime state allocation and regime-specific stock-recruitment relationships. As in the

original analysis by Wada and Jacobson (1998), this model formulation does not take into account

temporal dependence between successive observations from the same regime. This suits the purposes

of our application, but one can envision many settings where a structured time series model is more

appropriate than the fully nonparametric approach. Although the low dimensionality of this example

is useful for illustrative purposes, the techniques will perhaps be most powerful in the exploration of

higher dimensional datasets where such temporal structure is not assumed (an example of implied

conditional regression in higher dimensions is studied in Taddy and Kottas, 2009).

We first apply model M2 in (6) to the sardine data, zt = (log(Et), log(Rt/Et)), available for

T = 41 years from 1951 to 1991, with the underlying states ht defined by either the unfavorable or

favorable feeding regime (with values 1 or 2, respectively). A (conservative) truncation of L = 100

was used in the stick-breaking priors. Regarding the prior hyperparameters, we set aα = 2 and

bα = 0.2 in the gamma prior for α. The prior for ψr is specified as outlined in Section 2.1 such

that, conditional on the prior regime allocation taken from Wada and Jacobson (1998), am1
and

am2
are set to data means (5, 3) and (5, 5) for the unfavorable and favorable regime observations,

respectively, while Bm1
and (aV1

− 3)−1BV1
, with diagonal (5.3, 2.6) and off-diagonal −3.1, and Bm2

and (aV2
− 3)−1BV2

, with diagonal (4.5, 1.4) and off-diagonal −2.0, is the observed covariance matrix

for each regime. The BSr , for r = 1, 2, are diagonal matrices and are specified by setting the diagonal

entries of aSrBSr equal to (7.8, 7.7), which defines one quarter of the data range. Finally, we set ν1 =

ν2 = aV1
= aV2

= aS1
= aS2

= 2(d + 1) = 6. The prior for Q is induced by a β(3, 1.5) prior for the

probability of staying in the same state, which reflects the relative rarity of regime shifts. The data

and prior allocation are shown in Figure 1 along with bivariate normal draws based on the marginal

mean and covariance matrix for the location, µr, of a single component of the DP mixture, for each

of the two regimes. Hence, the right panel of Figure 1 shows draws from the prior expectation of

the random mixing distribution for the µr (i.e., from state-specific normal distributions with means
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E[µr] = amr and variance var(µr) = var(mr) + E[Vr] = Bmr + (aVr − 3)−1BVr). Noting that this

does not include prior uncertainty in the µr due to the DP mixture, clearly shows that the prior

specification has not overly restricted mixture components.

As described above, the sardine feeding regime is part of a larger ecosystem state for this region

of the North Pacific. The physical variables that are linked to the ecosystem state switching can be

used as external covariates for the hidden Markov chain. Hence, to illustrate the modeling approach

of Section 2.3, we choose a physical variable as the single external covariate, specifically, the winter

average Pacific decadal oscillation (PDO) index, which is highly correlated with biological regime

switching (Hare and Mantua, 2000). The PDO index provides the first principle component of an

aggregate of North Pacific sea surface temperatures. Although not directly responsible, sea surface

temperature is believed to be a proxy for mechanisms such as current flow that control the regime

switching (MacCall, 2002). Therefore, with vector u comprising winter average PDO values from

1951 to 1991, we apply model M3 to the sardine data working with a normal PDO distribution with

state-specific mean. Hence, we assume ut | ht
ind
∼ N(ut; γht

, τ−2), with (independent) normal priors

for γ = {γ1, γ2} and a gamma prior for τ2, in particular, γ1 ∼ N(−0.44, 0.26), γ2 ∼ N(0.73, 0.26),

and τ2 ∼ Γ(0.5, 0.125). The γr prior mean values are average winter PDO for two ten year periods

that are generally accepted to fall within each ecosystem regime (Hare and Mantua, 2000); the

common γr prior variance is the pooled variance for these mean estimates, and the prior median for

τ−2 is chosen to provide some overlap between prior PDO densities for each regime. Extending the

MCMC algorithm of Section 2.2 to sample the γr and τ2 is straightforward, since their posterior full

conditionals, conditional on u and h, are given by normal and gamma distributions, respectively.

The posterior means for γ1 and γ2 are given by −0.65 and 0.69, with 90% posterior intervals of

(−0.89,−0.40) and (0.30, 1.10), respectively, and τ−2 has posterior mean 0.68 with a 90% posterior

interval of (0.45, 1.00).

Figures 2 and 3 about here.
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Results from the analyses under the two models are presented in Figures 2 – 4. The regime-

specific posterior mean implied conditional densities, E
[

f(log(R/E) | log(E); GL
r ) | D

]

, evaluated

over a 50×50 grid, are shown in Figure 2. These provide point estimates of the conditional relationship

between stock and recruitment for each regime. Figure 3 shows the posterior mean for the state

vector h as well as posterior point and interval estimates for mean regression functions, E[log(R/E) |

log(E); GL
r ], for each regime. The impact of inclusion of PDO as an external variable is evident. In

the absence of such information, the observations for years 1988 - 1991 are more likely to be allocated

in the favorable regime due to the rarity of regime shifting (i.e., due to posterior realizations of Q

which put a high probability on staying in the same state). However, with the inclusion of PDO, these

years are more probably associated with the unfavorable regime. Also, the posterior estimates for the

regime-specific mean regression curves do not exclude the possibility of a linear mean relationship

between log egg production and log reproductive success. Hence, it is interesting to note that the

more general DP mixture switching regression modeling framework provides a certain level of support

to the original assumptions of Wada and Jacobson (1998).

Figure 4 about here.

Finally, using the approach discussed in Section 2.2.2, we obtain prediction for 1992, the year

following the end of our dataset. Posterior mean estimates of f(log(R/E) | log(E); GL
h1992

), the con-

ditional response density in year 1992, are shown in the left panels of Figure 4, using the model with

and without PDO as an external covariate (in the former case, based on u1992 = 0.26). In addition,

the data include egg production estimates for the years 1992 to 1995 with log(E) = log(675) = 6.515

in 1992. Wada and Jacobson (1998) found a recruitment estimate based on partial stock assessment

for 1992 of R = 20591 (log(20591/675) ≈ 3.4), but they were unable to quantify uncertainty about

this value. The right panels of Figure 4 provide posterior point and interval estimates for the den-

sity f(log(R/E) | log(E) = 6.515; GL
h1992

). These results show the considerable change in year 1992

predicted response distribution (conditional on log(E) = 6.515) from the inclusion of winter PDO
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in the model. The predictive uncertainty is actually increased with the inclusion of PDO, since it is

now more likely that the regime state will be unfavorable in 1992 and there is little information from

the data to inform the unfavorable regime regression curve around log(E) = 6.515. The inference re-

sults reported in Figure 4 illustrate the posterior variability and non-standard shape of the predicted

conditional response density. The quantification of this variability as well as the capacity of the DP

mixture switching regression models to capture non-standard features of the response distribution

are important aspects of the proposed nonparametric modeling framework.

4 CONCLUSION

We have presented a general framework for fully nonparametric regression based on Dirichlet process

mixture models, and extended this approach with novel modeling and posterior simulation techniques

for semiparametric hidden Markov switching regression. While the basic switching DP mixture

regression methodology provides a powerful modeling technique in its own right, we feel that it is

most practically important when combined with further parametric modeling for the effect of external

covariates on state membership. Both modeling techniques, with or without the influence of external

covariates, have been illustrated with the analysis of stock-recruitment data.

We have focused on models for switching regression, but the methodology is applicable in more

general settings involving hidden Markov model structure. In particular, since the switching occurs

at the level of the joint distribution for response and covariates, the modeling approach is directly

applicable to nonparametric density estimation through DP mixtures of multivariate normals for

heterogeneous populations where switching between subpopulations occurs as a Markov chain. Fur-

thermore, the modeling framework can be elaborated for problems where the multivariate normal

is not a suitable choice for the DP mixture kernel. For instance, categorical covariates can be ac-

commodated through mixed continuous-discrete kernels. Finally, our work in the development of the

MCMC algorithm can be extended to incorporate stick-breaking priors other than the DP.
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APPENDIX: MCMC POSTERIOR SIMULATION

Here, we develop the approach to MCMC posterior simulation discussed in Section 2.2. Recall that

the key to the finite stick-breaking algorithm is that we are able to use forward-backward recursive

sampling of the posterior conditional distribution for h as described in Section 2.2. Gibbs sampling

details for all other parameters of model (6) are provided below.

First, for each t = 1, ..., T , kt has a discrete posterior full conditional distribution with values in

{1, ..., L} and corresponding probabilities ωl,ht
N(zt; θ̃l,ht

)/{
∑L

m=1 ωm,ht
N(zt; θ̃m,ht

)}, for l = 1, ..., L.

For each r = 1, ..., R, the posterior full conditional distribution for ωr, is proportional to PL(ωr |

1, αr)
∏

{t:ht=r}

(

∑L
l=1 ωl,rδl(kt)

)

= PL(ωr | 1, αr)
∏L

l=1 ω
Ml,r

l,r , where Ml,r = |{t : ht = r, kt = l}|.

Note that the PL(ωr | 1, αr) prior for ωr, defined constructively in (3), is given by

PL(ωr | 1, αr) = αL−1
r ωαr−1

L,r (1 − ω1,r)
−1(1 − (ω1,r + ω2,r))

−1...

(

1 −
∑L−2

l=1
ωl,r

)−1

. (A.1)

Recall the generalized Dirichlet distribution GD(p; a, b) (Connor and Mosimann, 1969) for random

vector p = (p1, ..., pL), supported on the L dimensional simplex, with density proportional to pa1−1
1

. . . p
aL−1−1
L−1 p

bL−1−1
L (1−p1)

b1−(a2+b2) . . . (1− (p1 + ...+pL−2))
bL−2−(aL−1+bL−1), where the parameters

are a = (a1, ..., aL−1) and b = (b1, ..., bL−1). Then, PL(ωr | 1, αr) ≡ GD(ωr; a, b) with a = (1, ..., 1)

and b = (αr, ..., αr). Moreover, the
∏L

l=1 ω
Ml,r

l,r form is also proportional to a GD(ωr; a, b) distribution

with a = (M1,r + 1, ..., ML−1,r + 1) and b = ((L − 1) +
∑L

l=2 Ml,r, ..., 2 + ML−1,r + ML,r, 1 + ML,r).

Hence, the posterior full conditional for ωr can be completed to a generalized Dirichlet distribution

with parameters a = (M1,r+1, ..., ML−1,r+1) and b = (αr+
∑L

l=2 Ml,r, αr+
∑L

l=3 Ml,r, ..., αr+ML,r).

This distribution can be sampled constructively by first drawing independent ζl ∼ β(1 + Ml,r, αr +

∑L
s=l+1 Ms,r), for l = 1, ..., L − 1, and then setting ω1,r = ζ1; ωl,r = ζl

∏l−1
s=1(1 − ζs), l = 2, ..., L − 1;

and ωL,r = 1 −
∑L−1

l=1 ωl,r.

Next, for each r = 1, ..., R, the posterior full conditional distribution for θ̃r is proportional to
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∏L
l=1 dG0(θ̃l,r; ψr)

∏n∗

r

j=1

∏

{t:ht=r,kt=k∗

j }
N(zt; θ̃k∗

j ,r). Here, n∗
r is the number of distinct values of the

kt that correspond to the r-th state, i.e., the number of distinct kt for t ∈ {t : ht = r}. These distinct

values are denoted by k∗
j , j = 1, ..., n∗

r. Now, for all l /∈ {k∗
j : j = 1, ..., n∗

r}, we can draw θ̃l,r i.i.d.

G0(ψr). Otherwise, the posterior full conditional for θ̃k∗

j ,r ≡ (µ̃∗
j,r, Σ̃

∗
j,r) is proportional to

N(µ̃∗
j,r; mr, Vr)Wνr(Σ̃

∗−1
j,r ; S−1

r )
∏

{t:ht=r,kt=k∗

j }

N(zt; µ̃
∗
j,r, Σ̃

∗
j,r),

and can be sampled by extending the Gibbs sampler to draw from the full conditional for µ̃∗
j,r

and for Σ̃∗−1
j,r . The former is normal with covariance matrix Tj = (V −1

r + M∗
j,rΣ̃

∗−1
j,r )−1, where

M∗
j,r = |{t : ht = r, kt = k∗

j }|, and mean vector Tj(V
−1
r mr + Σ̃∗−1

j,r

∑

{t:ht=r,kt=k∗

j }
zt). The latter is

Wνr+M∗

j,r
(·; (Sr +

∑

{t:ht=r,kt=k∗

j }
(zt − µ̃∗

j,r)(zt − µ̃∗
j,r)

T )−1).

The posterior full conditional for the hyperparameters, ψr = (mr, Vr, Sr), can be simplified by

marginalizing the joint posterior full conditional for θ̃r and ψr over all the θ̃l,r for l /∈ {k∗
j : j =

1, ..., n∗
r}. Thus, for each r = 1, ..., R, the full conditional for ψr is proportional to

N (mr; amr , Bmr)WaVr
(V −1

r ; B−1
Vr

)WaSr
(Sr; BSr)

n∗

r
∏

j=1

N(µ̃∗
j,r; mr, Vr)Wνr(Σ̃

∗−1
j,r ; S−1

r ).

Hence, ψr can be updated by separate draws from the posterior full conditionals for mr, Vr, and Sr.

The full conditional for mr is normal with covariance matrix B′
mr

= (B−1
mr

+ n∗
rV

−1
r )−1 and mean

vector B′
mr

(B−1
mr

amr +V −1
r

∑n∗

r

j=1 µ̃∗
j,r). The full conditional for V −1

r is Wn∗

r+aVr
(·; (BVr +

∑n∗

r

j=1(µ̃
∗
j,r −

mr)(µ̃
∗
j,r − mr)

T )−1), and the full conditional for Sr is Wνrn∗

r+aSr
(·; (B−1

Sr
+

∑n∗

r

j=1 Σ̃∗−1
j,r )−1).

Regarding the DP precision parameters, combining the Γ(aαr , bαr) prior for αr with the relevant

terms from (A.1), we obtain that, for each r = 1, ..., R, the posterior full conditional for αr is a

Γ(aαr + L − 1,− log(ωL,r) + bαr) distribution.

Finally, with the Dir(Qr; λr) prior on each row Qr of the transition matrix Q, the posterior full

conditional for Qr is Dir(Qr; λr + Jr), where Jr = (Jr,1, ..., Jr,R) with Jr,s denoting the number of
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transitions from state r to state s, which are defined by the currently imputed state vector h.
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Figure 1: The left panel plots the data with the regime allocation from Wada and Jacobson (1998). The
right panel includes draws from the bivariate normal distribution, which, under each regime, is defined by the
marginal mean and covariance matrix for the location of a single DP mixture component (see Section 3 for
details). In both panels, black and grey color indicate the unfavorable and favorable regime, respectively.
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Figure 2: Mean posterior conditional density surface for each regime. The unfavorable regime is plotted on
the left panels and the favorable on the right panels. The top row corresponds to the analysis from model M2
and the bottom row to model M3, which includes PDO as an external covariate.
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Figure 3: The left panels show the posterior mean regime membership by year, where 0 corresponds to the
unfavorable regime. The right panels include posterior point and 90% interval estimates for the conditional
mean regression function under each regime (interval estimates are denoted by dashed lines for the favorable
regime, and by dotted lines for the unfavorable). The top row corresponds to model M2 and the bottom row
to model M3, which includes PDO as an external covariate.
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Figure 4: Predictive inference for year 1992. The left panels include posterior mean estimates of the conditional
response density in 1992. The right panels show posterior point estimates (posterior means given by solid
lines) and 90% interval estimates (dashed-dotted lines) for the conditional response density given the specified
egg count for year 1992 of log(E) = 6.515. The top row provides results under model M2. The bottom row
corresponds to the analysis with model M3 with PDO as the external covariate, where prediction is conditional
on a winter average PDO of 0.26 in 1992.
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